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We investigate the stability and geometrically nonlinear dynamics of slender rods
made of a linear isotropic poroelastic material. Dimensional reduction leads to the
evolution equation for the shape of the poroelastica where, in addition to the usual
terms for the bending of an elastic rod, we find a term that arises from fluid–solid
interaction. Using the poroelastica equation as a starting point, we consider the load-
controlled and displacement-controlled planar buckling of a slender rod, as well as the
closely related instabilities of a rod subjected to twisting moments and compression
when embedded in an elastic medium. This work has applications to the active and
passive mechanics of thin filaments and sheets made from gels, plant organs such as
stems, roots and leaves, sponges, cartilage layers and bones.
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1. Introduction

Poroelasticity is the continuum theory used to describe the behaviour of a biphasic
material in which fluid flow is coupled to the elastic deformation of a solid skeleton
(see Selvadurai (1996), Wang (2000) and references therein). The first applications
of this theory were to geological problems such as consolidation of saturated soil
under a uniform load (Biot 1941). Since then the theory has grown to cover many
and varied applications, some of which are displayed in table 1.

If a medium having interstitial fluid of viscosity ν is forced to oscillate with a
characteristic time τ , the Stokes length of the motion, Ls =

√
ντ , will characterize

the range of influence of the solid into the fluid. If Ls � lp (the pore length-scale),
the fluid within the pores moves out of phase relative to the solid. On the other
hand, if Ls � lp, the fluid will only move relative to the solid when the volume
fraction of the solid matrix changes locally. This limit (Ls � lp) was first considered
by Biot (1941) for an isotropic poroelastic material. Later work using averaging
techniques led to equations of the same form as well an understanding of how the
microstructure of the material influences the constitutive equations of the material
(Auriault & Sanchez-Palencia 1977; Burridge & Keller 1981; Mei & Auriault 1989;
Lydzba & Shao 2000).

Whereas geological applications are concerned primarily with bulk behaviour,
many engineering, physical and biological applications have extreme geometries
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which allow for the application of asymptotic methods to reduce the dimension of
the problem. Some examples include the active and passive mechanics of thin fila-
ments and sheets made of gels, plant organs such as stems, roots and leaves, sponges,
cartilage layers, bones, etc.

In this paper we use the constitutive behaviour of a linear isotropic poroelastic
solid to investigate the stability and dynamics of slender rods made of this material.
In § 2 we give a physically motivated derivation of the constitutive equations for
a poroelastic material. In § 3 we use the bulk poroelastic constitutive equations to
determine the equation for the time-dependent bending of a slender poroelastic rod
subjected to an externally applied compressive force P . Dimensional reduction leads
to the equation for the poroelastica, where in addition to the usual terms due to the
bending of an elastic rod we find a term due to the fluid resistance. It arises from
the fluid–solid interaction and has a form similar to that in a Maxwell fluid (Bird
et al . 1987). In § 4 we solve the problem of load-controlled buckling. Although the
poroelastic nature of the material does not change the buckling threshold or the final
stable shape, it governs the dynamics of the system as it evolves from the unstable
to the stable state. Both the short and the long-time limit are investigated using
asymptotic methods. We then use numerical methods to corroborate our asymptotic
approaches and follow the nonlinear evolution of the poroelastica. In § 5 we treat the
problem of displacement-controlled buckling and compare the results of the poro-
elastica with those of the classical elastica under similar loading conditions. In § 6
we consider the linear instability of a slender poroelastic filament embedded in an
infinite elastic medium, when it is subjected to an axial twisting moment and an axial
thrust. Finally, in § 7, we summarize our results and discuss possible applications to
such problems as the mechanics of cartilaginous joints and rapid movements in plants.

2. Governing equations for poroelastic media

We begin with the equations for a homogeneous, elastic isotropic poroelastic material
in the limit where the Stokes length, Ls =

√
ντ is much larger than the system size

lm and further that lm is much larger than the pore size lp. We will also neglect
inertial effects in the solid and liquid phases. In this limit the viscous resistance to
fluid flow in the pores is balanced by the pressure gradient, so that the momentum
balance in the fluid yields

ρν∇2
lpv − ∇p − ∇lppp = 0, (2.1)

where v is the fluid velocity with characteristic scale V , ρ is the fluid density, ∇
and ∇lp denote gradients on the system scale and the pore scale, respectively, p is
the macroscopic pressure driving the flow, and pp is the microscopic pressure in the
pore. When the pore scale and system size are well separated (lp/lm � 1), equation
(2.1) gives the following scaling relations:

p ∼ lmρνV

l2p
� ρνV

lp
∼ pp. (2.2)

Thus, the dominant contribution to the fluid stress in the medium arises from the
macroscopic pressure. The simplest stress–strain law for the composite medium then
arises by considering the linear superposition of the dominant components of the fluid
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and solid stress tensor. Assuming that the elastic behaviour of the solid skeleton is
characterized well by Hookean elasticity (i.e. the strains are small), we can write the
following constitutive equation for the poroelastic medium (see Appendix A for a
derivation using the method of multiple scales):

σ = 2µe + λ∇ · uI − αpI. (2.3)

Here σ is the stress tensor, u is the displacement field, e = 1
2(∇u + ∇uT) is the lin-

earized strain, µ and λ are the effective Lamé coefficients of the material (dependent
on the material properties and the microstructure), α is related to the fluid volume
fraction but includes a contribution from the dilatation of the solid skeleton as it
is compressed by the pressure in the surrounding fluid (see Appendix A), and I is
the identity tensor in three dimensions. These material parameters can be derived
using microstructural information (see Appendix A). In the limit when inertia can
be neglected, the equations of equilibrium are

∇ · σ = 0. (2.4)

Mass conservation and continuity requires that the rate of dilatation of the solid is
balanced by the differential motion between the solid and fluid in a poroelastic solid.
This yields (see Appendix A for a derivation using the method of multiple scales)

∇ · k · ∇p = β∂tp + α∂t∇ · u, (2.5)

where the solid skeleton is composed of a material with bulk modulus β−1 (�= λ+ 2
3µ,

since the Lamé coefficients λ and µ are for the composite material and take into
account the microstructure, while β−1 is independent of the microstructure) and k
is the fluid permeability tensor of the solid matrix. In words, (2.5) states that the flux
of fluid into a material element is balanced by the change in solid volume due to the
bulk compressibility of the matrix. For a rigid incompressible skeleton, β = 0. We will
assume that the solid skeleton is isotropic so that k = kI; however, many structured
and biological materials are anisotropic, and one may need to revisit this assumption.
Equations (2.3)–(2.5), when subjected to appropriate boundary conditions, describe
the evolution of displacements u and fluid pressure p in a poroelastic medium. The
typical values of the parameters for a soft gel are α ∼ 1, µ ∼ λ ∼ 106 Pa, and
k ∼ 10−12 m2 s−1 Pa−1.

