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The acrosomal process of the sperm of the horseshoe crab (Limulus
polyphemus) is a unique crystalline actin bundle, consisting of multiple
actin filaments cross-linked by the actin-bundling protein, scruin. For suc-
cessful fertilization, the acrosomal bundle must penetrate through a
30 mm thick jelly coat surrounding the egg and thus it must be sufficiently
stiff. Here, we present two measurements of the bending stiffness of a
single crystalline bundle of actin. Results from these measurements
indicate that the actin:scruin composite bundle has an average elastic
modulus of 2 GPa, which is similar to that of a single actin filament, and
a bending stiffness that is more than two orders of magnitude larger
than that of a bundle of uncross-linked actin filaments due to stiffening
by the scruin matrix.
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Introduction

Actin filaments, which play an important role in
maintaining the mechanical integrity of eukaryotic
cells, rarely exist independently. Instead, they nor-
mally associate into bundles or networks in concert
with more than 60 different actin-binding proteins
(ABPs) to influence cellular shape, mitotic division,
cell adhesion, and motility.1 While the filaments
form a disordered structure in networks, they
form compact ordered arrays with relatively rigid
proteins that force the close alignment in bundles.
Examples of these stiff bundles are found in long
thin processes such as the neuro-sensory bristle of
Drosophila,2 – 4 brush border microvilli,5 hair cell
stereocilia,6,7 and the acrosomal process of Limulus
sperm.8,9 While the mechanical properties of actin
in other states, especially the single-filament
state10,11 and the cross-linked gel state,12,13 have
been measured, we know of almost no mechanical
property measurements on an individual crystal-
line bundle of multiple actin filaments; an impor-
tant exception is the measurement of the bending
stiffness of the actin hinge at the base of a hair
cell.14

Here, we report the measurement of the bending
stiffness of a crystalline bundle of actin found
in the acrosomal process of the horseshoe crab

Limulus polyphemus sperm (Figure 1). During fertili-
zation, the coiled actin bundle extends from the
sperm and penetrates the tough jelly coat of
the egg (Figure 1). Recent work has shown that
the bundle consists of actin filaments cross-linked
by scruin:calmodulin heterodimers.15 Since the
bundle must be relatively stiff in bending for it to
carry out its function, this system serves as a
benchmark to understand the role of cross-linking
in determining the mechanical properties in a
macromolecular assembly. We use two indepen-
dent methods for the measurement. In the first
method, a steady transverse flow is used to deflect
the acrosomal bundle and the bending stiffness is
derived from an analysis of the equilibrium shape.
The second method employs a single pole mag-
netic trap to bend the bundle and relate the deflec-
tion to the applied magnetic force, and thereby
determine the bending stiffness.

Theory

Here, we outline the theoretical basis for the
determination of the bending stiffness of the bun-
dle from each of the experimental methods.

Hydrodynamic flow method

Electron micrographs of the acrosomal bundle
reveal that the bundle is a non-prismatic rod
of hexagonally packed and cross-linked actin
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filaments with a continuously increasing radius
from the tip to the base (15–80 filaments). For
analysis, we assume the bundle to be a linearly
tapering rod of length L and of radius rðxÞ: When
a tapered elastic rod of stiffness EIðxÞ is subject
to a force per unit length f, its shape yðxÞ for small
deflection is determined by the solution of the
differential equation:15

d2

dx2
EIðxÞ

d2y

dx2

� �
¼ f ð1Þ

In the presence of a steady flow, the Stokes drag
per unit length for a long slender rod moving near
a single plane wall is:16

f ¼ 2pmy=cosh21ðh=RaveÞ ð2Þ

Here, m is the viscosity of the medium, y the
velocity of the flow, h the distance between the
bundle and the wall, and Rave the average radius
of the bundle. The bundle is assumed to be
clamped at the proximal end, consistent with
observations, while the distal end is free of forces
and moments. Therefore, the boundary conditions
supplementing these are:17

y ¼ 0,
dy

dx
¼ 0 at x ¼ 0 ð3Þ

d2y

dx2
¼ 0,

d3y

dx3
¼ 0 at x ¼ L

One way to obtain the Young’s modulus E using

equation (1) is to find a polynomial fit to the
experimental deflection curve and express E as a
function of f and IðxÞ ¼ p=4ðRmin þ x tan bÞ4 where
Rmin is the radius of the distal end and b is the
taper angle. Unfortunately, this approach leads to
large errors due to the sensitivity of the high-order
polynomial fit to the experimental data and does
not yield a reliable estimate of E:

