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Crack Street: The Cycloidal Wake of a Cylinder Tearing through a Thin Sheet
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When a cylindrical tool cuts through a thin sheet of a relatively brittle material, it leaves behind a
visually arresting crack street in its wake, reminiscent of a vortex street in the wake of a cylinder
moving through a fluid. We show that simple geometrical arguments based on the interplay of in-plane
stretching and out-of-plane bending suffice to explain the cycloidal morphology of the curved crack.
The coupling between geometry and dynamics also allows us to explain the ‘‘stick-slip’’-like behavior
of tearing and suggests that these oscillations should occur generically in the brittle fracture of thin
solid films.
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attached to a motorized stage that can move parallel to is larger than its thickness, the sheet prefers to tear by
Despite enormous recent efforts to understand the
stability and motion of cracks [1], there is no general
theory capable of predicting the path of a crack as it
moves through a three-dimensional solid. Thus one might
imagine that if one considers the motion of a crack in a
thin sheet capable of geometrically large deformations,
the problem becomes essentially untractable. In fact, the
vast separation of length scales actually simplifies the
problem by clearly separating the statics and dynamics of
the different modes of deformation. Therefore crack
propagation in thin films offers a very different window
into the mechanics and dynamics of fracture, both in the
context of fundamentals and in processes involving thin
films in materials science [2,3], impact engineering [4],
and geophysics [5,6]. Here we address the unsteady dy-
namics and oscillatory morphology of a crack that forms
in the wake of a relatively blunt tool used to cut through a
thin brittle film, motivated by observations of the every-
day chore of opening an envelope. If a knifelike letter
opener is used, the result is a cleanly opened envelope
with a single straight crack. If one uses a finger instead,
the result is usually a rather raggedly torn envelope. This
suggests that there is an instability that is controlled by
the ratio of the tool (finger) diameter d to the sheet
thickness h.

To investigate this phenomenon using a controlled ex-
periment, we attach a thin sheet (h � 40–50 �m) made
of a relatively brittle material such as polypropylene with
a low tearing strength (wrappers used to package audio
and video tapes, compact disks, etc., all work very well
because of their layered structure which makes them stiff
to in-plane tensile forces but relatively soft in bending/
out-of-plane shear) by clamping it to a long rigid rectan-
gular frame (length l, width w; h � w< l) along its
length, as shown in Fig. 1(a). A sharp notch centered
along one of the free lateral edges is used as a nucleating
site from where tearing is initiated by the tool, a rigid rod
(d� 0:25–25 mm) of circular cross section with its axis
perpendicular to the plane of the frame. The tool is
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the long axis of the frame at a uniform speed (vt �
0:25–25 mm=s). When the aspect ratio d=h < �d=h�c, a
critical threshold, the crack in the wake of the tool is
straight. However, when (d=h�> �d=h�c, the straight crack
loses stability to a spatiotemporal oscillatory mode of
propagation, leaving behind a torn edge which suffers
no permanent out-of-plane deformation [7] but is highly
regular [Figs. 1(b)–1(e)]. The form of the torn edge is
independent of the cross-sectional shape of the tool [8];
square, rectangular, and hexagonal cross-sectional tools
all lead to similar shapes. More complex tear morpholo-
gies are also seen when the sheet is initially nonplanar
and/or slack leading to interesting dynamical transitions
shown in Fig. 1(f); we will not consider these any further,
and instead focus on the quantitative description of the
periodic states in Figs. 1(b)–1(e). The mechanism for the
instability can be understood by considering the defor-
mation of the sheet in response to the forces that the tool
exerts on it. When the diameter of the tool is smaller than
or comparable to the thickness of the sheet, the primarily
planar sheet deformation leads to a stress profile that
yields a maximum hoop stress just ahead of the tool so
that the sheet tears linearly just ahead of the tool. At the
other extreme, if the tool diameter is much larger than the
thickness of the sheet with h � d < w< l, so that all
the scales are relatively well separated, the motion of the
tool causes the sheet to bend out of the plane as shown in
Fig. 2(a). In this situation, the maximum stress that leads
to rupture is no longer directly ahead of the tool but is
instead at an angle to the direction of tool motion. If the
maximum deflection of the sheet in the vicinity of the
tool is denoted by � , the typical curvature induced in
the sheet by the tool scales as �=d2, so that the bending
energy density UB � Eh3�2=d4, where E is the Young’s
modulus of the material. The stretching strain due to
bending scales as �2=d2 so that the stretching energy
density US � Eh�4=d4. Therefore, the ratio of the energy
release rate in bending to that in stretching GB=GS �
UB=US � �2=d2 [3] . Thus if the deflection of the sheet
2003 The American Physical Society 215507-1
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out-of-plane bending, while if the deflection is of the
order of the thickness, the sheet ruptures via in-plane
stretching.