3. Equations of motion for a slender filament

We consider a naturally straight slender circular rod of length L and radius R � L
with a tangent to the centreline that makes an angle θ with the horizontal (see
figure 1). At its ends an axial force P is applied suddenly at time t = 0. We will
further assume that the lateral surfaces of the filament are free of tractions. This
assumption could break down when the solid matrix is very dilute, so that interfacial
forces become comparable with the internal forces in the filament, but we will not
consider this case here. The slenderness of the filament implies that the axial stresses
vary rapidly across the cross-section and much more slowly along it, so that we can
use an averaging procedure to deduce low-dimensional equations that describe the
motion of the filament. This long-wavelength approximation can be formalized using
an asymptotic expansion in the aspect ratio of the filament R/L � 1. Here, we will
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Table 1. Applications of poroelasticity

(Ls =
√

ντ is the Stokes length, where ν is the kinematic viscosity of the interstitial liquid and
τ is the time-scale of the motion.)

geometry︷ ︸︸ ︷
infinite medium finite medium

Ls ∼ pore size high-frequency acoustic wave
propagation in saturated rock

sound absorption

high-frequency vibrating gels/
biological tissues

Ls � pore size low-frequency acoustic wave
propagation in saturated rock

consolidation and settling
phenomena

low-frequency vibrating gels/
biological tissues

bone mechanics

cartilage deformation

dynamics of poroelastic
filaments

y

x

zP P

(a) (b)

y

x
z

θ

Figure 1. Schematic of (a) a bent rod, where θ(x) is the angle between the deformed and
undeformed tangent vector and x, y and z are body-fixed coordinates in the reference frame of
the rod; (b) the circular cross-section.

proceed directly by noting that, since the rod is slender, bending it is easier than
stretching or shearing it (Love 1944). At the level of scaling, geometry implies that
the out-of-line (bending) displacement of the centreline scales as R, while the axial
displacement scales as R2/L.

At the surface of the filament, no stress is applied. Since the filament is thin, this
implies that σyy ≈ σzz ≈ 0. For a displacement field u = (ux, uy, uz), equation (2.3)
yields

σyy = −αp + (2µ + λ)∂yuy + λ(∂xux + ∂zuz) = 0, (3.1)

σzz = −αp + (2µ + λ)∂zuz + λ(∂xux + ∂yuy) = 0, (3.2)

which can be solved for ∂yuy and ∂zuz to give

∂yuy = ∂zuz =
αp − λ∂xux

2(µ + λ)
. (3.3)
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Equations (2.3) and (3.3) give the axial stress

σxx = − αµ

λ + µ
p +

3λµ + 2µ2

λ + µ
∂xux. (3.4)

More specifically, when an infinitesimal axial element of the rod of length dx is bent
so that locally the centreline curvature is ∂xθ, fibres that are parallel to the neutral
axis (coincident with the centreline for a homogeneous circular cross-section) and at a
perpendicular distance y from the neutral plane (defined by the neutral axis and the
axis of bending) will be either extended or contracted by an amount y∂xθ dx, so that
the elastic strain ∂xux = −y∂xθ. This leads to an elastic stress that varies linearly
across the cross-section; in addition, there is a fluid pressure that is determined by
equation (2.5). We insert (3.3) into (2.5) and find the evolution equation for the fluid
pressure:

k(∂xxp + ∂yyp + ∂zzp) =
(

β +
α2

λ + µ

)
∂tp − αµ

λ + µ
y ∂xtθ. (3.5)

To make the equations dimensionless, we use the following definitions for the
dimensionless primed variables:

x = Lx′, y = Ry′, z = Rz′, θ =
R

L
θ′,

σxx =
(2µ2 + 3λµ)R2

(µ + λ)L2 σ′
xx, P =

π(2µ2 + 3λµ)R4

4(µ + λ)L2 P ′,

p =
αµR2

[(µ + λ)β + α2]L2 p′, t =
[(µ + λ)β + α2]R2

(µ + λ)k
t′,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

and then immediately drop the primes, referring exclusively to dimensionless vari-
ables from now on. We note that the axial stress, the compressive force and the
pressure are scaled to reflect the dominance of bending deformations over all other
modes, and the time is scaled to reflect the dominance of radial diffusion over axial
diffusion.

The stress in the filament, given by (3.4), can then be written in a dimensionless
form as

σxx = −y ∂xθ − 1
4δp. (3.7)

Here, the first term reflects the purely elastic contribution well known from the theory
of beams (Love 1944), while the second term is proportional to the fluid pressure in
the pores. The dimensionless parameter

δ =
4α2µ

(2µ + 3λ)[(µ + λ)β + α2]
∼ O(1)

for most materials denotes the ratio of the fluid and solid stress.
In the long-wavelength approximation, it is preferable to use the stress resultant

F =
∫

σxx dA
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P

P

xx

xx

dxO θ

σ

σ

Figure 2. Schematic of the local torque balance in a bent rod under an externally applied
compression P . We balance torques about the point O; x, y and z are the coordinates in the
body-fixed frame with O as the origin. Let M(x) denote the total moment due to internal
stresses generated in part by bending the elastic skeleton and in part by the fluid pressure field.
Balancing torques gives: M(x+dl)−M(x)+dl×P = 0. In the limit dl → 0, ∂xM +P sin θ = 0.
The total moment M = EpI∂xθ + α

∫
py dA, where Ep is the effective elastic modulus of the

poroelastic skeleton and I is the moment of inertia of the cross-section.

and the torque resultant

M = −
∫

yσxx dA =
∫

y2∂xθ dA + 1
4δ

∫
yp dA = Me + Mf

as the variables of interest. Here Me is the elastic torque and Mf is the fluid torque
that arises due the transient effects of a pressure gradient across the filament. Then,
the local force and torque balance, which can be derived from (2.3), (2.4) and (3.4),
or equivalently directly (figure 2), yields the dimensionless equations

∂xF = 0,

∂xM + 1
4πP sin θ = 0.

}
(3.8)

The first of these equations can be integrated immediately to yield F = P , with P
a constant determined by the boundary conditions. The second equation combines
the effects of the elastic and fluid stresses that arise due to the fluid pressure, and
requires the solution of the continuity equation (3.5). For a rod with a circular
cross-section, there is rotational symmetry in the problem. Choosing the axis of
bending to coincide with the z-axis, we rewrite (3.5) in polar coordinates (r, φ),
using dimensionless variables, as

∂tp − 1
r
∂r(r∂rp) − 1

r2 ∂φφp = r sin φ∂xtθ. (3.9)

We see that the pressure in the fluid arises from the extensional and compressional
stresses in the filament due to bending. The boundary conditions for the pressure
can be deduced using the following considerations: the centreline of the rod does not
suffer any deformation, and is symmetrically disposed; the pressure at the surface is
determined by the permeability of the surface layers and the flux through it. Then

p = 0 at r = 0,

Bi p + ∂rp = 0 at r = 1,

}
(3.10)

where Bi = (ηR)/k, and η characterizes the flux through the surface for a given
pressure drop (the ambient external pressure is assumed to be zero). The second
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boundary condition in (3.10) on the pressure states that the flux of fluid through the
surface is proportional to the pressure drop across the surface. Bi = ∞ corresponds
to a freely draining rod, where there is no pressure jump across the surface, and
Bi = 0 corresponds to a jacketed rod, which allows no flux through the surface. For
a sponge, Bi > 1, while for a plant (root, stem or leaf) Bi < 1, since it is designed
to retain water.

