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The classical Kirchhoff elastic-rod model applied to DNA is extended to account
for sequence-dependent intrinsic twist and curvature, anisotropic bending rigidity,
electrostatic force interactions, and overdamped Brownian motion in a solvent. The
zero-temperature equilibrium rod model is then applied to study the structural basis
of the function of the lac repressor protein in the lac operon of Escherichia coli. The
structure of a DNA loop induced by the clamping of two distant DNA operator sites
by lac repressor is investigated and the optimal geometries for the loop of length
76 bp are predicted. Further, the mimicked binding of catabolite gene activator pro-
tein (CAP) inside the loop provides solutions that might explain the experimentally
observed synergy in DNA binding between the two proteins. Finally, a combined
Monte Carlo and Brownian dynamics solver for a worm-like chain model is described
and a preliminary analysis of DNA loop-formation kinetics is presented.
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1. Introduction

Although DNA is iconized as a straight double helix, it hardly ever exists in this pris-
tine form in nature. Instead, it continuously interacts with a host of proteins involved
in replication, transcription, repair and regulation and further must constantly be
packed and unpacked into chromatin and other higher-order structures. These inter-
actions make it bend, twist, supercoil, fold and loop dynamically even as it undergoes
a variety of structural changes during these processes. All this occurs in a viscous
environment as the highly charged molecule is constantly buffeted about by thermal
fluctuations. To understand how the molecule works, we must build a dynamical
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Figure 1. The lac operon genetic switch. (a) The lac operon showing the promoter bent by the
lac repressor into a 76 bp-long loop. Hashed bars indicate the three lac repressor operators.
The shaded bar represents the CAP binding site (CBS). The coordinates of the protein binding
sites are shown in brackets. (b) The crystal structure of the lac repressor complex binding two
operators (Lewis et al . 1996). (c) The crystal structure of the CAP–DNA complex (Parkinson
et al . 1996) showing the location of the two kinks induced by CAP inside the binding site. The
elastic-rod model of the CAP-bound DNA is shown as a tube fitted inside the DNA segment.

bridge using the scaffold provided by its structure. Since much of the action occurs
on a scale that is neither truly molecular nor truly macroscopic, an important step
in this venture is to have a hierarchy of models that weave into each other to span
the large range of length-scales from the width of DNA (a few angstroms) to the size
of tertiary structures such as DNA loops (a few micrometres).

A variety of mesoscopic coarse-grained models have been important in modelling
DNA at these length-scales, and this paper looks at some of these in the context of
a specific problem, the formation of loops. DNA loop formation is known to be an
important mechanism for the regulation of gene expression (Matthews 1992; Schleif
1992). In many biological mechanisms involving loop formation, the characteristic
length-scales are in the range of 1–5 times the persistence length of DNA, i.e. ca. 50–
250 nm. This fact leads to some problems that lie at the boundary between statistical
and continuum mechanics. Indeed, loop formation in a long piece of DNA is domi-
nated by entropic effects, while loop formation in a short piece is dominated by the
enthalpic cost of bending and twisting; in the intermediate range, on which our study
is focused, both entropic and enthalpic effects have to be taken into account. The
problem at hand leads to questions regarding the structure of loops, their equilibrium
probability distribution, and the kinetics of their formation.

We address some of these issues in the context of one of the best-understood bac-
terial gene systems, the lac operon of Escherichia coli (see Ptashne 1992; Alberts et
al . 2002), illustrated in figure 1, which is responsible for the regulation of the bac-
terial metabolism of lactose. We focus in particular on the action of lac repressor, a
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protein that functions as a switch that shuts down the lac operon genes when the
bacterial environment contains no lactose. Lac repressor achieves this by simultane-
ously binding two out of three operator sites and folding the DNA between those sites
into a 76 bp- or 385 bp-long loop (figure 1a). The formation of both loops has been
shown to be critical in order to achieve full repression (Oehler et al . 1990). In this
paper, we focus on the shorter loop because it contains the lac operon promoter and
its formation is thus certain to disrupt genetic expression. Besides, the 76 bp loop
also contains a binding site for catabolite activator protein (CAP) (Busby & Ebright
1999), which has been shown to bind to the loop synergistically with lac repressor
(Hudson & Fried 1990). The crystal structure of lac repressor is known (Lewis et
al . 1996), but contains only disjoint DNA segments bound to the lac repressor, for
the complex with the whole loop cannot be crystallized. We therefore calculate the
unknown structure of the 76 bp-long DNA loop and investigate the properties of the
loop using a Kirchhoff elastic-rod model. Similar models have been widely applied
in DNA modelling (most recently reviewed in Olson & Zhurkin (2000) and Olson
(1996)).