When d � h, the geometry of interaction between the
tool and the sheet leads naturally to a periodic transition
from stretching to bending and back. At the beginning of
a cycle, the crack tip is at its maximum lateral amplitude
relative to the direction of the motion of the tool, so that
the sheet is deformed primarily in the plane [Fig. 2(a)],
causing it to stretch, until it eventually ruptures forming a
crack that propagates at a speed that is much larger than
the tool speed. Since the stress field far ahead of the tool is
relatively small, the propagating crack slows down and
comes to rest relatively quickly [9]. Once the tool catches
FIG. 1. Experimental setup and tear morphology. (a) Sche-
matic of the experiment in which a rigid rod is driven trans-
versely through a thin sheet of plastic (length l � 230 mm and
the width w � 30 mm) attached laterally to a rigid frame. The
sheet is stretched slightly so that it does not sag between the
edges of the frame. (b)–(e) Typical tearing patterns as a
function of the sheet thickness h and tool diameter d. (b) h �
40 �m, d � 0:25 mm; (c) h � 50 �m, d � 3 mm; (d) h �
40 �m, d � 8 mm. (e) If the film has some lateral slack
induced by bringing the lateral edges closer (so that �w �
2:5 mm), and a rigid rod of diameter d � 3 mm is driven
through the sheet at a speed vt � 5:3 mm=s, we see the evolu-
tion of periodic patterns, starting with a single tooth pattern
that gives way to multiteeth patterns and eventually leads to the
continuous cycloidal patterns that are seen when there is no
slack in the sheet. The scale bar corresponds to 1 cm.

215507-2
up, it continues to tear the sheet, but now via a bending
mode that is relatively cheap energetically. As this process
continues, the crack tip moves in a direction perpendicu-
lar to the motion of the tool; the geometry of this motion
automatically reduces the amount that the sheet has to
bend to accommodate the tool motion until the crack tip is
at a location corresponding to its mirror image (relative
to the axis of motion in a frame attached to the tool).
Further motion of the tool loads the crack in extension
(mode I) and harks the beginning of the second half of a
cycle. Evidence of the stretching and bending modes of
failure can be seen by examining the tearing front under
an optical microscope. In Fig. 2(b), we see that close to
the crest of the wavy pattern, i.e., from A to B the edge of
the crack is nearly perpendicular to the sheet, indicating
failure under in-plane stretching, while the edge of the
crack is slanted from B to C indicating failure due to out-
of-plane bending/shear.

The shape of the torn edge is particularly easy to
understand in the extreme case when all the lengths in
the problem are asymptotically far apart, and the crack is
assumed to propagate quasistatically (realizable using a
feedback control loop to prevent the crack from acceler-
ating as it first starts in the stretching mode). Then the
crack tip will trace out the path of a point on the circum-
ference of the tool which moves at constant velocity in a
FIG. 2. Geometry and mechanics of tearing. (a) The sheet
tears by two different mechanisms: in-plane-stretching and
out-of-plane bending. The first mechanism is operative at the
beginning of each cycle, while the second takes over during the
rest of the cycle. (b) The edge of the crack close to the crest is
perpendicular to the sheet, signifying ripping of sheet by in-
plane-stretching. Away from the crest it is slanted, signifying
out-of-plane shearing due to bending of sheet. (c) The crack
wake left behind the tool (solid line) showing the region
corresponding to in-plane stretching (A to B) and out-of-
plane bending (B to C). The tearing path is reasonably well
described by a series of cycloidal arcs [x � R��� sin��; y �
R�1� cos��; R � 1:15d=2 � 0:575d; � 2 ��42	; 42	
 ] which
would correspond to the ideal situation when the crack tip hugs
the tool, tracing out a point on its circumference. Here the sheet
thickness, h � 50 �m, the tool diameter d � 3 mm, and the
tool speed vt � 5:3 mm=s.
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given direction. For a tool with a circular cross section,
the path of a point on the circumference of the circle that
rolls along a plane defines a cycloid, represented para-
metrically as