Expanding p in terms of the homogeneous solutions of (3.9), we write

p =
∞∑

m=0

∞∑
n=1

[Amn sin mφ + Bmn cos mφ]Jm(r
√

λmn) e−λmnt, (3.11)

where Amn and Bmn are constants, Jm is the Bessel function of order m, and λmn

is determined by the boundary conditions. Inspection of the inhomogeneous term
on the right-hand side of equation (3.9) yields m = 1 so that A1n = An, Bmn = 0
and λ1n = λn. Since the boundary condition is a linear combination of p and ∂rp,
we are guaranteed to have a complete basis. We therefore look for a solution to the
inhomogeneous equation (3.9) of the form

p =
∞∑

n=1

An(t) sin φJ1(r
√

λn), (3.12)

where λn is determined by substituting (3.12) into (3.10), which yields

∂rJ1(r
√

λn) + BiJ1(r
√

λn) = 0 at r = 1. (3.13)

Inserting (3.12) into (3.9) yields
∞∑

n=1

(∂tAn + λnAn)J1(r
√

λn) = r ∂xtθ. (3.14)

Multiplying (3.14) by rJ1(r
√

λn′) and integrating across the cross-section gives

∂tAn + λnAn = χn ∂xtθ, (3.15)

where

χn =

∫ 1
0 r2J1(r

√
λn) dr∫ 1

0 r[J1(r
√

λn)]2 dr
. (3.16)

Solving equation (3.15) yields

An = χn

∫ t

0
e−λn(t−t′)∂xt′θ dt′, (3.17)

so that (3.12) may be rewritten as

p =
∞∑

n=1

χn sin φJ1(r
√

λn)
∫ t

0
e−λn(t−t′)∂xt′θ dt′. (3.18)

Then (3.7) allows us to write the total axial stress σxx at a cross-section as

σxx = −r sin φ∂xθ − 1
4δ

∞∑
n=1

χn sin φJ1(r
√

λn)
∫ t

0
e−λn(t−t′)∂xt′θ dt′. (3.19)
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fluid resistance

load load

elastic resistance

Figure 3. Mechanical analogue of the bending resistance of a poroelastic rod. For rapid displace-
ments, the dashpot will not move and the fluid resistance due to the instantaneous pressure
yields a response similar to a stiff (fluid) spring in parallel with an elastic spring. Eventually the
dashpot will move to relieve the stress in the spring and the fluid resistance gradually decays,
leading to a purely elastic steady state.

The dimensionless torque resultant is then given by

M = −
∫

r sin φσxx dA = 1
4π∂xθ + 1

4πδ

∞∑
n=1

γn

∫ t

0
e−λn(t−t′)∂xt′θ dt′, (3.20)

where

γn = χn

∫ 1

0
r2J1(r

√
λn) dr.

Substituting the result into the equation for torque balance (3.8) yields the dimen-
sionless equation for the poroelastica (see figure 2),

∂xxθ + P sin θ + δ

∞∑
n

γn

∫ t

0
e−λn(t−t′)∂xxt′θ dt′ = 0. (3.21)

The first two terms correspond to the usual terms in the classical elastica (Love 1944)
for the bending of a rod with a circular cross-section, while the final term is due to
the instantaneous fluid pressure not being equilibrated across the cross-section. The
influence of the fluid is to create a material with ‘memory’, so that the current state
of the filament is determined by its entire history. The kernel in the memory function
for the fluid resistance is e−λn(t−t′), so that the fluid resistance is analogous to that of
a Maxwell fluid (Bird et al . 1987) with relaxation times 1/λn which measure the rate
of decay of the nth transverse mode in response to the rate of change of the curvature
of the filament ∂xtθ. A mechanical analogue of the resistance of a poroelastic filament
is presented in figure 3 and shows the connection to simple viscoelastic models.

The dynamics of a poroelastic rod are then determined by the solution of the
equation for local torque balance (3.21), subject to the boundary condition on the
fluid pressure at the surface (3.13), which determines the decay constants λn, and
additional boundary conditions on the ends of the rod, which we now consider in
some specific cases.

4. Planar load-controlled buckling

When an initially straight rod that is simply supported at either end is subjected
to a constant compressive force P that is applied suddenly at t = 0, the boundary
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s

20

40

numerics

asymptotics

0 0.2 0.4

(P−Pc) Pc/δ

Figure 4. Growth rate s of the deflection as a function of the dimensionless external load P ;
Pc = π2 is the critical compression above which a simply supported purely elastic rod buck-
les. Here the surface permeability parameter Bi = 0.1. When (P − Pc)/δPc = 1

4 , the growth
rate becomes infinite and one must consider inertial effects, which are neglected here. For
comparison, we show the numerical results obtained by solving (3.21) with initial conditions
θ(0) = 0.001 cos πx, θ(dt) = 0.001es dt cos πx, where s is the theoretically calculated exponent,
with dt = 0.001, dx = 0.01.

conditions at the ends are
∂xθ(0, t) = 0,

∂xθ(1, t) = 0,

}
(4.1)

and the initial condition is
θ(x, 0) = 0. (4.2)

The complete time evolution of the rod is then given by the solution of the integro-
differential equation (3.21) subject to the boundary conditions (4.1), the initial con-
ditions (4.2) and the condition (3.13) which determines the rate constants λn.

(a) Short-time behaviour, t � 1

Expanding the solution about the initially straight state θ = 0, we write

θ = εθ1(t), (4.3)

where ε � 1. Substituting the expression (4.3) into equation (3.21) and linearizing
yields

∂xxθ1 + Pθ1 + δ
∞∑

n=1

γn

∫ t

0
e−λn(t−t′)∂xxt′θ1 dt′ = 0, (4.4)

subject to the boundary conditions

∂xθ1(0, t) = ∂xθ1(1, t) = 0. (4.5)

To solve (4.4) and (4.5) we use separation of variables, writing θ1(x, t) = g(x)f(t)
and substituting the result into (4.4) to obtain two equations for g(x) and f(t). The
function g(x) is determined by the solution of the eigenvalue problem:

(1 + ξ)∂xxg + Pg = 0, ∂xg(0) = 0, ∂xg(1) = 0. (4.6)
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Here the separation constant ξ = (P − π2)/π2 is the relative difference between the
applied load P and the dimensionless buckling load, Pc = π2 for a purely elastic rod
that is simply supported at its ends. The function f(t) satisfies

ξf(t)
δ

=
∞∑

n=1

γn

∫ t

0
e−λn(t−t′)∂t′f(t′) dt′. (4.7)