In § 2 we review the Kirchhoff model for the case of an anisotropic electrostatically
charged elastic rod with intrinsic twist and/or curvature and subject to overdamped
Brownian motion in a viscous solvent. In § 3 we use the equations of equilibrium to
solve for the shape of the lac repressor-induced DNA loops using the lac repressor
structure from Lewis et al . (1996). We also examine the changes on the loop structure
induced by the binding of CAP inside the loop and reveal the structural basis of the
synergy between the two proteins (Balaeff et al . 2003b). In § 4 we address the kinetics
of the formation of a general loop in the context of the worm-like chain model using
a combination of Monte Carlo and Brownian dynamics simulations. We conclude
with a discussion of the rod model in the context of further simulations of the lac
repressor–CAP–DNA complex.

2. The elastic-rod model

(a) Rod kinematics

We start with a consideration of the classical elastic-rod model (Kirchhoff 1883)
modified to account for a possibly anisotropic cross-section, immersion in a viscous
solvent, finite-temperature effects, electrostatic interactions and undergoing (over-
damped) Brownian motion. We describe an elastic rod of length l in terms of its
centreline and its cross-section, which, for expository simplicity, we assume to be
circular and of constant radius a (figure 2a). The generalization to arbitrary cross-
sections is straightforward. The centreline forms a space curve r(s, t) parametrized
by arclength s and time t. The cross-sections are ‘stacked’ along the centreline. The
director basis defined by three orthonormal unit vectors di(s, t), for i = 1, 2 or 3,
uniquely defines the orientation of the cross-section given s and t. The vectors d1(s, t)
and d2(s, t) lie in the plane of the cross-section and may be defined with respect to
the reference configuration, while the vector d3(s, t) = d1(s, t)×d2(s, t) is the normal
to that plane. Any point x(s, t) in the rod is consequently parametrized by

x(s, t) = r(s, t) + y(s, t) = r(s, t) + y1d1(s, t) + y2d2(s, t),

where the coordinates y1 and y2 define the location of the point relative to the
centreline in a cross-section (figure 2a). We denote partial derivatives with respect
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Figure 2. Elastic-rod model of DNA. (a) Parametrization of the elastic rod. Using the centre-
line position vector r(s, t) and the director basis defined by the unit vectors d1(s, t), d2(s, t)
and d3(s, t), where d3 = d1 × d2, any given point in the rod may be written as x(s, t) =
r(s, t) + y(s, t) = r(s, t) + y1d1(s, t) + y2d2(s, t). In an application the director basis must be
parametrized by a set of coordinates such as the singular Euler angles φ(s, t), ψ(s, t), θ(s, t) or
the four non-singular Euler parameters q1(s, t), q2(s, t), q3(s, t), q4(s, t) used in the equilibrium
problems considered here. (b) The elastic rod fitted to an all-atom structure of DNA. (c) The
coordinate frame associated with a DNA base pair (Olson et al . 2001).

to s and t by a prime (′) and a superposed dot (˙), respectively. The space and time
dependence of the director basis vectors di is implicitly assumed in what follows. In
this work we consider the DNA to be unshearable and inextensible, so that r′(s, t),
the tangent to the centreline, is always parallel to d3 and normalized:

r′ = d3. (2.1)

The rod kinematics may then be characterized entirely by two bending modes and
one twisting mode, encapsulated in the relationship

d′
i = k × di, (2.2)

where the vector of strains k(s, t) = K1(s, t)d1+K2(s, t)d2+Ω(s, t)d3 has as compo-
nents the projection of the centreline curvature onto the director basis vectors in the
cross-section K1(s, t) and K2(s, t) and the local twist Ω(s, t). A similar relationship
holds for the time dependence of the director basis:

ḋi = σ × di, (2.3)

where σ(s, t) = σ1(s, t)d1 + σ2(s, t)d1 + σ3(s, t)d3 is the angular velocity vector.