x �
d
2
��� sin��; y �

d
2
�1� cos��; (1)

where � is the angular position of the crack tip rela-
tive to the direction of tool motion. Thus, we might
expect that the crack tip follows an arc of a cycloid
over each half-cycle of tearing. Figure 2(c) shows that
this is a good approximation and the small deviations
from the cycloidal path that arise are due to finite size
and dynamical effects. Quantitatively, the experimentally
fitted cycloid is characterized by a circle of radius
�d=2�� > 1�, and is limited to angular variations with
� 2 ����=2; ��=2
, ��< 1�. The parameters �;� can
be determined only via a detailed stress analysis that
accounts for the complex geometry of loading. Never-
theless, the geometrical interpretation allows us to im-
mediately infer that the amplitude A and wavelength �
should both scale linearly with the tool diameter d. In
Figs. 3(a) and 3(b), we show that this is indeed the case in
the unstable tearing regime. Furthermore �; A are inde-
pendent of the tool speed vt over almost 2 orders of
magnitude (0:25–25 mm=s).

The alternation between stretching and bending defor-
mations also has dynamical implications, which we study
by tracking the crack tip using high-speed photography
(500–5000 fps). In Fig. 4(a), we show the position of the
crack tip as a function of time and see that in each cycle
the crack moves in two stages; very rapidly at first and
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FIG. 3. Wavelength and amplitude of the wake. (a) Below a
critical value of the aspect ratio of the tool, �d=h�c � 30, the
crack is straight and stable, while above it, the crack is unsteady
and curved. The scaled wavelength �=h varies linearly with the
scaled tool diameter d=h. The closed and open symbols repre-
sent data for sheets of thickness 40 and 50 �m, respectively.
The solid line is given by �=h � �1:22� 0:01�d=h. (b) The
dimensionless amplitude A=h of the pattern also varies linearly
with d=h. Closed and open symbols represent films of thickness
40 and 50 �m, respectively, and the solid line is given by
A=h � �0:9� 0:03�d=h. For the 40 �m film, the dotted line
indicates a transition region, in which tearing can be both
stable and unstable.
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then very slowly, reminiscent of frictional stick-slip be-
havior. This is clearly seen in Fig. 4(b), where we show
the crack tip velocity v as a function of time and see the
presence of two vastly different velocities, the tool speed
vt and the maximum crack speed vc�� vt� which is a
function of the material properties and the geometry of
the experiment. However, the maximum speed of the
crack, vc � 1 m=s is much smaller than the inertial wave
speeds in the medium vi � �E=��1=2 � 3� 103 m=s (and
also much less than the Rayleigh wave speed), suggesting
that local dissipation mechanisms lead to the slowing
down of the crack. In terms of a simple viscous model
for the dissipation close to the crack tip during in-plane
tearing, the rate of dissipation scales as ��vc=h�2h3 where
� is the effective ‘‘viscosity’’ of the medium [10]. The
driving power due the elastic stresses which scales as
E 2dhvc where  is the typical strain in the neighborhood
of the tool. Balancing the driving power with the dis-
sipation rate yields

vc � E 2d=�: (2)

Substituting in typical values for the experimental
parameters with E  1010 Pa, d  10�2 m,   10�1,
0
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FIG. 4. Stick-slip dynamics of tearing. (a) Position of the
crack tip as a function of time. The filled and open symbols cor-
respond to the x and y coordinates of the tip, respectively. Here
d � 12 mm, h � 50 �m, and v � 12:5 mm=s. (b) Velocity of
the tip vc as a function of time. Two different times scales of
crack propagation (Tt and Tc) can be identified in this figure.
Tt � d=vt, is the slow time scale associated with the tool speed,
while Tc � d=vc is the fast time scale associated with the
maximum intrinsic crack speed in the sheet vc.
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FIG. 5. The maximum crack speed vc increases linearly with
tool diameter d�2–25 mm� and is independent of the tool speed
over the entire range of speeds tested, consistent with (2). The
solid line is given by vc � 58d� 33:4. The finite horizontal
intercept suggests that if the diameter of the tool is below a
critical value, the stick-slip behavior will give way to steady
tearing, qualitatively consistent with observations.
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�  106 Pa s, we find that vc  1 m=s, in agreement with
our measurements. To test the dependence of the maxi-
mum crack speed on the tool size, we varied the latter by a
factor of 5. In Fig. 5, we show that the maximum crack
speed vc � d consistent with (2).