Using Laplace transforms (L(f(t)) =
∫ ∞
0 e−stf(t) dt), we solve (4.7) and find that

f(t) = −
∑
s∈S

estf(0)
∞∑

n=1

γn

λn + s
, (4.8)

where f(0) is determined by the initial condition and the set S is composed of
elements that satisfy

ξ

δ
−

∞∑
n=1

γns

λn + s
= 0. (4.9)

The growth rate at the onset of the dynamic buckling instability is therefore given by
the largest s that satisfies (4.9). In figure 4, we plot the growth rate s as a function
of the rescaled external load

ξ

δ
=

P − Pc

δPc
,

with Pc = π2, obtained by solving (4.6) and (4.9). When s < 0 we do not have
an instability, corresponding to the case when P < Pc. In the poroelastic regime,
when Pc < P < Pc(1 + 1

4δ), fluid flows across the filament in response to the stress
gradient in the transverse direction, and the phenomenon is qualitatively different
from the buckling of a purely elastic rod. Since the time it takes fluid to flow across
the filament is longer than the time it takes a bending wave to propagate the length
of the filament, poroelastic buckling is sometimes called creep buckling (Biot 1964).

We now turn to the dependence of the buckling transition on the surface perme-
ability parameter Bi. Substituting a pressure field of the form

p(x, r, φ, t) = h(r)∂xΘ(x) sin φ est and θ(x, t) = estΘ(x)

into (3.9) yields

sh − 1
r
∂r(r∂rh) +

h

r2 = sr, (4.10)

subject to boundary conditions (3.10), which are now given by

h = 0 at r = 0,

Bih + ∂rh = 0 at r = 1.

}
(4.11)

Thus, (4.10) yields lims→0 h = 0 and lims→∞ h = −r, corresponding to the case
of infinitely slow and infinitely fast growth rates respectively. Consequently, for
infinitely slow buckling the fluid supports no load. In the case s → ∞ near r = 1,
a boundary layer emerges where the internal solution (h = r) is matched to the
boundary condition (4.11) at r = 1. Balancing the first two terms of (4.10), the
length-scale of the boundary layer lbl ∼ 1/

√
s or, in dimensional terms,

lbl ∼

√
(µ + λ)k

s[(µ + λ)β + α2]
.
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Figure 5. The radial variation of the fluid pressure at the onset of buckling, h(r), for (a) growth
rate s = 1 and various values of the surface permeability parameter Bi (larger Bi corresponds
to a more permeable surface) and (b) Bi = ∞ and various s.

To complement these asymptotic results, we solve (4.10) and (4.11) numerically
and plot the radial variation in the pressure. In figure 5a we show h(r) for s = 1 and
various Bi, and in figure 5b we show h(r) for Bi = ∞ and various s. As expected, we
see that, as the surface permeability increases (i.e. Bi increases) for a given growth
rate of the instability (corresponding to a given load), the pressure variations across
the filament decrease. On the other hand, as the growth rate increases, a boundary
layer appears in the vicinity of the free surface of the rod to accommodate the slow
permeation of fluid in response to the stress gradients.

Having considered the onset of poroelastic buckling, we now turn to the transition
from poroelastic to inertial dynamics which occurs for very large compressive loads
when the fluid cannot move rapidly enough to keep up with the elastic deformations.
For large s the condition that determines the growth rate (4.9) reads

0 ≈ ξ

δ
−

∑
n

γn

(
1 − λn

s

)
. (4.12)

We have computed
∑

n γn = 1
4 for integrals of Bessel functions. Using the definition

of the separation constant ξ = P/Pc − 1, we solve equation (4.12) for the growth
rate:

s ≈
∑

n

γnλn

[
P − Pc

δPc
− 1

4

]−1

, (4.13)
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0.20

1

2

3

numerics

asymptotics

(P−Pc) Pc/δ

Figure 6. As the solution approaches the equilibrium shape, the difference between the current
and equilibrium shape decays exponentially with a rate ψ, which is plotted against the applied
compression. δ = 1, Bi = 0.1, dx = 0.01, dt = 0.01. The numerical computation is begun with
θ = 0.9θ0.

showing that it indeed diverges when (P − Pc)δPc → 1
4 , consistent with figure 4.

(b) Long-time dynamics, t � 1

In the long-time limit t � 1, i.e. when the fluid has enough time to diffuse across
and along the filament, the shape of the filament approaches that of the ideal elastica.
To capture the dynamics of this process, we linearize (3.21) about the steady-state
solution by letting

θ = θ0(x) + εθ1(x, t) (4.14)

with ε � 1. Substituting the expansion (4.14) into (3.21), at leading order we get

∂xxθ0 + P sin θ0 = 0. (4.15)

At O(ε), we get

∂xxθ1 + P cos(θ0)θ1 + δ
∑

n

γn

∫ t

e−λn(t−t′)∂xxt′θ1 dt′ = 0. (4.16)

To simplify the equations further we consider the convolution integral in (4.16) for
typical values of Bi = 0.1, corresponding to the case for soft gels and biological
materials. Then (3.13) yields

{λn} = {3.67, 28.6, 73.1, 137, 221, 325, . . . } and
∞∑

n=2

γn

γ1
= 0.0152.

Given the large separation between the decay constants, we see that the dominant
contribution in the integral arises from λ1, leading to an approximation of (4.16)
that reads

∂xxθ1 + P cos(θ0)θ1 + δγ1

∫ t

e−λ1(t−t′)∂xxt′θ1 dt′ = 0. (4.17)
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Figure 7. θ(0, t) for P = 11, δ = 1, Bi = 0.1, dx = 0.01, dt = 0.001 and θ(x, 0) = θ(x, dt) =
0.01 cos πx. The short-time asymptotic is for a growth rate s(P ) found from equation (4.9). The
long-time asymptotic is of the form Ae−ψt + θ0, where ψ is the rate of decay to the equilibrium
angle θ0 and A is a fitting parameter.

Using separation of variables, θ1(x, t) = g(x)f(t), we find that g(x) is given by the
solution of the eigenvalue problem

(1 − ξ)∂xxg + P cos(θ0)g = 0, ∂xg(0) = 0, ∂xg(1) = 0, (4.18)

while the temporal part f(t) satisfies

−fξ = δγ1

∫ t

e−λ1(t−t′)∂t′f dt′. (4.19)

Since we are interested in the asymptotic behaviour for t � 1, we multiply both
sides of equation (4.19) by eλ1t and differentiate with respect to time to find

∂tf =
−λ1ξ

δγ1 + ξ
f ≡ −ψf. (4.20)

We observe that the poroelastic solution approaches the elastic steady shape expo-
nentially fast at late times. In figure 6, we plot the exponent ψ = λ1ξ/(δγ1 + ξ)
versus (P − Pc)/δPc and see that, the larger the value of P , the faster the solution
approaches the final shape.

