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The elements of draping
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We consider the gravity-induced draping of a 3D object with a
naturally flat, isotropic elastic sheet. As the size of the sheet
increases, we observe the appearance of new folded structures of
increasing complexity that arise because of the competition be-
tween elasticity and gravity. We analyze some of the simpler 3D
structures by determining their shape and analyzing their response
and stability and show that these structures can easily switch
between a number of metastable configurations. For more com-
plex draperies, we derive scaling laws for the appearance and
disappearance of new length scales. Our results are consistent with
commonplace observations of drapes and complement large-scale
computations of draping by providing benchmarks. They also yield
a qualitative guide to fashion design and virtual reality animation.

he couturier drapes the 3D human body with a 2D fabric,

working hard to subvert the relentless force of gravity to her
cause by using a combination of cuts, folds, and tucks to
transform a featureless textile into a piece of art. Indeed, the
depiction of drapery, in the form of a carelessly thrown shawl on
one’s knee, is an important theme in Renaissance art, in both
sculpture and sketching (1). Modern art has found another
expression for the aesthetics of drapery in the carefully orches-
trated wrapping of an entire building (2, 3). From a scientific
viewpoint, drapery affords a common example of the complex
patterns that arise from simple causes (Fig. 1a). In particular,
drapery involves the large elastic (and reversible) deformations
of naturally thin flat sheets,® a subject with comparatively recent
theoretical origins going back to the early 20th century, when the
first models valid for moderate deformations were formulated
(4). In the last two or three decades, various geometrically exact
formulations that go beyond the approximate theories have been
put forward (5); these have also been the subject of large-scale
computational approaches (6, 7). However, as is clearly evident
in Fig. la, the fabric deformations in draping are highly inho-
mogeneous and result in the strong localization of strain in the
neighborhood of points (8), thus making the computations
difficult. Additionally, it is a matter of common experience that
there are many local equilibria that the drapery is equally
comfortable in; for example, the number of pleats in a skirt or
sari can be easily modified to suit the wearer, suggesting a certain
degeneracy among the solutions. To complement these quanti-
tative computational approaches, which are in their nascent
stages, here we approach the problem of drapery from a slightly
different perspective by using a combination of exact analysis
and scaling based on experimental observations of a variety of
draping patterns to understand each of the above issues directly
and thus provide a set of benchmarks while serving as a
qualitative guide to the complexity of draping.

Visually dissecting the drape of a complex, relatively rigid
surface, we see that it is constituted mostly of flat, cylindrical,
and conical surfaces, which leave the body at a corner, along an
edge, or along a curve (9). These elements of draping are clearly
illustrated by considering three distinct but related examples: the
suspension of a heavy elastic sheet from a point (Fig. 1b), along
a straight line (Fig. 1¢), or along a curved line (Fig. 1d).

Conical Folds and Euler's Elastica

To extract the main ingredients of the theory, we start by
considering the “draping of a point” when a thin heavy circular
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sheet of thickness 4 and radius R, made of an isotropic material
of density p, Young’s modulus E, and Poisson ratio v is sus-
pended from its center. If the sheet is large, a conical shape with
multiple flutes is observed (Fig. 1b). This latter structure is
similar to the one studied earlier (8); however, here the number
of folds is determined by the size of the sheet in proportion to
the weight of the sheet. In such conical sheets, the Gauss
curvature is localized to a small neighborhood of the tip, so that
the stretching of the sheet can be neglected. More precisely this
condition is met when the stretching strain is less than the
bending strain. Since the sheet has a weight per unit length pgR#h,
a typical stretching strain is pgRh/Eh ~ pgR/E. If the sheet is
bent into a cylinder of radius, the typical strain caused by bending
is i1/R. The bending and stretching strain become comparable
for a critical system size Ry ~ (Eh/pg)"?; when R < R we can
neglect the effects of stretching, whereas when R > R, we must
account for stretching. For wrapping paper Rs ~1 m, whereas for
rubber R ~10 cm. In this article, we will consider systems where
we can neglect stretching everywhere so that R = R;, although
in reality even when R > Rq stretching is important only in
regions near the supporting points where the tension is largest.
A convenient coordinate system to describe a conical drape
locates the origin at the vertex of the cone as shown in Fig. 2b.
The vertical deflection is quantified by the z coordinate with z >0
corresponding to the downward direction. The most general
description of conical deformations uses the parametrization
(s, r) = ru(s), where u is a unit vector characterized by an
arc-length coordinate s, and r is the distance from the tip. Then
the motion of u describes the curve ‘€ and the conical surface is
conveniently defined in terms of the three Euler-like angles [6(s),
B(s), ¢(s)]; the first two describe the unit vector u, whereas the
last describes the tangent to the curve €. The inextensibility
constraint dictates that the total length of this curve remains 2
and further that the coordinates (s, r) of a material point are an
invariant of the deformation. Therefore, we may write