To circumvent this difficulty, we model the
bundle as a tapering segmented rod made of n
cylinders whose radii, rn, vary according to the
linear function fitted to the slope of the bundle
obtained from electron micrographs (Figure
A1(a)). We assume each segment in the bundle to
obey linear elastic theory, and apply the method
of superposition to obtain the expression for the
total deflection at the distal end, dtot, as a function
of E, L, f, and rnðxÞ (see Appendix), and thus
determine the Young’s modulus E.

Magnetic trap method

In the case of magnetic trap measurements, a
similar analysis can be performed with a point
load Fm ¼ f dðx 2 LÞ, where d is the usual Dirac-
delta function. Integrating equation (1) then leads
to:

d

dx
EIx

d2y

dx2

� �
¼ Fm ð4Þ

As in the previous case, we use the principle
of superposition for a bundle composed of n
cylinders (1 # n # N) to determine the total deflec-
tion dtot ¼ d1 þ d2 þ d3 þ …dN, and thence E (see
Appendix).

Results and Discussions

Hydrodynamic flow method

Particle tracking is used to measure the flow
velocity and confirm that it is steady. At least two
particles lying in the plane of focus are chosen
within a field of view to ensure that a uniform
flow field exists. From equation (2), the force den-
sity applied to the deflecting bundle is calculated
using m ¼ 1023 Pa s, h , 1 mm, Rave ¼ 46 nm, and
y typically 45–120 mm/s from eight different cells.
The measured tip deflection dtot ranges between
2.9 mm and 11.5 mm, validating the small deflection
assumption used in deriving equation (1). As
shown in Figure 2(c), the tip undergoes fluctua-
tions about its average position at equilibrium. To
minimize the uncertainty in the measurement, the
displacement of the tip is averaged over 5–10 s.
Figure 2(a) shows a typical deflection of the
acrosome under the distributed load by a steady
flow. The Young’s modulus, Etaper, is obtained
from equations (A1)–(A3) using the previously
defined parameters and its averaged value
over eight different cells is found to be

Figure 1. (a) An image of an isolated acrosomal bundle
in the true discharge (TD) state taken from transmission
electron microscopy. The scale bar represents 50 nm.
(b) A schematic of unreacted Limulus sperm modified
from electron micrographs, showing the proximal end
of the acrosomal bundle lying in the nuclear channel
while the rest of the bundle is coiled around the base
of nucleus. Upon activation by the presence of an egg or
Ca2þ, the acrosomal bundle uncoils and extrudes out of
the acrosomal vesicle at a constant velocity. The blowups
illustrate that the filaments are twisted in the coiled state,
but parallel with each other in the TD state.
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Etaper ¼ 2:5ð^0:72Þ GPa: Since I, the moment of
inertia, scales as the fourth power of r, EI rises
from 0.9 £ 10221 N m2 to 16 £ 10221 N m2 for the
estimated constant value of Etaper: The average
bending stiffness of ,5 £ 10221 N m2 corresponds
to an average persistence length of Lp ¼ EI=kBT ,
1:2 m, implying that the acrosome bundle is clearly
impervious to thermal fluctuations over cellular
dimensions. For comparison, we find that approxi-
mating the rod as a cylinder with a constant radius,
Rave, leads to Eave ¼ 2:38ð^0:81Þ GPa using Eave ¼
fL4=ð2pR4

avedtotÞ: Although the numerical value
Eave is not very different from Etaper, the tapering
rod model leads to a shape that is much closer to
the experimentally observed shape (Figure 3(a)).