(c) Intermediate-time dynamics

For intermediate times we have to solve for the shape of the poroelastica numeri-
cally. Our arguments in the previous subsection allow us to neglect the contributions
from the higher modes, so that a good approximation to (3.21) is given by

∂xxθ + P sin θ + γ1

∫ t

0
e−λ1(t−t′)∂xxt′θ dt′ = 0. (4.21)

For ease of solution, we convert the integro-differential equation to a partial differen-
tial equation by multiplying (4.21) by eλ1t and differentiating with respect to time,
so that

(1 + γ1)∂xxtθ + λ1∂xxθ + P cos θ∂tθ + λ1P sin θ = 0. (4.22)
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Figure 8. The shape of the buckling filament X(x, t), Y (x, t) for P = 11, δ = 1, Bi = 0.1,
dx = 0.01, dt = 0.001 and θ(t = 0) = θ(t = dt) = 0.01 cos πx.

We solve equation (4.22) subject to the boundary conditions (4.1) using a Crank–
Nicolson finite-difference scheme in space and we extrapolate the nonlinearity using
the previous two time-steps. This gives us a scheme with second-order accuracy in
time. For a time-step dx = 0.01 and a space step dt = 0.001, the difference between
the numerical and analytical initial growth rate is 0.2% (see figure 4). In figure 7 we
show the variation of the angle θ(0, t), determined using the numerical simulation for
the case when the dimensionless buckling load is slightly larger than the threshold for
the poroelastic buckling, with (P −Pc)/Pc ∼ 0.17. For comparison, we also show the
asymptotic solutions for short and long times determined in the previous sections,
and find that they agree well with the numerical solution. To determine the shape
of the filament we use the kinematic relations

∂xX = cos θ, ∂xY = sin θ, (4.23)

where X(x, t) and Y (x, t) are the position of the centreline. Figure 8 shows the shape
of the filament as it evolves from the initially unstable straight shape to the final
elastic equilibrium via a transient overdamped route. In sharp contrast, a purely
elastic rod subjected to the same initial and boundary conditions would vibrate
about the final state forever (in the absence of any damping).

5. Displacement-controlled planar buckling

In many problems involving instabilities there is a qualitative difference between
load-controlled and displacement experiments. To understand the difference, we con-
sider the problem of displacement-controlled buckling of a poroelastic filament and
compare the results with those of the previous section. Since the centreline of the
filament is assumed to be inextensible, the change in the end-to-end distance is given
by

∆(t) = 1 −
∫ 1

0
cos θ(x, t) dx. (5.1)

We choose the functional form

∆(t) = 1
2∆max[1 + tanh at], (5.2)

to allow us to ramp up the displacement to a maximum amplitude ∆max at a charac-
teristic rate 1

2∆maxa. The shape of the poroelastica is now determined by the solution
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Figure 9. (P − Pc)/δPc, where P is the load and Pc is the critical load required for buckling,
corresponding to a change in end-to-end displacement ∆(t) ≈ 0.1[1+ tanh at], for various a. For
some later times the more quickly applied displacement, corresponding to larger a, requires a
lower compressive force. The graphs correspond to the following parameter values: dx = 0.01,
dt = 0.002, Bi = 0.1, δ = 1, θ(−3) = θ(−3 + dt) = 2

√
∆(−3) cos πx.

of (4.22), (5.1) and (5.2); the unknown load P (t) is now determined at every time-
step by using an iteration method to enforce (5.1). For an initial guess to start this
procedure, we note that after the onset of buckling when P > Pc for small amplitudes
θ = ε cos πx (ε � 1) is a solution of (4.22) and (4.1). Substituting into (5.1) gives

∆ = 1 −
∫ 1

0
cos(ε cos πx) dx ≈ 1

4ε2. (5.3)

Therefore, we choose θ(x, t0) ∼ 2
√

∆(t0) cos πx. In figure 9b, we show the evolution
of the load P (t) for various values of a. P is roughly constant for very short and
very long times, but changes as ∆ varies quickly for intermediate times. We can
understand the initial plateau by considering the case when eat � 1, so that (5.2)
yields

∆ = 1
2∆max

[
1 − 1 − e2at

1 + e2at

]
≈ ∆maxe2at. (5.4)

In light of the geometrical constraint (5.3) valid for small displacements, this yields

θ ≈ 2
√

∆maxeat cos πx. (5.5)

Comparing this with the short-time behaviour of the poroelastic filament considered
in § 4 a, we see that exponential growth of small angles corresponds to a constant
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Figure 10. Maximum compressive load, Pmax, for displacement-controlled buckling, where the
displacement field is given by ∆(t) ≈ 0.1[1 + tanh at]. Bi = 0.1, δ = 1, dt = 0.01, dx = 0.01.
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Figure 11. Schematic of a rod buckling under an applied twist and compression in an external
medium. Y (x, t) and Z(x, t) are the displacements of the centreline in the y- and z-directions
respectively. The dotted line denotes the axis of symmetry.

compressive force seen in figure 9. A similar argument holds for late times, when the
system relaxes to its purely elastic equilibrium. For intermediate times, the load can
be larger than that for the case of a purely elastic filament. The difference in the
loads is due to the fluid resistance in the porelastica. A way of visualizing this is
shown in figure 10. For slowly applied displacement fields Pmax is almost the same
for the elastic and poroelastic cases; however, for rapidly applied displacements,
corresponding to large values of a, the compressive force in the poroelastic case is
larger due to fluid resistance arising from the pressure gradients across the bending
filament.

6. Filament embedded in an external elastic medium and
subjected to axial torque and axial thrust

We finally turn to the case of a rod embedded in an external medium subjected to
an axial moment, K, and a compressive force P (see figure 11). The presence of the
twist causes the instability to become non-planar, and the filament adopts a helical
conformation; the presence of an external medium typically causes the instability
to manifest itself with a higher wavenumber than would occur otherwise. Letting
the displacements of the centreline in the y- and z-directions be Y (x, t), Z(x, t)
respectively, we scale the kinematic variables accordingly to define the dimensionless
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displacements
Y = RY ′, Z = RZ ′. (6.1)

The dimensionless axial moment is defined as

K =
π(2µ2 + 3λµ)R4

4(µ + λ)L
K ′.

If the transverse displacements of the filament are small, the resistance of the external
medium can be approximated well using the response of a linear Hookean solid.
In light of the analogy between linear elasticity and Stokes flow, we can use the
results of classical slender-body theory in hydrodynamics (Batchelor 1970; Cox 1970)
and write the vector of dimensionless external forces on the filament as F ′

ext =
(0,−1

4πEY,−1
4πEZ), where the dimensionless parameter E is given by

E =
16µmL2(µ + λ)

ln(L/R)R2(2µ2 + 3µλ)
, (6.2)

where µm is the Lamé coefficient of the surrounding medium. This approximation is
valid when R/L � 1, a condition consistent with the geometry of a thin filament.
We will further assume that the filament is free to rotate in the medium, i.e. there is
no torque resisting this mode of motion, which varies in any case as R2 and is thus
negligible in most situations.