u(s) = sin B cos fe; + sin B sin Oe, + cos Be;

= sin Be, + cos Be;

(1]

t(s) = cos ¢ e, + sin ¢ n,

n(s) = sin ¢ ey — cos ¢ ny,
where e, is the radial unit vector in the horizontal plane, and ny
= u X ey. Differentiating the first of the expressions in Eq. 1 and
noting that du/ds = u = t, we get

t = cos e, + sin Ble, — B sin Pes. [2]
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eHere and elsewhere, our view of large deformations corresponds to situations where the
local strains in the sheet are small but the rotations of the cross section are large, so that
the displacements can also be large.
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Fig. 1. Draping patterns. (a) Chiarascuro by Albrecht Durer (around anno
Domini 1500). (b-d) Draping patterns induced by a sheet of rubber (€5 ~ 1.cm)
in various geometries. (b) A circular sheet of rubber (=2.5 m) is suspended
from one point. (c) Asheet of length L ~2.5 mand itswidth W~ 1 misbunched
together along alinear clamped boundary so that A = 20 cm, and the imposed
wavelength there is A\g = 5 cm. The wavelength A increases as we move away
from the clamped boundary as does the characteristic persistence length, Lg.
The persistence length for the first generation of wrinkles is Ly~ 10 cm. (d) A
circular table of radius R; = 12 cm is draped symmetrically with a circular sheet
of radius R = 52 cm. The number of folds: n = 10. (e) A schematic of the folds
in d showing the geometry of the sheet and the longitudinal and transverse
forces induced by gravity.

Comparing the result with the second expression in Eq. 1 leads
to the relations

B = —sin ¢
6 = cos ¢/sin B.

[3]
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Fig. 2. Simple conical folds. (a) The shape of a circular sheet of wrapping
paper with R/{y ~ 6 suspended from a point shows a single fold. (b) The
moving coordinate system on the surface t,u,n can be characterized in terms
of the three Euler-like angles {6, B, ¢}(s).

In terms of t, the tangent to the curve €, and n = t X u, the
normal to the surface, the only nonzero surface curvature is 1 /R,
= k/1, where k = —n-t.! Differentiating the second expression
in Eq. 1 for the curvature then yields

¢ = k — cot B cos . [4]

The three relations (3, 4) are the analogous to the Frenet equations
for a curve (10) and can be integrated once « is known to yield the
shape of the conical surface. In addition, the azimuthal periodicity
of the surface yields 6(2) = 6(0) so that integrating the second of
the relations in Eq. 3 for the projected polar angle 0 yields

2
0= J ds(1—cos ¢/sin B). [51]