Magnetic trap method

The single pole magnetic trap experiment pro-
vides us with an independent measurement of the

Figure 2. (a) DIC images of a bundle in the absence of
and in the presence of a steady transverse flow. The
black arrows locate the particles used to measure the
flow velocity. S indicates sperm head and AB indicates
the acrosomal bundle. The scale bar on the right panel
represents 5 mm. (b) Images of the reacted sperm before
and after the magnetic force is applied. Normal com-
ponent of the force (to the long axis of the bundle) is
calculated by taking cos a. (c) The bundle fluctuates
about its average position at equilibrium; however, the
data are averaged over 5–10 s to eliminate this effect.

Figure 3. (a) Experimentally obtained shape of the
deflected acrosomal bundle in steady hydrodynamic
flow (open circle) is shown along with two analytical
curves. The continuous line represents the theoretical
curve using the tapered rod model, while the broken
line represents the curve obtained by yðxÞ ¼ f ðx4 2
4x3L þ 6x2L2Þ=6pEaveR4

ave with the average value of Eave

assuming a uniform thickness rod. We define a goodness
of the theoretical fit to the experimental data as: c2 ¼ 1 2
1
N

PN
i¼1 ðyðxiÞ2 tðxiÞ=yðxiÞÞ

2 where yðxiÞ is the experimen-
tal data, tðxiÞ the theoretically predicted value, and N
the number of data along the curve, leading to c2

taper ¼
0:9984 and c2

uniform ¼ 0:8978, with c2 ¼ 1 corresponding
to a perfect fit. For this particular data, Etaper ¼ 2:2 GPa,
Eave ¼ 2:3 GPa, and the EIave ¼ 8 £ 10221 N m2: The dis-
tributed load density f ¼ 2:4 £ 1027 N=m: (b) Experi-
mental shape of the deflected acrosomal bundle with
the point load, Fm, exerted by the magnetic field (open
circle), along with two analytical curves. The continuous
line represents the theoretical curve using the
tapered rod model, while the broken line represents the
theoretical curve for uniform thickness rod by yðxÞ ¼
2Fmx2ð3a 2 xÞ=3pER4

ave: For this particular data,
Etaper ¼ 1:4 GPa, Eave ¼ 1:2 GPa, and the EIave ¼
4:1 £ 10221 N m2. The theoretical curve from the tapered
model fits the experimental deflection well with
c2

taper ¼ 0:9967, while the uniform rod model shows a
large discrepancy with cuniform

2 ¼ 0.8228.
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bending stiffness. We calibrate the force following
the analysis described by Amblard et al. by relating
the magnetic field to the hydrodynamic forces on
the beads suspended in a solution of 4.95 M
CaCl2.

18 Velocities are measured for beads located
at least 30 mm from the bottom of the flow-cell to
guarantee that wall effects are negligible and their
values are given in Table 1. We first use Stokes
formula, Fm ¼ 6pmrpym, to obtain the magnitude
of the force. The perpendicular component of the
force is Fn ¼ Fmcos a, where a is the angle between
the direction of the moving bead and the bundle
axis (Figure 2(b)). With the values of F’, dtot, and
a, the distance between the attached magnetic
bead on the acrosome and the base ðx ¼ 0Þ, the
mean elastic modulus is found to be Etaper ¼
1:34ð^0:34Þ GPa from five different cells at all
voltages, while the average bending stiffness EI
varies from 0.37 £ 10221 Nm2 to 10.6 £ 10221 Nm2

from the tip to the base (Table 1). Figure 3(b)
shows the theoretical fit to the experimentally
obtained deflection.

A few potential sources for variation in the
obtained results should be considered. First and
most important, there are variations among indi-
vidual sperm cells. A second likely source of varia-
tion lies in the inaccuracy associated with particle
velocity measurements due to a finite optical
depth-of-field, which can give rise to about two-
fold variations in the flow velocity estimates. In
addition, there could be an error associated with
the estimate of the bundle taper.