The crucial simplifying feature of our system has been
the geometry-induced separation of deformation modes
(into stretching and bending) that allows us to qualita-
tively understand the morphology and dynamics of forced
tearing in thin films. Although a detailed analysis is
clearly required in order to understand such questions
as the transition to oscillatory tearing and the angle of
tear initiation, as we move away from the onset of the
instability, the separation of scales makes the asymptotic
analysis ever easier. Naturally therefore, these ideas may
be relevant to problems involving extremes in scale sepa-
ration, as in geology, a subject to which we turn briefly.

On Earth, in the polar regions, sometimes ice sheets
are driven past grounded icebergs by winds and ocean
currents, and lead to a cycloidal crack morphology over a
scale of many kilometers [5], similar to that seen in our
laboratory experiments. Indeed, the mechanism of crack-
ing should be identical to the one we have presented,
although there are currently no dynamic observations of
these processes. This might also help to explain the nature
of finger rafts, an unusual morphology of ice sheets with
fingerlike projections that interleave each other [6]; it is
likely that these are just the remnants of an ice sheet torn
by an iceberg. Indeed, this interplay between geometry
and dynamics suggests that generically crack propagation
215507-4
in thin films involving bending and stretching will typi-
cally lead to stick-slip oscillations.

We thank Peter Wadhams for educating us about the
mechanics of ice sheets. A. G. and L. M. acknowledge
the support of the U.S. National Institutes of Health and
the Office of Naval Research.

Note added in proof.—While going to press, we be-
came aware of other experiments studying the same
phenomena [11].
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[Phys. Rev. Lett. 91, 215507 (2003)]

A. Ghatak and L. Mahadevan
(Received 1 June 2004; published 23 March 2005)
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Although the essence of our qualitative geometrical argument for the morphology of the crack does not change, the
cycloid equation (1) in our Letter is only an idealization. A thorough stress analysis of the problem is clearly required to
determine the actual crack morphology. This erratum corrects an equation in the caption of Fig. 2 in our Letter. The tearing
tip oscillates between ���=2 to ��=2 and not between ��=2 to �=2, where �< 1. Furthermore, the radius of the circle
that the tearing tip traverses is not d=2 but �d=2, where �> 1 reflects the fact that the crack tip does not hug the tool
perfectly. Thus, the best fit of our data, shown in Fig. 2(c), is given by prolate-cycloidal arcs that are written as

x � �d=2��	� � sin	�; y � �d=2��1� � cos	�: (1)

Note that this is different from the equation in the caption to Fig. 2(c), where a factor � was inadvertently left out. Each
time the tip changes direction, it jumps an angle of �1� ���. This is a dynamic event, as shown in Fig. 4 of the original
Letter, and leads to a jump in angular position then resulting in a shift along the x axis of a distance �d=2��1� ���. Each
subsequent theoretical arc is therefore shifted by this distance. For the same reason, the very first arc gets shifted by a
distance �d=4��1� ���. The curves should be accompanied by the caption: The tearing path is reasonably well described
by a series of prolate-cycloidal arcs (� � 1:15 and � � 0:467) represented by Eq. (1) of this erratum.

B. Audoly is acknowledged for bringing this error to our attention.
05=94(11)=119901(1)$23.00 119901-1  2005 The American Physical Society
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FIG. 1. The experimental crack path used in Ref. [1] (solid
curve) is fitted by our two reference models (dashed curves).
Both fits are significantly better than the one obtained by the
authors with their cycloidal construction, as revealed by com-
parison with Fig. 2(c) of the original Letter [1].
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Comment on ‘‘Crack Street: The Cycloidal Wake of a
Cylinder Tearing through a Thin Sheet’’

A new mode of oscillatory fracture in brittle thin films
has recently been reported in two independent experiments
[1,2]. When an object is driven through a thin film clamped
along its lateral boundaries, the film tears following a
striking sawtooth pattern, as the crack tip propagates in
an oscillatory manner.