(b) Rod dynamics

(i) Elastic internal force and torque

In order to proceed to a dynamical description of the rod we introduce the resultant
internal elastic force N(s, t) = N1(s, t)d1 +N2(s, t)d2 +N3(s, t)d3 and the resultant
internal elastic torque M(s, t) = M1(s, t)d1 + M2(s, t)d2 + M3(s, t)d3 acting on a
cross-section. The force N(s, t) enters the theory as the Lagrange multiplier enforcing
(2.1) and forbids pure extensional or shear deformations of the rod. The elastic
torque M(s, t) is specified by a constitutive relation, generalizing Euler–Bernoulli
beam theory (Love 1927) to

M(s, t) = A1(s)κ1d2 + A2(s)κ2d1 + C(s)ωd3, (2.4)
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where we define the curvature and twist deviations of the rod from its intrinsic shape
defined by κ◦

1,2 and ω◦ as

κ1,2(s, t) = K1,2(s, t) − κ◦
1,2(s), ω(s, t) = Ω(s, t) − ω◦(s). (2.5)

A1,2 are the bending rigidities along the 1, 2-directions and C is the twisting rigidity.
The torque M(s, t) is seen to be proportional to the geometric deviation from the
reference configuration and reflects the simplest possible dependence consistent with
a quadratic energy

U = 1
2

∫ l

0
(A1κ

2
1 + A2κ

2
2 + Cω2) ds, (2.6)

with respect to body-fixed coordinates. Note that the rod model allows for s-depen-
dent material properties A1(s), A2(s) and C(s), as is manifest in (2.4). For a
homogeneous circular cross-section the bending rigidities of the rod are A1 = EI2
and A2 = EI1, where E is Young’s modulus and the moments of inertia are
I1 = I2 = πa4/4. In polymer science and biological applications it is common to
define the bending rigidities as A1 = A2 = kBT lp, where kB is Boltzmann’s con-
stant, T is the absolute temperature, and lp is the persistence length of the rod—the
length-scale characterizing the orientational correlation of the rod. We use the com-
monly accepted value for DNA of lp = 50 nm (Strick et al . 2000; Olson 1996) in
all our computations. Note that the persistence length is sensibly defined only for
isotropic rods, but when A1 #= A2, it characterizes the bending only in some aver-
age sense. We show below that accounting for such anisotropic bending is important
for a correct elastic-rod model of DNA. The twisting rigidity is similarly defined as
C = GJ , where G is the shear modulus and J = πa4/2 is the polar moment of iner-
tia of the rod. We may similarly define C in terms of a twisting persistence length
C = kBT ltwist and we use ltwist = 75 nm.

The physical reason underlying the constraint that the rod is unshearable and
inextensible (2.1) may be summarized as follows. As can be seen from (2.6) and the
moment of inertia I = πa4/4, the bending energy per unit length-scales as Ea4κ2,
where κ is the curvature of the rod. The energy associated with shearing/stretching
on the other hand scales as Ea2γ2, where γ stands for the shearing/streching strain.
It follows that the ratio scales as γ2/a2κ2. For an elastic rod corresponding to the
strongly bent DNA loops considered in our work, the typical curvature is κ ∼ 1/l,
and the cross-sectional stress scales as Ea2/l2, so that the shear strain is γ ∼ a2/l2.
Therefore, γ2/a2κ2 ∼ a2/l2 % 1, so that, compared with bending, shearing and
stretching deformations may be neglected to a first approximation.

(ii) External load per unit length

Since the rod is immersed in solvent, we assume that any motion of the rod is
resisted by a (Stokesian) viscous drag force and torque proportional to the linear
and angular velocity, respectively. Accordingly, the viscous drag force per unit length
acting on a flexible rod is (Cox 1970)

fdrag(s, t) = −ζ(I − 1
2d3d3)ṙ, (2.7)

where ζ = 2πη/ ln(l/a) is a friction coefficient, η is the fluid viscosity, I is the
identity tensor, and didi is the tensor associated with direction i. The friction tensor
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is diagonal but anisotropic, so that the drag force opposing motion in the plane of
the cross-section is twice as large as for motion along the rod axis d3. Similarly, the
viscous drag torque reads (Cox 1971)

gdrag(s, t) = −λ(d1d1 + d2d2)d3 × ḋ3 − λd3d3(d1 × ḋ1 + d2 × ḋ2)
= −λσ1d1 − λσ2d2 − 2λσ3d3, (2.8)

where λ = 2πηa2 is a rotational friction coefficient. Here the first two terms describe
the resistance to local tilting/bending motions of the rod associated with a viscous
torque lying in the rod cross-sectional plane; the last term describes the resistance
to local twisting motion associated with an axial viscous torque.