We now consider the relation of the stiffness of
the bundle to the stiffness of a single actin filament.
Each bundle of acrosome consists of 15–80 fila-
ments arranged along a tapering cross-section. If
the acrosome bundle is assumed to be a rod of a
uniform radius, Rb , 50 nm, made of 50 actin fila-
ments cross-linked by scruin, the average stiffness
EIave , 8 £ 10221Nm2 corresponds to a material
with Young’s modulus of 2 GPa ðEIbundle ¼
EpR4

b=4Þ: This value for Young’s modulus is com-
parable with that of a stiff elastomer and similar
to that of pure actin filaments (,2.6 GPa).10,11 In
contrast, if we suppose that we have a bundle of
50 uncross-linked actin filaments of radius rf in a
rope-like configuration, the stiffness of such a
bundle EIrope ¼ ðEpr4

f =4Þn , 2:6 £ 10223 Nm2,
where n is the number of filaments in the bundle.
Therefore, the cross-linked actin bundle is more

than 300 times stiffer than a braid/rope of
uncross-linked actin filaments of a similar radius.
This indicates that the presence of scruin is respon-
sible for the large increase in the stiffness of the
acrosome bundle. Electron micrographs lend some
credence to our hypothesis; they show that there
is a high density of scruin cross-links,15 which
allows for the substantial stiffening seen experi-
mentally. Thus, the functional requirement for a
stiff actin bundle required to penetrate the tough
coat of the egg is well met by the stiffening
induced by the tight cross-linker scruin.

Materials and Methods

Sample preparation

Horseshoe crab (L. polyphemus) sperm (500 ml) was
collected from a healthy male and stored on ice. The
collected sperm was washed at least twice in artificial
seawater (ASW: 423 mM NaCl, 9 mM KCl, 9.27 mM
CaCl2, 22.94 mM MgCl2, 25.5 mM MgSO4, 2.15 mM
NaHCO3, 10 mM Tris, pH adjusted to 7.9–8.0) by cen-
trifugation at 750g for five minutes, and resuspending in
ASW to its original volume. Washed sperm were diluted
1:1000 (v/v) in ASW. The experiments were conducted
in a flat capillary flow-cell constructed with pieces of
coverslip and double-sided adhesive spacers, sealed
with inert vacuum grease (Apiezon Co., Manchester,
UK) to prevent leaking.

Activation of the acrosome reaction

The flow-cell was first freshly coated with a tissue
adhesive, BIOBOND (Cat no. 71304, EMS, Inc, Fort
Washington, PA), filled with diluted sperm, and incu-
bated for about 10–20 minutes for secure adhesion to
the surface of the coverslip. Saturated casein in ASW
was diluted 100-fold with ASW, and several flow-cell
volumes of the diluted solution were then added to the
flow-cell to block the glass surface from non-specific
binding of the extending acrosome and the beads used
for flow visualization. After 20 minutes, the saturated
casein solution was replaced with ASW containing
25 mM CaCl2. Calcium ionophore (A23187, 2 mg/ml in
ethanol) was diluted 1:10 (v/v) with ASW containing
25 mM CaCl2. A small amount (20 ml) of the diluted
ionophore was injected into the flow-cell to induce true
discharge. Excess liquid was drawn from one side of the
flow-cell as the diluted ionophore was pipetted into the
other side.

Table 1. Young’s modulus ðEÞ measurements at various voltages with the magnetic trap method

Voltage 5 10 15 20 25

V ^ SD (mm/s) 1.3 ^ 0.2 2.1 ^ 0.1 3.5 ^ 0.2 4.8 ^ 0.6 8.9 ^ 0.4
F ^ SD (pN) 0.35 ^ 0.05 0.56 ^ 0.07 0.91 ^ 0.05 1.25 ^ 0.16 2.35 ^ 0.02
E ^ SD (GPa) 1.26 ^ 0.62 1.18 ^ 0.2 1.36 ^ 0.15 1.58 ^ 0.11 1.46 ^ 0.1

To calibrate the forces at specified voltages, the velocities of 2.8 mm diameter magnetic beads moving in 4.95 M CaCl2 solutions are
measured. Since the maximum velocity ðVÞ of the beads at the highest voltage does not exceed 9 mm/s, leading to a Reynolds number
of 1025, the magnetic force ðFÞ can be estimated directly from the drag force using the Stokes formula, Fm ¼ 6pmrpnm, where m is the
viscosity of 4.95 M CaCl2 solution, m ¼ 9:95 £ 1023 Pa s, rp the particle radius, and nm the particle velocity. The elastic modulus value
ðEÞ corresponding to each voltage is calculated from equation (A3).
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Biotinylation of sperm cells