0

We now consider the total energy of the system

B 1
U=UB+UG=2f dARz—hng dAz, [6]
A

A c

where B = Eh3/12(1 — 1?) is the bending stiffness, v is Poisson’s
ratio, & is the thickness, p is the density, and g is gravity.
Inspection of the energy shows that a natural length scale in the
problem arises from the balance of gravitational and bending
energies, the “gravity length” €, = (B/hpg)'?® (11). For the
rubber sheet (Fig. 1b) €, ~ 1 cm, whereas for the wrapping paper

fHere, the center of curvature is in the direction of —n so that k >0 when the shape is a
perfect cone.
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(Fig. 2a) £, ~ 3 cm. Integrating Eq. 6 in the radial direction, we
find that the gravitational energy Us = —YshpgR3[3™ ds cos B
and the bending energy U = Y2B[4dAxk?*/r> = "BIn(R/
R.)[§™ dsk?, where R, is the size of the tip or core, where double
curvature and stretching effects cannot be neglected. Then the
total dimensionless Lagrangian is&

1 2 2 2
L—2f ds:<2+nf dscosB—)\f ds(1 — cos ¢/sin B).

0 0 0
[71

Here n = (R/{,)?/3In(R/R*), and A is the Lagrange multiplier
that enforces the continuity constraint embodied in Eq. 5.
Extremizing the Lagrangian L we get an equation for the
curvature

&+ (a®+ k*/2)k = —m(k cos B — sin B cos ¢), [8]

where a? is a constant of integration related to the Lagrange
parameter A. It is noteworthy that when n = 0 Eq. 8 is integrable
in terms of elliptic functions. In fact, this is the equation for the
planar Elastica of Euler (4), i.e., in the absence of gravity,
bending a surface into a conical shape is equivalent to the planar
bending of an elastic bar even in the large deformation regime
associated with geometrically exact kinematics.

Solving Eqgs. 3, 4, and 8 numerically with periodic boundary
conditions, we find that when 1 < 7. the solution with the least
energy has two folds n = 2" with the total energy oU/on > 0.
The numerical procedure, implemented in Mathematica (12),
starts with the solution to the linearized versions of Egs. 3, 4, and
8, which serves as a first guess in a homotopy or continuation
method that increases the strength of the nonlinearity and/or
gravity gradually.! When n = . ~ 5.8 the solution with two folds
exchanges stability with a lower energy solution having only one
fold (see Fig. 3), which breaks the symmetry with respect to the
plane e; — es. Fig. 3a shows the shape of both solutions for n =~
6.1 when the generator ats = 7 just touches the one ats = 0 for
the second shape.i This behavior of the solution for small sheets
is characteristic of rubber but not for wrapping paper. Fig. 4 a
and b shows that two small sheets with R ~ 4{,, one of wrapping
paper and the other of rubber, have different structures. For
small sheets, two solutions are possible: a cylindrical form with
parallel generators (Fig. 4a) or a conical form with two folds
(Fig. 4b). The intuitive explanation for this difference arises from
considerations of the core bending energy that increases loga-
rithmically with the size of the tip, R., so that a surface with a
smaller tip but the same value of R/{, will have a higher energy.
We note that although R. ~ h'3R?3 (8), here we treat it as a
parameter because of its appearance in the argument of a
logarithm. For wrapping paper the core size (smaller than that
for rubber sheet) can be so small that the cylindrical shape
without a singularity is the solution with the lowest energy. Fig.
4c shows the energy for the different solutions and two different
values of the dimensionless parameter R./{, consistent with our
experimental observations. If the sheet is large enough however,
the conical shape with one fold (Fig. 2a) is always the preferred

9We should also include the condition for global torque balance. Equivalently, § X Rcw =
0, where Rew is the center of mass. Here, the solutions of Eq. 7 identically satisfy the
balance for torques.

hOur definition of the number of folds is formally given by the number of times the
curvature changes sign as s varies froms = 0 tos = 2.

iSolving the linearized equations yields n-fluted conical shapes, of which the two-fluted
solution has the minimum energy. However, for large sizes of the “’core’” region R. where
the developable solution fails, the cylindrically deformed shape can have an even lower
energy and is preferred.