The Brownian motion of the rod is induced by a stochastic force f stoc(s, t) and a
stochastic torque gstoc(s, t) modelling the effects of solvent molecules colliding with
the rod. In order to specify the stochastic quantities we select expressions for the
first moments and the cross-correlations consistent with analogous expressions used
in Brownian dynamics of discrete bead-spring/rod polymer models (Öttinger 1996).
The rod is in thermodynamic equilibrium under the action of the stochastic force
and torque provided that both have zero mean and obey the fluctuation-dissipation
relation

〈f stoc
i (s, t)〉 = 0, 〈f stoc

i (s′, t′)f stoc
j (s, t)〉 = 2kBTζiδ(s′ − s)δ(t′ − t)δij , (2.9)

〈gstoc
i (s, t)〉 = 0, 〈gstoc

i (s′, t′)gstoc
j (s, t)〉 = 2kBTλiδ(s′ − s)δ(t′ − t)δij , (2.10)

where kB is Boltzmann’s constant, T is the temperature, δ(·) is the Dirac distribution,
δij is the Kronecker delta, ζ1,2 = 2ζ, ζ3 = ζ, λ1,2 = λ, λ3 = 2λ and 〈·〉 refers to
ensemble averages.

Finally, the electrostatic interaction of the charged rod with its surroundings is
modelled as

f elec(s, t) = q(s)(Eself(s, t) + Eother(s, t)),
where q(s) is the local electrostatic charge density on the rod. The electrostatic field
has two origins, a rod self-interaction term, Eself, and an interaction between the
rod and other charges present in the system, Eother. The implemented electrostatics
model involves a Debye screening factor due to the effect of counterions surrounding
DNA (see Balaeff et al . (2003) for full details on the electrostatics implementation
in our model). Electrostatic torques, which may in principle result from electrostatic
interactions, are neglected here because the electric charge is assumed to be located
on the centreline of the rod.

(iii) Equations of motion

Collecting all the terms and assuming (as is common in polymer dynamics) that
the rod motion is overdamped, i.e. the inertia terms are negligible compared with the
forces involved, we arrive at the following force and torque balances for an electro-
statically charged elastic rod undergoing (overdamped) Brownian motion:

−fdrag = N ′ + f elec + f stoc, (2.11)

−gdrag = M ′ + r′ × N + gstoc, (2.12)

where the drag and stochastic interactions are given in (2.7), (2.8) and (2.9), (2.10),
respectively.
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In most cases relevant to DNA dynamics we may normally neglect the viscous and
stochastic torques in the cross-sectional components of the angular momentum bal-
ance (2.12), as the following reasoning shows. Assuming that the elastic force is bal-
anced by the viscous drag in (2.11), the typical elastic force scales as N ∼ Uηl, where
U is a characteristic rod speed. From (2.12) it then follows that the ratio of the viscous
torque to the torque arising from the stress-resultant is gdrag/(r′ × N) ∼ λiσi/ηlU ,
where λi ∼ ηa2 according to (2.8). Qualitatively, there are two types of rotational
rod motion: spinning about the rod axis and bending/tilting perpendicular to the
rod axis. For spinning motion, U ∼ σ3a, resulting in the viscous torque being smaller
than the stress-resultant by a factor ε = a/l. For bending/tilting, σ1,2 ∼ U/l and
the resulting cross-sectional components of the viscous torque are a factor ε2 smaller
than the elastic stress-resultants. For problems in which we may neglect second-order
effects, two of the equations in (2.12) reduce to time-independent constraints linking
some of the components of the elastic force N(s, t) and moment M(s, t), respectively.
Then two constraints determine the cross-sectional shear-resultant and consequently
two of the kinematic constraints embodied in (2.1) become redundant. Relation (2.1)
then reduces to the scalar inextensibility constraint |r′(s, t)| = 1 commonly used in
bead-rod polymer models such as the worm-like chain model discussed in § 4. We
note that a further consequence of this approximation is that one cannot specify
boundary conditions on the torques.

The complete set of equations are the kinematic relations (2.1), (2.2) and (2.3),
the dynamical balances (2.11), (2.12), the constitutive relation (2.4) for the elastic
torque M(s, t), and a set of boundary and initial conditions.

3. Equilibrium rod model applied to the
study of lac operon promoter

We now review the results of our earlier work (Balaeff et al . 1999, 2003, 2004) on
applying the Kirchhoff rod model to study the 76 bp loop folded by lac repressor.
The 76 bp loop connects the ends of the operator DNA segments bound to a lac
repressor molecule (figure 1), which is assumed to have the structure crystallized by
Lewis et al . (1996). Because the loop is only of the order of 0.5lp long, we neglect
entropic effects to a first approximation and study its structure at equilibrium in the
zero-temperature limit. The rod equations for equilibrium are obtained by discard-
ing the time dependence of all variables and neglecting Brownian force and torque
in (2.11), (2.12). Other authors have considered similar equilibrium models as a
departure point for DNA studies (Manning et al . 1996; Olson 1996; Coleman et al .
1995; Schlick 1995). We rewrite the equilibrium equations as a 13th-order system
using a quaternion parametrization of the director basis as in Mahadevan & Keller
(1996), Manning et al . (1996), Westcott et al . (1997) and Balaeff et al . (2003). The
coordinate frames fitted to the termini of the DNA segments (cf. figure 2c) provide
us with the boundary conditions.