For the magnetic trap methods, streptavidin-coated
magnetic beads (Dynabeadsw M-280 streptavidin, Dynal
Biotech, Inc. Cat no. 112.05) were attached to biotinylated
sperm. Sulfo-NHS-LC Biotin was stored at 220 8C as a
10 mg/ml stock solution in anhydrous DMSO and
diluted to 1:100 in ASWII. Sperm were washed twice in
ASWII (423 mM NaCl, 9 mM KCl, 9.27 mM CaCl2,
22.94 mM MgCl2, 25.5 mM MgSO4, 2.15 mM NaHCO3,
10 mM Hepes, pH adjusted to 7.9–8.0). 10 ml of washed
sperm (by centrifugation at 750g twice, for one minute
each time) was added to 500 ml of prepared biotin
solution. The sample was then incubated for two hours
at room temperature on a rotating rack. Biotinylated
sperm cells were then washed in regular ASW three
times by centrifugation at 750g.

Measurement setup

The extended acrosome can be bent within a plane
either by a flow of the buffer or by a magnetic force.
The bending stiffness can then be calculated from an
analysis of the equilibrium shape and deflection of the
acrosome.

Hydrodynamic measurement

After fixing the sperm to a glass coverslip using BIO-
BOND, the flow past the extended acrosomal bundle
was induced inside the chamber by capillary absorption
with filter-paper (No. 54 Hardened 90 mm Circles
(Whatman, Inc., Clifton, NJ). Small polystyrene particles
of diameter 0.175 mm were used to visualize the flow.
The cells and the particles were imaged under DIC-H
optics at a magnification of 100 £ on a Nikon TE300
inverted microscope, and these images were captured
with a Dage MTI (model CD-300-RC, Dage-MTI, Inc.,
Michigan City, IN) video camera and recorded on a
Sony SVO-9500MD S-VHS video cassette recorder. The
velocity of flow was monitored using the trajectory of
the particles travelling in the focal plane of the bundle.
Selected video images were digitized at 30 frames/s
using an Apple Video player. In addition, the still images
of the acrosome bundle in the absence and in the
presence of the steady flow were also captured to obtain
the equilibrium shape (Figure 2(a)). We consider only
the cases where the acrosomal bundle relaxes fully back
to the initial position when the flow is removed.

Magnetic trap measurement

A focused load is applied to the bead-coupled bundle
using a single pole magnetic trap. A 28 mm diameter
pole made of CMI-C steel is wrapped 550 times with
24-gauge copper wire, turning the pole into an electro-
magnet. The magnetic pole was connected to a voltage
supply (Kepco Power supply, Kepco, Inc., Flushing,
NY). The sperm cell was affixed onto a coverslip and
the acrosome reaction induced with the addition of iono-
phore into the flow-cell. Next, the magnetic beads
suspended in ASW were introduced into the flow-cell,
which was then rocked slowly back and forth to prevent
the beads from fast sedimentation, giving enough time
for the formation of a biotin–streptavidin bond between
the sperm and the beads. We screened for the cells that
had a single magnetic bead attached to the acrosome
bundles. Once the static image of a bundle was stored,

the voltage of the power supply was varied and the
images of the deflected bundle at equilibrium were
saved. We ensured that the bundle was only elastically
deformed, by confirming that the bundle returns to its
straight state when the magnetic trap is switched off
(see Figure 2(b)).