iThe generator at s = 0 is chosen as the point with maximal negative curvature.
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Fig. 3.  Bistability in conical folding. (a) Different views of the equilibrium
shapes obtained for n = 6.1 > n.. (Left) A cone with two folds. (Right) A cone
with one fold. (b) Dimensionless total energy 2U/BIn(R/R.) as a function of n.
The solid line corresponds to a conical shape with two folds, and the dotted
line corresponds to a cone with one fold. For small sheets with 7 < nconly a
cone with two folds exists. For comparison, the dashed line shows the energy
of a big sheet with constant opening angle B = #/6 made by folding a
semicircle of the same material. (Inset) The energy following a linear analysis
of Eq. 7 matches the numerical solution for n < 2.

solution because the extra core bending energy is more than
compensated for by the reduction of the gravitational energy
caused by a single fold.

Scaling Laws for Complex Folds

When the sheet radius R/{, >> 1, a large number of folds is the
result; however, the lack of any symmetry along with the problem
of self-contact of the folds makes an exact analysis difficult.
Therefore, we use scaling arguments to tease out the general
trends of the solution. The gravitational energy can be mini-
mized by reducing the azimuthal deflection angle S, but this
process increases the number of folds (because of the inexten-
sibility condition) and hence the bending cost, so that the result
is an optimal number of folds minimizing the total energy. When
the folds are large in number and nearly vertical, 6 ~ 7/2, B <1
and the kinematic equations (3 and 4) yield 3 ~ k. Then Up ~
BIn(R/R.)B? and U ~ hpgR*B> + cst and their sum is a
minimum when Up ~ Ug. Using B ~ B/8s in the previous
relation leads to the characteristic arc length of a single fold
8 ~ 1/m"* and the number of folds n is given by

2 (R/€)

s In(R/R)T (9]

n=

an increasing function of the system size R.

Cerda et al.
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Fig. 4. Transitions between different draping configurations. (a) A small

circular sheet of wrapping paper with radius R ~ 4¢4 deforms into a cylindrical
surface. (b) On the other hand, a circular sheet of rubber with radius R ~ 4(4
but with a thickness 50 times that of wrapping paper deforms into a cone. (c)
The dimensionless total energy for different solutions. To allow for compar-
isons with a cylindrical shape, we use 2U/B, instead of 2U/BIn(R/R.) and the
parameter R/{y instead of n. For wrapping paper R. ~ 1 mm and R../{4 ~ 0.03,
the minimal energy solution is cylindrical when R/¢g < 5 and a conical when
R/tg = 5. (Inset) If R./¢g = 0.3, i.e, the core size is large, the conical shape is
energetically favorable for all R/ €.

We now expand our arguments to include stretching effects
and different geometries for the suspension frames. Consider the
draping of a circular table of radius R; < R, a test used by the
textile industry to quantify the “hand” (13) or the ability to drape
a body (Fig. 1d). Since the typical fold wavelength is much
smaller than the radius of the table for a heavy sheet, a Cartesian
description is sufficient to describe the problem, withx € [0, L],
L = R — R;, being the distance from the edge of the table, y the
azimuthal coordinate, T = h{g(L —x), the force due to gravity on
the sheet at a vertical distance x from the point of suspension,
and ¢ the deviation from a right cylinder of radius R; (Fig. le).
The minimum gravitational potential energy state { = 0 cannot
be achieved since the cost of bending the tablecloth is not small.
Indeed the bending energy Ug = Y2f AB(&?, )2dA makes it trans-
parent that the total energy increases rapidly for short wave-
lengths. On the other hand, both the longitudinal component 7°
cos B ~ T ~ pghL, which stretches the surface and the transverse
component 7 sin 3 ~ T cause the tablecloth to become vertical
(Fig. le) as follows. The combination of the longitudinal curva-
ture of the sheet afg ~ ¢/L? and the longitudinal tension leads
to an out-of-plane pressure Tafg ~ T¢/L?, which tends to favor
gravity and lower the sheet. Similarly the transverse component
of the force leads to an out-of-plane pressure T8/L ~ T¢/L?with
the same effect. These additional forces (per unit area) can be
derived from the energy of an “effective” elastic foundation (14)
supporting a thin sheet Ur = Y2f4K{?dA, where K ~ T/L? ~
hpg/L is the stiffness of the foundation. Comparing the bending
and stretching (gravitational) energies, we see that the optimal
wavelength scales as A ~ (B/K)"* ~ /'L Because the
number of folds n does not change from the edge of the table to
the end of the tablecloth of Fig. 1d, we conclude that A/R ~

Cerda et al.