The loop solutions are constructed with an iterative continuation algorithm
(Mahadevan & Keller 1996), as illustrated in figure 3. The iterations start with a
simplified set of parameters and boundary conditions for which an exact equilibrium
solution is known, namely, a closed circular loop and zero electrostatic charge (fig-
ure 3a). Then the boundary conditions and the elastic moduli are gradually changed
in several iteration cycles (figure 3b, c) until the desired solution is obtained. Each
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iteration cycle consists of using a standard boundary-value problem solver COLNEW
(Bader & Ascher 1987) that uses the solution obtained at the previous step as an
initial guess in a Newton–Raphson-like iterative algorithm.

Since the boundary conditions do not specify the linking number of the loop—a
topological invariant combining the writhe (coiling) of the centreline and the net
twist—we search for loop solutions with the smallest elastic energy by rotating one
end of the loop an integral number of turns. Two solutions result, one that is slightly
underwound, (figure 3c), and another one that is slightly overwound (figure 3c′).
We denote these two solutions by ‘U’ and ‘O’, respectively, with the ‘U’ loop being
energetically favourable. However, it should be noted that these estimates are based
on ensemble averages obtained from bulk studies, although recent work on single-
molecule experiments (Finzi & Gelles 1995; Lia et al . 2003) should eventually allow
for better comparisons.

Both U and O loops point away from the lac repressor, as proposed by Lewis
et al . (cf. figures 1b and 3), but in principle the loop may also wrap around the
lac repressor tetramer (Tsodikov et al . 1999). Indeed, our algorithm can produce
solutions with the loop pointing ‘down’, towards the lac repressor (see Balaeff et al .
2003). Yet, these loops are not only found to have significantly higher energies than
the U and O loops above, but also to be sterically prohibitive, passing through the
areas of space supposedly occupied by the lac repressor. Stretching these loops to
avoid the steric clash and wrap them around the lac repressor would further increase
their energies. Changes in the lac repressor geometry (Edelman et al . 2003) may pre-
sumably alter the energy balance and make the wrapped-around loops energetically
more favourable. The present discussion, however, focuses solely on the structure by
Lewis et al . and geometries other than the U and O loops are beyond the scope of
this review.

(iv) Anisotropy

As an example of the various refinements to the basic equilibrium rod model that
are possible, we first consider the effect of anisotropic bending rigidities based on
the ratio µ = A1/A2 = 4 (Olson et al . 1993; Balaeff et al . 2003). The new loops
obtained after another iteration cycle, in which the bending moduli are adjusted to

Figure 3. Equilibrium elastic-rod solutions for the lac repressor-induced DNA loop generated using the
iterative continuation algorithm (Balaeff et al . 1999, 2003). (a) The simplified circular loop initializes
the iterative procedure. (b) One end of the loop is moved to the other receiving end of the lac repressor.
(c), (c′) The moved end of the loop is rotated into the correct orientation. Depending on the direction of
the rotation (or the number of subsequent turns of the end of the loop (see Balaeff et al . 1999, 2003 for
details)) the underwound ‘U’ (c) and overwound ‘O’ (c′) solutions emerge. (d), (d′) The correct bending
rigidity A/C = 2/3 is now introduced into the model. Loops obtained with isotropic bending moduli
A1 = A2 are coloured light, loops obtained with anisotropic bending moduli A1/A2 = 4 are coloured
dark. (e), (e′) Changes in the predicted loop structure due to electrostatic interactions at different ionic
strengths. The loops obtained for the ionic strength of 100 mM are coloured light, those for 25 mM
are coloured medium, and those for 10 mM are coloured dark. There is virtually no difference between
the 100 mM structures and those obtained without the electrostatic term (dark solutions in (d), (d′)).
(f), (f ′) Total (T), elastic (E), and electrostatic (Q) energy of the rod at different values of ionic strength.
The points corresponding to the snapshots in (e), (e′) are indicated with corresponding colours on the
abscissa. In all panels, the protein-bound DNA segments from the lac repressor crystal structure are
shown for reference only, as they played no role during the iteration cycles except for providing the
boundary conditions.
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the anisotropic values, are shown in figure 3d, d′. Only the O loop is structurally
altered to a significant degree, although the energies of both loops are reduced by
a third. Microscopically, this leads to the formation of a kink-like structure since
bending becomes effectively cheaper, and twist is exchanged for bend as the average
twist ω decreases for both U and O solutions.