For calibration of the magnetic force used to deflect
the acrosome, we used a suspension of 2.8 mm magnetic
beads in 4.95 M CaCl2 at a volume fraction (,1027) at
which magnetic and hydrodynamic interactions between
beads can be neglected.18 The same specified voltages
used in the experiments were applied and the trajectories
of the beads were recorded. The characteristic Reynolds
number associated with the bead motion is of the order
of 1025, so that the magnetic force can be estimated
directly from the viscous drag force using Stokes for-
mula, Fm ¼ 6pmrpnm, where m is the viscosity of 4.95 M
CaCl2 solution (9.95 £ 1023 Pa s at 25 8C), rp is the particle
radius, and nm is the particle velocity (typically less than
9 mm/s). Since the force is sensitive to the position of the
pole relative to the location of the beads, the location of
the pole is not disturbed between the measurements
and calibration.
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Appendix

Solution for the deflection of a non-
prismatic rod

Hydrodynamic flow method

The acrosome bundle is modelled as a tapering
rod made of n cylinders whose radii, rn, vary
according to the linear function fitted to the slope
of the bundle obtained from electron micrographs
(Figure A1(a)). The tapering angle and Rmin are
estimated by taking the average of the tip radii
obtained from cross-sectional electron micrographs
of 13 different cells. The slope of the bundle is
expressed as S ¼ ðRmax 2 RminÞ=Ltot, where Ltot is
the average total bundle length, 60 mm. The radius
is rnðxnÞ ¼ Rbase þ SðL=N 2 xnÞ with Rbase being the
radius of the bundle at the junction (the clamped
boundary) and xn ¼ Ln=N is the location of the
end of each segment where L is the length of the
extended bundle. Since the acrosome bundle does
not always extend to its full length with
its extended length varying from cell to cell
(45 , 65 mm), Rbase depends on the length of

the extended bundle, with Rbase ¼ Rminþ
LðRmax 2 RminÞ=Ltot.

We assume that each segment in the bundle
obeys linear elastic theory, and apply the method
of superposition to obtain the total deflection at
the tip of the entire bundle.A1 This method is valid
when the material is linear, elastic, and isotropic,
and if the deflection and taper are small. As an
illustration, consider a cantilever beam (Figure
A1(b)) under a distributed load f : The tip deflec-
tion dtot ¼ dB þ dO þ uCðL=2Þ where dB is the deflec-
tion of the AB, dO the deflection of the OA, and
uCðL=2Þ the transverse displacement due to the
rigid body rotation uO of the boundary A: Using
the same principle for a tapering rod made of n
cylinders yields the following:

dn ¼
f
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where Mn ¼ f ðL2 2 x2
nÞ=2 þ fLxn is the moment at

the end of nth segment ðxn ¼ ðL=NÞnÞ, Vn ¼
fL 2 fxn the shear force at the end of nth segment,
and In ¼ pðrnÞ

4=4 the moment of inertia for the nth
segment. The total deflection is then:

dtot ¼ d1 þ d2 þ d3 þ …dN ðA2Þ

Equation (A2) yields the Young’s modulus E,
given the experimentally measured values of dtot,
L, and rn:

Magnetic trap method

When the distributed hydrodynamic load is
replaced by a point load due to the magnetic
bead, we find:

dn ¼
Mn

2EIn

a

N

� �2

þ
Vn

3EIn

a

N

� �3

þ
Mn

EIn

a

N

� �
þ

Vn

2EIn

a

N

� �2
� �

a 2
a

N
n

� �
, n ¼ 1

: N 2 1

dN ¼
F’

3EIN

a

N

� �3

, n ¼ N ðA3Þ

where Mn ¼ F’ða 2 xnÞ and Vn ¼ F’: Using
equation (A2), we can then determine E, given the
experimentally measured values of Fn, dtot, a:
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Figure A1. Method of superposition. (a) The acrosomal bundle of horseshoe crab is modelled as a linearly tapering
elastic rod made of n cylinders. From electron micrographs of cross-sectional sperm cells, the maximum and minimum
radii (Rmax , 68 nm and Rmin , 24 nm) are measured and the slope S of the taper is calculated to be 7.3 £ 1024. The
radii rn of each segment vary according to the linear function fitted to the slope of the bundle such that rnðxnÞ ¼ Rbase þ
SðL=N 2 xnÞ: At two ends of the drawing, the EM images of the negatively stained acrosomal bundle are shown.
(b) Cantilever beam with two different moments of inertia is illustrated with the elements contributing to the total
deflection with dtot ¼ dA þ dB ¼ dB þ ðdO þ duOðL=2ÞÞ:
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