Ai/R;, A; being the wavelength at the edge of the table. Therefore,
n = 2mRi/N ~ R/(GGL)"". When R ~ L > R;, n ~ (R/€,)*",
corresponding to the result obtained in Eq. 8. For the circular
table in Fig. 1d, L ~ 40 cm, R; =~ 12cm < L, and €, =~ 1 cm, so
that n ~ 15, consistent with the observations where n = 10.

We finally turn to the case when a sheet is suspended along a
line (Fig. 1c). In typical drapes and curtains, for aesthetic
reasons, the sheet is forced to bunch up to form a series of short
wavelength folds as its lateral ends are brought together by a
distance A along the line of suspension. Away from the line, these
folds coalesce into larger and larger folds. This inverse cascading
of length scales can be understood in terms of the persistence
length L, of a wrinkle in a stretched strip, defined as the distance
over which a sheet pinched at one end with an amplitude ¢ and
width A4 eventually flattens out. Balancing the stretching and
bending energies over the length L, yields Up ~ B(La\a)2/ Ny ~
Us ~ T(La\g)%/L3 so that Ly ~ A3(T/B)"2. Comparing this with
the persistence length L for a fold of natural wavelength yields
La/L ~ (Aa/X)?; for the drape (Fig. 1¢), L ~ 250 cm, A, ~ 5 cm,
and A =~ 25 cm, so that L; ~ 10 cm, consistent with observations.
This persistence effect might also explain the periodically placed
horizontal guy ropes in wrapped buildings (3), which serve to
accentuate the shape of the draped object while preserving the
aesthetics of the wrinkles. Seen differently, the natural wave-
length in this system is again A ~€§/ L1450 that the number of
folds along the width W of the sheet is n = W/A ~ L™14
(corresponding to the case L << R; for the circular table),
decreases with system size, in marked contrast with the result for
a circular table, and consistent with observations.

Discussion

In conclusion, we have used a combination of analytical and
scaling arguments to quantify the basic components of a complex
drapery as a function of system size and the boundary conditions
(geometry of suspension). Our approach bridges the gap be-
tween simple cantilever analyses of cylindrical deformations (9,
12) and large-scale computation (6, 7), by focusing on those
aspects of the problem amenable to an approximate analysis.
Even restricting ourselves to simple geometries, we find that
qualitatively different shapes of the drapery may be separated by
relatively small energetic barriers. Thus it is easy to have dynamic
transitions between states. Indeed in fashion design and on
catwalks, this is precisely what gives rise to the aesthetic appear-
ance of a kinetic sculpture in motion. The inherent metastability
that we have uncovered even in the simplest of drapes shows that
previous purely computational approaches to fabric design could
be usefully complemented by qualitative approaches before we
can unravel the complexities of and transitions between multi-
stable patterns.

To go beyond the elements and piece them together to
complete the whole, we have to “stitch” the resulting cones,
cylinders, and flat sheets together much as a couturier does,
using boundary layers, narrow regions with relatively rapid
variations where one solution merges into another and where the
sheet will be both bent and stretched. The location of these
regions is determined by the requirement of energy minimiza-
tion (subject to the constraints of draping the rigid object).
However, the energy stored in the boundary layers is negligible
compared with the total energy (8), which is predominantly
stored in isometric bending. Then, it is possible to refine the
solution to account for such effects as finite stretching in the
regions of double curvature, the effects of textile anisotropy, and
other higher-order effects.
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