(v) Electrostatics

Next, we consider the effects of electrostatic interactions on the DNA loops. Includ-
ing the force terms corresponding to the rod interaction with itself (Eself above) and
with the phosphates of the crystallized DNA segments (Eother) results in a set of
integrodifferential equations (Westcott et al . 1997; Balaeff et al . 1999, 2003). Again
an iterative algorithm is used to gradually increase the Debye screening radius from
zero (infinite ionic strength) to infinity (zero ionic strength) and some sample results
are presented in figure 3e, f ′. The increased electrostatic repulsion gradually changes
the shape of the O loop (but not the U loop) (figure 3f, f ′). The feature that makes
the O loop more sensitive to electrostatic interactions is its point of near self-crossing,
which is absent in the U loop; thus, at low salt concentration the U loop becomes
even more favourable. We find that electrostatic terms can be ignored except in the
neighbourhood of near self-intersections, in accord with our intuition.

(vi) Inhomogeneity

Finally, we give an example of how to model the effect of a binding protein, CAP,
which binds inside the 76 bp loop (see Balaeff et al . (2004) for details). This type
of situation, where a second protein serves to assist another DNA binding protein,
is very common in DNA–protein interactions. In order to mimic the structure of
the CAP binding site (CBS) inside the U and O loops, we modify the intrinsic
curvature and twist parameters κ◦

1(s) and ω◦(s) locally. The resulting kinked and
unwound rod section models the DNA steps kinked and unwound by the bound CAP
(figure 1c). The desired ‘intrinsic’ structure is frozen inside the CBS segment of the
loop by means of artificially increased bending rigidities in that section. The resulting
structure of the U loop, shown in figure 4a, is able to accommodate the CAP protein
while its energy remains almost unchanged. Yet the likely disruption of the protein–
DNA interactions due to the close proximity of CAP and the upstream DNA-binding
‘hand’ of the lac repressor makes the viability of this ternary complex uncertain. The
O loop, in contrast, can accommodate the CAP only if its length is increased to 82–
84 bp (figure 4b), otherwise, the mimicked CBS forces the loop to adopt a sterically
prohibitive structure. Physically, the increase in the loop length corresponds to the
dislocation of the upstream DNA-binding hand of the lac repressor from its preferred
site, accompanied by an increase in the interaction energy. However, the resulting
drop in the elastic energy of the loop (figure 4c) is more than sufficient to compensate
for the relocation cost. (In contrast, the U loop does not benefit from a similar
increase in l, cf. figure 4c.) Our results conform with experimental observations that
the formation of the ternary complex indeed results in the relocation of the binding
hand of lac repressor by 6 bp (Perros et al . 1996; Hudson & Fried 1990), while our
energetic estimates for ternary complex formation (Balaeff et al . 2004) agree with
those of experiments (Hudson & Fried 1990).
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Figure 4. Structures of the ternary complex of CAP, lac repressor and the DNA loop. (a) A
complex with the 76 bp-long underwound loop. (b) A complex with the 83 bp-long U loop. The
views are rotated by ca. 90◦ around the vertical axis with respect to the lac repressor view in
figure 1b. The lac repressor is coloured purple and CAP is coloured green. The grey tube shows
the elastic-rod model of the 76 bp loop; the all-atom DNA structure (red) is built on top of the
rod as described in Balaeff et al . (2004). (c) The elastic energy of the loops plotted versus l
shows the optimal length of each loop.

4. Kinetics of DNA loop formation and finite-temperature effects

(a) Worm-like chain model and loop-formation process

In § 2 we presented the governing equations for the overdamped Brownian dynamics
of a Kirchhoff rod as a simplified model for DNA with a length of the order of

Phil. Trans. R. Soc. Lond. A (2004)



1366 A. Balaeff and others

one persistence length lp or more. Here we begin the investigation of loop-formation
kinetics at finite temperature with a yet more simplified rod model. Our motivation is
guided by the high computational cost of a kinetic study of looping, which requires
a detailed exploration of the configuration space accessible to the rod. Hence we
consider the worm-like chain (WLC) model defined by the isotropic bending energy