To derive the evolution equation for the shape of the filament, we use the consti-
tutive equation (2.3) to write down equations for the balance of forces in the y- and
z-directions as for the planar filament. After dropping primes this leads to

∂xxxxY + K∂xxxZ + δ

∞∑
n=1

γn

∫ t

0
e−λn(t−t′)∂xxxxtY dt′ + P∂xxY + EY = 0, (6.3)

∂xxxxZ − K∂xxxY + δ
∞∑

n=1

γn

∫ t

0
e−λn(t−t′)∂xxxxtZ dt′ + P∂xxZ + EZ = 0, (6.4)

where, since equation (3.9) is linear, we have superposed the two solutions for bending
in the y- and z-directions. Taking ζ = Y + iZ, equations (6.3) and (6.4) may be
written as a single equation for the complex variable ζ:

0 = ∂xxxxζ − iK∂xxxζ + P∂xxζ + Eζ + δ
∞∑

n=1

γn

∫ t

0
e−λn(t−t′)∂xxxxt′ζ dt′. (6.5)

For a simply supported filament, the corresponding boundary conditions at the ends
are

ζ(0) = ζ(1) = ∂xxζ(0) − iK∂xζ(0) = ∂xxζ(1) − iK∂xζ(1) = 0. (6.6)

We can treat equations (6.5) and (6.6) in exactly the same fashion as the planar
problem and use separation of variables ζ(x, t) = g(x)f(t) to get

(1 + ξ)∂xxxxg − iK∂xxxg + P∂xxg + Eg = 0,

g(0) = g(1) = ∂xxg(0) − iK∂xg(0) = ∂xxg(1) − iK∂xg(1) = 0,

}
(6.7)
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Figure 12. For the case of an applied compression P and axial twisting moment K, we show
the three short-time regimes (stable, poroelastic, and inertial) as in figure 4. E = δ = 1.

an eigenvalue problem for the separation constant ξ and g(x). The temporal part of
the solution f(t) satisfies

ξ

δ
−

∞∑
n=1

γns

λn + s
= 0, (6.8)

which is the same as equation (4.19) for the temporal part of the solution for planar
buckling. Thus, once the separation constant ξ is found, equation (4.9) yields the
growth rate s(P, K, E, δ,Bi) as a function of the loading parameters and the material
constants (see figure 4).

As an example of how the influence of an external medium can lead to higher
modes becoming unstable at lower compressions than the fundamental mode, we
consider equation (6.7) in the case K = 0,

(1 + ξ)∂xxxxζ + P∂xxζ + Eζ = 0, (6.9)

which is an eigenvalue problem for ξ and ζ for a given P . At the ends (x = 0
and x = 1), the displacements and bending moments vanish, so that the boundary
conditions associated with (6.9) are ζ(0) = ∂xxζ(0) = ζ(1) = ∂xxζ(1) = 0. The only
non-zero solutions to (6.9) occur when ζ = sin qnx, where qn = nπ, n = 1, 2, . . . .
The critical compression Pc(n), where the nth mode becomes unstable, is found to
be (Landau & Lifshitz 1970)

Pc(n) = π2n2 +
E

π2n2 . (6.10)

We see that the critical buckling load for a given mode number n increases as the
stiffness of the environment E increases. Furthermore, for large E, the chosen mode
shape does not correspond to the fundamental mode n = 1, since ∂Pc/∂n = 0 yields
n = 1

πE1/4 for an infinite rod. Physically, this occurs because short-wavelength modes
do not deform the stiff elastic environment as much, while the penalty associated with
a higher curvature is not too much of a price to pay.

For the case when K �= 0, we cannot solve the eigenvalue problem analytically,
and we present the results using the phase diagram shown in figure 12. We find three
distinct regimes: for s < 0 the system is stable; for 0 < s < ∞ we have the poroelastic
regime where the system buckles on the same time-scale as the fluid pressure diffuses;
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Table 2. Applications of poroelasticity in biology

application µ (Pa) α k (m2 Pa−1 s−1) R (m) τp (s)

actin cytoskeleton 102 0.8 10−12 10−6 10−2

bones 1010 0.05 10−14 to 10−16 10−2 10−2 to 10−3

cartilage 106 0.8 1 × 10−16 to 6 × 10−16 10−3 103

plant stem/root 108 0.8 10−11 10−2 10−2

Venus fly trap leaf 106 0.8 10−12 10−3 10−2

finally, we have the elastic regime where the system buckles so fast that the fluid
does not move and all the deformation occurs in the solid skeleton.

7. Discussion

The usefulness of poroelastic theory is limited to a range of time-scales. The poro-
elastic time-scale associated with decay of pressure fields is

τp ∼ α2R2

µk
,

recalling that α is the fluid volume fraction, R is the smallest macroscopic length-
scale of the system (R � lp), µ is the effective Lamé coefficient of the composite
material, and k ∼ l2p/(ρν) is the matrix permeability. If the time-scale of the forcing,
τ � τp, the fluid will not move relative to the solid and Hookean elasticity and the
effects of inertia are sufficient to describe the system adequately. If τ � τp, the fluid
pressure will equilibrate with the surroundings and once again classical elasticity
suffices to describe the system, albeit with different Lamé coefficients. However, if
τ ∼ τp, the dynamics will be governed by poroelasticity.

Biological systems are composed mainly of fluid—so poroelasticity will be applica-
ble at some time-scale (see table 2 for estimates). Furthermore, they are characterized
by extreme geometries (e.g. beams, plates and shells), which led us to consider in
detail the dynamics of slender poroelastic objects, and particularly the buckling of
a planar filament. Biological materials are usually anisotropic and we expect the
permeability and elasticity tensors to reflect this feature. Taking kl to be the per-
meability in the axial direction, we can neglect axial diffusion if (klR

2)/(kL2) � 1.
The opposite limit, where (klR

2)/(kL2) � 1, has been studied by Cederbaum et
al . (2000). The dynamical behaviour of these objects is separated into two different
regimes, one governed by fast inertial effects, and the other by the slow dynamics of
fluid flow. These regimes are of course well known in bulk materials (Biot 1956a, b),
but here they appear in a slightly different guise due to the effect of the slender geom-
etry of the system. The onset of planar poroelastic load-controlled buckling was first
considered by Biot (1964). In this paper we broaden and deepen our understand-
ing of this phenomenon. An important outcome of our studies is the poroelastica
equation, which is a simple integro-differential equation with one time constant that
describes the dynamics of a poroelastic filament under a compressive load. The bend-
ing resistance of the filament is analogous to a (fictional) Maxwell material, where
the time constant is the rate at which the pressure field decays (determined by the
material parameters and the geometry). We then used this equation to study not
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only the onset of buckling, but also the entire dynamics up until saturation for both
load-controlled and displacement-controlled buckling.