In their Letter, Ghatak and Mahadevan [1,3] make an
analogy with the classical construction of a cycloid and
claim that the crack path consists of series of arches of
prolate cycloids (APC). This approach is based on the
assumptions that (i) the crack tip moves along an arc of
circle in the cutting tool’s frame of reference and (ii) it does
so with an angular velocity that is constant with an alter-
nating sign. Whereas these assumptions roughly mimic the
oscillatory behavior, they bear some important limitations.
First, they lack a physical justification, making their con-
struction an ad hoc description of the experiments. For
instance, this construction is justified by the fact that the
crack tip moves ‘‘on the circumference of the tool’’ but a
heuristic fitting parameter, �> 1, is later introduced in the
model, implying that the crack is ahead of the tool. Second,
these assumptions are inconsistent with some of the ex-
perimental observations. In particular, (i) in our own ex-
periments [2], we have measured fluctuations of the
distance of the crack tip to the center of the cutting tool
by as much as 40% of the tool radius and (ii) the velocity of
the crack tip presented in their Fig. 4(b) is far from con-
stant, even within the quasistatic regime (stick phase).

In the absence of a solid physical basis, the claim that the
morphology of fracture paths is cycloidal is supported
solely by a superposition of an experimental path with an
APC curve, shown in their Fig. 2(c). Although visually
satisfactory, the similarity of the curves mostly reflects the
ingredients that have been included in the construction by
hand, namely, the periodicity, existence of angular points,
and invariance under axial symmetry combined with trans-
lation by a half-period.

With the aim of testing the APC construction on a more
quantitative ground, we have performed an error analysis
of this model: we compared its predictions to those of two
reference models which were purposely chosen to be un-
physical. To avoid any bias, the comparison was based on
the experimental crack path presented by the authors in
Fig. 2(c), and the reference models were chosen with the
same number of adjustable parameters, two, as in the APC
construction. The first reference model is a plain sinusoid
y�x� � � sin��x�, with adjustable amplitude � and wave
number �. Note that experimental patterns are far from
sinusoidal [1]; hence, as intended, this model should pro-
vide a poor fit and establish an upper bound on the error
estimation. The other reference model is based on repli-
0031-9007=05=94(12)=129601(1)$23.00 12960
cated arches of parabolas (RAP): every half-period fol-
lows the equation y�x� � �x2 for 0 � x � �, where � and
� are adjustable, and is replicated as in the APC
construction.

The error of the fit provided by all three models was
measured using the rms of the transverse deviation: E �

�2=d�h�ymodel�x� � yexp�x��2i1=2, where x and y are the axial
and transverse coordinates, the brackets denote average
with respect to x, and the prefactor (inverse radius of the
cylinder) makes the error dimensionless. The reference
models fit the experimental crack path of Fig. 2(c) with
an error Esinusoid � 7:8% and ERAP � 6:4%; see Fig. 1
above. In comparison, the fit intended to support the
APC construction in their Fig. 2(c) yields a much larger
error, EAPC � 18:7%. We conclude that the two reference
models, even though just as unphysical, provide a more
effective description of the experiments than the APC
construction. In this sense, the statement that the crack
morphology is cycloidal appears arbitrary and the con-
struction proposed in [1] seems to be an unnatural starting
point in understanding oscillatory fracture paths in the
tearing of thin sheets.
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Ghatak and Mahadevan Reply: In our Letter [1], we
describe a new mode of oscillatory fracture in thin films
(independently observed by Roman et al. [2]), and quantify
the morphology and dynamics of these cracks. We also
propose a simple physical mechanism that is able to ap-
proximately describe the morphology of the crack (in the
simplest case only) as a series of prolate cycloids (see
Erratum [3]), and give a simple scaling argument for the
maximum velocity of the crack that propagates jerkily.

The authors of the preceding Comment [4] take issue
with our fit of the cracks using prolate cycloids and argue
that since some arbitrarily chosen curves are able to better
fit our data, our model is also unphysical. We wish to
emphasize that our model was an idealization, and thus
only a first step at an attempt to explain what was happen-
ing at a purely geometric level using only the barest of
physical ingredients—the large aspect ratio of the system
leading to the disparity between bending and stretching the
sheet, and an idealization of the crack motion. We are well
aware of the assumptions inherent in this as well as the
limitations of this picture—indeed our own Letter shows
that other more complex patterns are possible (see Fig. 1)
and that there are large variations in the velocity of the
0031-9007=05=94(12)=129602(1)$23.00 12960
crack in the two modes of fracture [see Fig. 4(b)]. Clearly a
more quantitative physical picture is required; we hope that
our geometrical picture is just the first step in moving
towards a more complete explanation of the dynamics of
oscillating cracks in thin sheets.
A. Ghatak and L. Mahadevan
Division of Engineering and Applied Sciences
Pierce Hall
Harvard University
Cambridge, Massachusetts 02138, USA
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