U = 1
2kBT lp

∫ l

0
|r′′(s, t)|2 ds, (4.1)

as opposed to (2.6). The WLC is further subject to the scalar inextensibility condition
|r′(s, t)| = 1, an approximation of (2.1). The WLC is described by three centreline
coordinates only, compared with the 13 degrees of freedom needed to specify the full
Kirchhoff model. Looping kinetics, also-called cyclization kinetics in polymer science,
has received ample attention in the case of flexible polymers (e.g. Pastor et al . 1996
and references therein) and some attention in the case of (semi-flexible) worm-like
chains (e.g. Merlitz et al . 1998; Dua & Cherayil 2002). The loop-formation process
may be modelled as a two-state kinetic process composed of a reversible phase of
approach of two active sites on the DNA within the reaction radius areac at rate
constants kon and koff, and a phase where the actual chemical process ‘closing’ the
loop takes place irreversibly at rate q. The process is said to be diffusion controlled
when q ( koff and reaction controlled when q % koff. We assume from the outset that
loop formation is diffusion controlled. Because DNA is relatively large and slowly
diffusing this appears to be biologically relevant, although examples of reaction-
controlled loop formations in DNA are also known. Prime quantities of interest are
therefore the loop-formation rate kon or the diffusional loop-formation time τD ≈ k−1

on .
Merlitz et al . (1998) used an extensible helical (i.e. twisted) WLC Brownian dynamics
solver with hydrodynamic interactions in order to perform loop-formation kinetics
experiments for a chain of fixed length. We focus instead on the dependence of τD
on the WLC length l. The loop-formation time τD can be computed numerically
by sampling a WLC configuration of a given length from its thermal equilibrium
distribution and then by integrating the WLC equations of motion forward in time
to measure τD.

(b) Monte Carlo and Brownian dynamics algorithms

In order to proceed we implemented a combined Monte Carlo (MC) and Brownian
dynamics (BD) solver for the WLC. Both solvers are based on the discretized WLC
energy for a chain of length l composed of N discrete segments with constant length
b and N + 1 vertices, each attached to a bead to model hydrodynamic behaviour:

Udisc =
l̃pkBT

2b

N−1∑

i=1

θ2
i , (4.2)

where θi is the angle between segments i − 1 and i and where l̃p is a modified per-
sistence length corrected for discretization effects (Klenin et al . 1998). In order to
generate the WLC thermal equilibrium distribution we use a pivot Metropolis MC
algorithm (Madras & Sokal 1988), in which a new chain configuration is generated
from an existing one by selecting one end of the chain of random length and piv-
oting it about a random axis by a random angle α within the interval [−δα, δα]. A
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new configuration is accepted subject to the Metropolis criterion, which defines the
acceptance probability as p = min[1, exp[−(Unew − Uold)/kBT ]]. The rotation angle
interval for α is adjusted so that 30% of newly generated configurations are accepted.
Note that chain inextensibility is automatically enforced by the rotational nature of
the pivot moves.

In order to generate configuration space trajectories beginning with given equi-
librium configurations we have adapted the flexible, freely draining BD bead-rod
algorithm of Hinch (1994) to the discrete WLC. Hinch’s algorithm enforces inexten-
sibility by introducing constraint forces Ti collinear with segments (ri+1 − ri) and
by solving for the overdamped equations of motion

ξṙi = fbend
i + f stoc

i + Ti − Ti−1 (4.3)

for vertex 0 ! i ! N , where ξ is the viscous drag coefficient, fbend
i is the net bending

force derived from (4.2), and f stoc
i is the stochastic force verifying the discretized

version of (2.9). The constraint forces Ti are resolved by applying the inextensibility
condition ṙi · ri = 0, leading to the solution of a linear tridiagonal system for Ti at
each time-step. Note that the viscous drag coefficient of the discretized WLC model ξ
is consistent with the viscous drag coefficient per unit length ζ of the continuous WLC
model, appearing in equation (2.7). The need for different drag coefficients naturally
appears when equation (2.7) is discretized to yield (4.3). Further, observe that the
locally anisotropic viscous drag force on the right-hand side of (2.7) is not modelled as
such in the discrete WLC model. Here the effects of drag anisotropy are accounted for
only in an average sense. Indeed, in the freely draining approximation ξ is modelled
by the isotropic Stokes law of friction, ξ = 6πηrfric. However, the bead radius rfric is
computed so that the total viscous drag of the bead-rod chain is identical to that
of a cylindrical rod with hydrodynamic radius corresponding to DNA (Klenin et al .
1998). Because of the great computational cost, we use a relatively coarse spatial
discretization with b = 10 nm in this preliminary study. A midpoint rule algorithm
is used to integrate the system in time (Hinch 1994).