A series of three-point-bending experiments (Scherer 1992, 1996) has shown that
the mechanical response of a silica-gel rod immersed in acetone or ethanol can be
described using poroelastic theory. The theory developed by Scherer (1992) applies
only to situations where the displacement is applied much faster than the poroelastic
time-scale and is a special case of the more general theory presented in this paper.
The lack of experiments on slender poroelastic filaments being deformed on the
poroelastic time-scale prevents us from testing our predictions quantitatively. Since
our results are relevant to swollen polymer networks, gel actuators and sensors, the
mechanics of cartilaginous joints, and the physics of rapid movements in plants, an
important next step is the quantitative experimental study of slender poroelastic
structures.

We acknowledge support via the Norwegian Research Council (J.M.S.), the US Office of Naval
Research Young Investigator Program (L.M.), the US National Institutes of Health (L.M.) and
the Schlumberger Chair Fund (L.M.). The authors thank Mederic Argentina for insightful dis-
cussions.

Appendix A. Derivation of the poroelasticity equations

The derivations of the equations of poroelasticity have been many and varied. This
has partly been because several qualitatively different parameter regimes, containing
distinct leading-order force balances, exist. We focus here on the equations which
govern the second row of table 1, namely where the Stokes length is much larger
than the pore size, i.e. Ls � lp. The methods used to derive equations for this
region of parameter space can be classified into three categories: physical arguments
and superposition (Biot 1941; Biot & Willis 1957), mixture theory (Barry & Holmes
2001) and microstructural derivations (Auriault & Sanchez-Palencia 1977; Burridge
& Keller 1981; Mei & Auriault 1989). First, we show in detail a version of the
microstructural derivations, which uses ideas from both Burridge & Keller (1981)
and Mei & Auriault (1989).

The equations that govern the behaviour in the incompressible interstitial fluid at
low Re are

σf = −pI + 2εµe(v), (A 1)

∇ · σf = 0, (A 2)

∇ · v = 0, (A 3)

where σf is the stress tensor in the fluid, ε = lp/lm � 1 (see figure 13), e(·) =
1
2 [∇(·) + ∇(·)T] is the strain operator, and v is the fluid velocity.

In the solid the analogous equations are

σs = A : e(u), (A 4)

∇ · σs = 0, (A 5)

where u is the displacement field, A is the tensor of elastic moduli, and σs is the
stress tensor in the solid. At the solid–fluid interface the continuity of displacements
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lp

lm

Figure 13. A typical porous medium illustrating the separation of length-scales,
where lp is the pore scale and lm is the system scale.

and tractions yields

v − ∂tu = 0, (A 6)
σs · n − σf · n = 0. (A 7)

Here n is the unit normal vector to the surface separating the two phases.
Looking for a perturbation solution in terms of the small parameter ε, we use an

asymptotic expansion of the variables

σf = σ0
f + εσ1

f + · · · ,

σs = σ0
s + εσ1

s + · · · ,

p = p0 + εp1 + · · · ,

u = u0 + εu1 + · · · ,

v = v0 + εv1 + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 8)

with a multiple-scale expansion for the gradient

∇ = ∇x′ + ε∇, (A 9)

where x denotes the macroscopic scale, x′ = εx denotes the pore scale, ∇ denotes
the gradient relative to the macroscopic scale, and ∇x′ denotes the gradient relative
to the pore scale. Since we assume that the flow is driven on the macrosopic scale,
the leading-order deformation is a function only of x. Then, equations (A1) and (A9)
yield the following expressions for the fluid and solid stress tensors:

σ0
s = A : [e(u0) + ex′(u1)], (A 10)

σ1
s = A : [e(u1) + ex′(u2)], (A 11)

σ0
f = −p0I, (A 12)

σ1
f = −p1I + µex′(v0), (A 13)

where e and ex′ denote the strain relative to the system-scale and pore-scale coordin-
ates respectively. The stress balance in the fluid (A 5) yields

∇x′p0 = 0, (A 14)

µ∇2v0 − ∇x′p1 − ∇p0 = 0. (A 15)
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Thus the leading-order pressure gradient p0(x) is only a function of the system scale
coordinate. The stress balance in the solid yields

∇x′ · σ0
s = 0, (A 16)

∇x′ · σ1
s + ∇ · σ0

s = 0. (A 17)

We define σ to be the total stress tensor:

σ =

{
σs in Vs,

σf in Vf,
(A 18)

where Vs and Vf are the solid and fluid parts of a volume element. Stress balance in
the fluid and solid implies

∇x′ · σ1 + ∇ · σ0 = 0. (A 19)

Averaging (A19) over the pore scale yields

1
V

∫
∇ · σ0 dV +

1
V

∫
∇x′ · σ1 dV =

1
V

∫
∇ · σ0 dV +

1
V

∫
n · σ1 dS = 0, (A 20)

where V = Vf + Vs. In the limit V → ∞,

1
V

∫
n · σ1 dS → 0,

since the surface to volume ratio tends to zero. Consequently,

1
V

∫
∇ · σ0 dV = ∇ · 〈σ0〉 = 0, (A 21)

〈σ0〉 = 〈A : [e(u0) + ex′(u1)]〉 − φfp
0I, (A 22)

where φf is the fluid volume fraction and 〈·〉 denotes the average over the pore scale.
In order to write averaged equations in terms of u0 and p0, we eliminate u1. This is
achieved by using the stress balance in the solid so that

∇x′ · σ0
s = ∇x′ · {A : [e(u0) + ex′(u1)]} = 0. (A 23)

The boundary condition (A 7) at the fluid solid surface yields

A : [e(u0) + ex′(u1)] · n = −p0n. (A 24)

Since this is a linear system of equations, u1 is a linear combination of p0 and e(u0):

u1 = B : e(u0) − Cp0, (A 25)

where the third-rank tensor B and vector C vary on the pore and system scales, and
can only be found explicitly by solving the microstructural problem (A 23), (A 24).
The averaged stress tensor becomes

〈σ0〉 = 〈A + A : ex′(B)〉 : e(u0) − 〈A : ex′(C)〉p0 − φfp
0I, (A 26)

where, in index notation, ex′(B) = (∂x′
m
Bnkl + ∂x′

n
Bmkl). If we assume that the

material is isotropic on the macroscopic scale, we can further reduce (A 26) to

〈σ0〉 = 2µe(u0) + λ∇ · u0I + (−φf + γ)p0I, (A 27)
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where γI = 〈A : e(C)〉 is an isotropic pressure in the solid due to the fluid pressure
exerted at the interface. Substituting (A27) into the stress-balance equation

∇ · 〈σ0〉 = 0 (A 28)

gives us three equations for the four unknowns (u0 and p0). We now turn to continuity
to give us the final equation. Since the fluid stress balance (A 15) is linearly forced by
the external pressure gradient, we can define a tensor k relating the external pressure
gradient to the pore-scale flow:

v0 − ∂tu
0 = −k · ∇p0. (A 29)

Averaging over the fluid volume yields

〈v0〉 − φf∂tu
0 = −〈k〉 · ∇p0. (A 30)

Since the fluid is incompressible, averaging the continuity equation

∇ · v0 + ∇x′ · v1 = 0 (A 31)

gives

0 = ∇ · 〈v0〉 +
1
V

∫
∇x′ · v1 dV = ∇ · 〈v0〉 +

1
V

∫
n · v1 dS

= ∇ · 〈v0〉 +
1
V

∫
n · ∂tu

1 dS = ∇ · 〈v0〉 − 1
V

∫
∇ · ∂tu

1 dV, (A 32)

where we have used (A 6). Taking the divergence of (A 29) and using (A 32) and
(A 25) to eliminate v0 and u1 respectively yields

−∇ · 〈k〉 · ∇p0 = ∇ · (〈v0〉 − φf∂tu
0)

= 〈∇x′ · B〉 : e(∂tu
0) − 〈∇x′ · C〉∂tp

0 − ∂tu
0 · ∇φf − φf∇ · ∂tu

0.
(A 33)

If the change in solid volume fraction is much smaller than the volume fraction itself,
∂tu

0 ·∇φf ≈ 0. Furthermore, if the solid skeleton is incompressible, then ∇·〈v0〉 = 0,
so that the first two terms on the right-hand side of equation (A 33) are negligible.
For a compressible isotropic skeleton, (A 33) yields

β∂tp
0 − ∇ · 〈k〉 · ∇p0 = −α∂t∇ · u0, (A 34)

where β = 〈∇x′ · C〉 is the bulk compliance of the solid skeleton and α = φf −
1
3〈∇x′ · B〉ii is the effective fluid volume fraction. In general if the solid is treated
as compressible, the fluid must also be treated as such, since their bulk moduli are
comparable. Thus, β is really a measure of the compressibility when the system is
jacketed, so that for a mixture of an incompressible solid and fluid, β = 0. Multiple
scale analysis (Auriault & Sanchez-Palencia 1977) shows that 〈∇x′ · B〉 = 〈A :
e(C)〉 = γ, so that (A 27) takes the form

〈σ0〉 = 2µe(u0) + λ∇ · u0I − αp0I. (A 35)

Equations (A 28), (A 34) and (A 35) are the equations of poroelasticity, identical
in form to the equations written down by Biot (1941). Removing the brackets and
superscripts, we recover equations (2.3) and (2.5) from § 2. Studying poroelasticity
from the microstructural point of view allows us to see that Biot’s (1941) equations
correspond to a locally compressible solid skeleton and the equations of mixture
theory (Barry & Holmes 2001) correspond to an incompressible solid skeleton.
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Appendix B. Equations of motion for a poroelastic sheet

The equations of motion for a sheet of thickness H and length L are found using
the same techniques as for a filament. The displacement field u = (u(y), v(y), 0) is
two dimensional, where the y-direction is normal to the neutral surface and the free
surfaces are located at y = ±1

2H. We use the following dimensionless parameters:

t = (β +
α2

2µ + λ
)
H2

k
t′, p =

2µα

[β(2µ + λ) + α2]
H2

L2 p′,

y = Hy′, σxx =
4µ(µ + λ)

2µ + λ

H2

L2 σ′
xx, P =

µ(µ + λ)H3

3(2µ + λ)L2 P ′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B 1)

The dimensionless parameter δ characterizing the ratio of the fluid stress to the solid
stress is

δ =
12µα2

(µ + λ)[β(2µ + λ) + α2]
. (B 2)

The pressure field is found by solving the one-dimensional diffusion equation

∂tp − ∂yyp = −y∂xtθ, (B 3)

with the boundary conditions

∂yp + Bi p = 0 at y = 1
2 ,

−∂yp + Bi p = 0 at y = −1
2 .

}
(B 4)

Then

p = −
∑

n

χn sin λny

∫ t

0
e−λn(t−t′)∂xt′θ dt′, (B 5)

where the λn satisfy
λn cos 1

2λn + Bi sin 1
2λn = 0, (B 6)

and χn and γn are given by

χn = 2(2 + Bi) sin 1
2λn

(
λ2

n

(
1 − sin λn

λn

))−1

,

γn = 2(2 + Bi)2 sin2 1
2λn

(
λ4

n

(
1 − sin λn

λn

))−1

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B 7)

(B6) and (B7) together with equation (3.21) describe the motion of a poroelastic
plate with time-dependent plane stress.

Appendix C. Kirchhoff–Love theory for a bent, twisted filament

Here we construct the equilibrium equations for a thin poroelastic rod whose defor-
mation is not necessarily in the plane. The case of a purely elastic filament is treated
in Love (1944). The configuration is given by the position of the centreline and the
orientation of its cross-section at every point along it. At every point along the cen-
treline of the rod r(X, t) = (X(x, t), Y (x, t), Z(x, t)), where x is the arc length,
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we consider the orthogonal triad di(x, t), i = 1, 2, 3, where d1 and d2 lie along the
principal axes of the cross-section of the rod and

d3 = ∂xr (C 1)

is the vector tangent to the centreline. The orientation is determined by a body-fixed
director frame that allows us to consider finite deformations. In this case we use the
director basis to follow the evolution of the fluid pressure field. The vector of strains
κ is given by

κ = κ(1)d1 + κ(2)d2 + Ωd3, (C 2)

which defines the rotation of the principal axes along the filament. Here κ(1) and
κ(2) are the projections of the curvature of the centreline onto the principal axes of
the cross-section and Ω is the twist strain,

∂xdi = κ × di. (C 3)

The stress resultant vector F (x, t) and the couple resultant vector M(x, t) at any
cross-section can be written as

F =
3∑

i=1

F (i)(x, t)di(x, t), M =
3∑

i=1

M (i)(x, t)di(x, t), (C 4)

where F (1) and F (2) are the shear forces and M (1) and M (2) are the bending moments
along the principal axes, F (3) is the tensile force and M (3) is the twisting moment.

Since the equation for the diffusion of pressure is linear, we consider the bending
about the principal axes separately. In light of equation (3.20) (∂xθ being the curva-
ture along one of the principal axes), we can write the equations for the dimensionless
couple resultant vector M as

M (1) = κ(1) + δ
∞∑

n=1

γn

∫ t

0
e−λn(t−t′)∂t′κ(1) dt′,

M (2) = κ(2) + δ

∞∑
n=1

γn

∫ t

0
e−λn(t−t′)∂t′κ(2) dt′,

M (3) = CΩ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(C 5)

where C(= 2(λ + µ)(3λ + 2µ)−1 for a circular rod) is the dimensionless torsional
rigidity (normalized by the bending contribution to M (1)), τa is the dimensionless
twist strain, and the λn are determined by solving equation (3.13). We note that
the twisting moment has no poroelastic contribution because it is purely a shear
deformation, and poroelastic effects arise only from volumetric deformations, as seen
in equation (2.5). Finally, the local balance of forces and torques gives the equilibrium
equations

∂xF + Fext = 0, (C 6)
∂xM + d3 × F = 0, (C 7)

where Fext is the external body force acting on the cross-section. The complete set
of equations that determine the poroelastic behaviour of a filament is (C 1) and
(C 5)–(C 7).
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