(c) Numerical results

Figure 5a shows the probability density for the normalized end-to-end distance R/l
for various WLC lengths l and a fixed persistence length lp = 50 nm, as computed
from ensemble averages (MC) and time averages (BD). The results from both meth-
ods collapse well, although the convergence of the BD method is very slow compared
with MC computations. The shorter the WLC length, the more restricted are its
excursions away from its most probable configuration. This provides some justifica-
tion for the zero-temperature approach used in § 3. In order to assess the likelihood
of forming a loop at equilibrium the inset plot shows the cumulative probability for
R to lie within a sphere of radius areac = 5 nm and 10 nm, respectively. At equilib-
rium the maximum cumulative probability is realized for chains of length roughly
l = 3lp and there is a sharp drop in probability away from the maximum, consistent
with our intuition. Loop formation is dominated by the enthalpic cost of bending for
short chains l < 3lp, while it is dominated by entropic effects—reflected in the large
number of open configurations—for long chains l > 3lp. The size of the reaction
radius critically affects the loop-formation probability—in the example shown the
maximum rises roughly by a factor of 5 in going from areac = 5 nm to areac = 10 nm,
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Figure 5. (a) Equilibrium probability density function P (R/l; l) for the end-to-end distance R/l
with lp = 50 nm and various chain lengths l/lp = 6, 5, 4, 3, 2, 1, from left to right. Lines and
symbols represent MC (ensemble-averaged) and BD (time-averaged) results, respectively. The
results for l/lp = 1 have been multiplied by 0.5 for clarity of the figure. The inset shows the
cumulative probability that R lies within a reaction radius of areac = 5 nm (– – –) and 10 nm
(——), respectively. (b) The diffusional loop closure time τD as a function of the normalized
WLC length l/lp for a reaction radius areac = 5 nm. Vertical bars represent the dispersion of
the times around their mean values.

with a corresponding increase in probability for longer chains. Finally, in figure 5b
we show the diffusive loop-formation time τD as a function of the non-dimensional
WLC length l/lp, for a reaction radius of areac = 5 nm, corresponding roughly to
the distance existing between the two binding hands of the lac repressor. The ver-
tical bars indicate the dispersion of τD around the plotted mean values. As for the
equilibrium data (figure 5a) there exists an optimal minimal loop closure time for
chains with length between 2 and 4 persistence lengths, beyond which the enthalpic
and entropic regimes dominate, respectively. Based on the WLC model we conclude
that τD is of the order of a few milliseconds for a WLC with l ∼ lp. (Note that due
to the coarse resolution of the WLC model, the smallest chain length considered is
l/lp = 1, which corresponds approximately to twice the length of the lac repressor
loop discussed in § 3.)

5. Conclusion and outlook

In this paper, we have described a hierarchy of models starting with a generalized
Kirchhoff elastic rod as it applies to the conformation and overdamped motion of
DNA with length-scales of the order of the persistence length or more. Our results
have focused on the equilibrium configurations of DNA loops constructed with an
iterative continuation solver in the context of loops induced by lac repressor and
CAP, two proteins active in the genetic regulation of the lac operon of Escherichia
coli. We have also included a preliminary study of the equilibrium properties and
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kinetics of loops in a worm-like chain using Monte Carlo and Brownian dynamics
simulations. We close with a brief discussion of avenues for further work.

First, the estimated force of the protein–DNA interactions (see Balaeff et al . 2003)
may be used to model the changes in the structure of the lac repressor that are
likely to occur due to the stress of the bent DNA loop. This can be achieved via a
molecular dynamics (MD) simulation for the all-atom structure of the lac repressor,
in which the estimated elastic forces and torques are applied to the ends of the
protein-bound DNA segments. The forces must be recomputed iteratively as the
lac repressor structure and, consequently, the boundary conditions for the elastic
rod change during the MD simulation. One can either employ the elastic forces
obtained from the static calculations, or extract thermally averaged/instantaneous
forces from an MC/BD simulation of the loop. Such a coupling between the all-atom
and coarse-grained simulations of the different parts of the protein–DNA complex
gives rise to a multiscale simulation technique that has a significant potential for
further applications in biomolecular modelling (Villa et al . 2004).

Second, the elastic-rod solutions may serve as a scaffold on which to build all-atom
structures of the whole DNA loop (Balaeff et al . 2004). The all-atom structures can be
used as reasonable starting points for MD simulations of the whole ternary complex
of CAP, lac repressor and DNA, which should become possible with the advent of
massively parallel computers. Alternatively, one could subject the all-atom structure
of a particularly interesting section of the loop (a binding site for a protein, or a
site with a non-trivial intrinsic geometry) to multiscale simulations, similar to those
described above.

Finally, the combination of Monte Carlo and Brownian dynamic simulations can
be generalized to account for a more complex helical (i.e. twisted) WLC model as
well as hydrodynamic interactions with the ultimate goal of comparison with single-
molecule experimental data on DNA–protein interaction in the context of the lac
repressor (e.g. Finzi & Gelles 1995; Lia et al . 2003).
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