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We consider the dynamics of capillary attraction between an articulated train of rigid
rods floating at a liquid–gas interface and a nearby wall. We then explain some of
the phenomena that are a result of the strong anisotropy and the extended nature of
the system, such as the lining up next to the walling in a ‘zippering’ motion that is
observed and compare our results qualitatively with those of experiments.

1. Introduction
Objects floating at the interface between two liquids distort the interface because

of the vertical force balance between the interfacial tension (γ ) tending to keep them
at the interface and another force (such as gravity) that tends to pull the object into
one fluid rather than the other. These interfacial distortions affect other objects at the
interface and result in a mutual attraction or repulsion. The static configurations that
result from such attractive interactions have been extensively studied, and the ‘auto-
tessellation’ that often results may have technological applications (see Whitesides
& Grzybowski 2002). Indeed, this type of system where there is a long-range
attraction and a short-range (steric) repulsion was used more than fifty years ago by
L. Bragg and his colleagues (Bragg & Nye 1947) to construct macroscopic models of
crystalline solids using bubble rafts. However, the dynamics of these interactions are
still incompletely understood, and have been the focus of recent investigations (Vincze
et al. 2002). Furthermore, the primary emphasis of nearly all previous work has been
on the interaction of rigid, near-isotropic isolated objects such as small spheres or
polygonal plates.

Here, we consider the motion of highly anisotropic objects such as long slender
needles floating at the air–water interface. Our motivation is to study the effects of the
geometrically induced anisotropy and connectivity (topology) in these problems. The
anisotropy induces orientational effects, while the connectivity introduces constraints
that lead to interesting dynamical effects. We start by considering the case of a single
cylindrical rod floating near an attractive wall, which is sufficient for understanding
the interaction between two floating needles (observed by Gifford & Scriven 1971)
because of the obvious symmetry. We then construct a train of needles by attaching
them end-to-end with perfectly flexible hinges and study the dynamics of such a
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Figure 1. Snap-shots of the complex ‘zippering up’ motion for four connected candles at an
air–water interface near a wall (at the bottom edge of each frame, just out of shot). The
relevant Bond number here is B ∼ 0.5 and the scale bar represents 4 cm.

structure when it is close to a wall. An example of this is shown in figure 1 where four
beeswax candles connected by a thin polymer thread float at an interface between
air and a syrup/water mixture in the neighbourhood of a vertical wall. Due to the
attractive interfacial forces between the train of candles and the wall, the flexible train
lines up next to the wall in a ‘zippering’ motion as a front propagates along it.

While here we will focus only on the simplest possible dynamical problems, the
methods we use may be applied to understanding more generally the motion of flexible
objects at an interface, and allow the construction of two-dimensional macroscopic
analogues of packing processes such as the folding of DNA or proteins, with the
spontaneous packing being a result of surface tension.

2. The capillary interaction between a horizontal rod and a wall
To understand the capillary interaction between a floating cylindrical rod and a

fixed wall (as depicted in figure 2), we will use a simplified theory developed by
Nicolson (1949), which is based on the following physical argument. For small Bond
numbers, i.e. when the floating object’s radius is less than the capillary length so that
capillary forces dominate gravitational forces, the cylinder has gravitational potential
energy because it lies at the top of a local hill (the interface) that is not significantly
changed by its presence. Later work (Gifford & Scriven 1971) used detailed numerical
simulations of the associated free boundary problem to find the attractive force,
although the form of these results in the small Bond number limit was only explained
in terms of the Nicolson approximation subsequently (Chan, Henry & White 1981).

Small deformations of the liquid–gas interface ζ (x, y) when just the wall is present
satisfy the equation

∇2ζ =
ζ

L2
c

(2.1)

where Lc =
√

γ /ρg is the capillary length. In the two-dimensional geometry relevant
here, (2.1) must be solved with the boundary conditions

ζy(0) = −cot θ1, ζ (∞) = 0, (2.2)

so that ζ (y) = cot θ1Lc exp(−y/Lc) where θ1 is the three-phase contact angle for the
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Figure 2. The geometry of a single rod floating near a wall: cross-section showing the physical
parameters of the problem. Inset: a plan view showing the centreline of the rod and the wall.

liquid in contact with the plane (see figure 2). For a cylinder placed at the already
deformed interface, with its axis parallel to the wall and its centre a horizontal
distance y from it, the Nicolson approximation yields the energy of attraction per
unit length as

V (y) = γLc cot θ1BC exp

(
− y

Lc

)
. (2.3)

This may be interpreted as the deformation of the interface ζ (y) multiplied by a
constant whose value depends on the geometry of the floating object and is given
for the cases of a cylinder and a sphere by Chan et at. (1981). Here, B = ρgR2/γ

is the Bond number and C = π(D − 1) + θ2 − sin(2θ2)/2 is a dimensionless constant,
which, when multiplied by cot θ1, determines whether the capillary force is attractive or
repulsive. (It is thus possible to tune this interaction from being attractive to repulsive,
without changing any of the surface chemistry, simply by altering the density of the
cylinder. This is caused by a change in the interfacial shape which in turn is due to the
change in the vertical force balance (between capillarity and gravity). This possibility
appears not to have received much attention in the literature and is only hinted at
by Paunov et al. 1993.) When the rod is inclined at an angle φ to the vertical plane
(see the inset of figure 2 for the geometry) and the rod’s centre is a distance y from
the plane, then the potential energy is modified to

V (y) = ke−y/Lc
sinh((a/Lc) sin φ)

sinφ
(2.4)

where k = 2γL2
c cot θ1BC.

3. Dynamics of a single rod attracted to a wall
We shall use an energy formulation of the problem from the outset writing the

Lagrangian, L, of the system as

L = 1
2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 − ke−y/Lc

sinh((a/Lc) sinφ)

sin φ
. (3.1)
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Here the first two terms correspond to the translational and rotational kinetic energy
of the rod, while the last term reflects the potential energy of (2.4), with m the mass of
the rod, I its moment of inertia and x and y the coordinates of the centre of the rod.
The orientation of the rod is denoted by φ (see figure 2). We model the hydrodynamic
effects by assuming that the motion occurs at low Reynolds number and hence
include the appropriate Stokes drag terms. Such an assumption is reasonable since a
typical Reynolds number (based on a rod radius R = 1 mm, a velocity of 1 mm s−1

and a kinematic viscosity ν =10−4 m2 s−1) is Re = 0.01. These viscous effects are most
conveniently included in our treatment by using a Rayleigh dissipation function, R

(Rayleigh 1945):

R = 1
2
σ‖(ẋ

2 cos2 φ + ẏ2 sin2 φ) + 1
2
σ⊥(ẋ2 sin2 φ + ẏ2 cos2 φ)

+ 1
2
σ◦φ̇

2 − (σ⊥ − σ‖)ẋẏ sinφ cosφ (3.2)

where σ⊥ and σ‖ are the rod’s drag coefficients perpendicular and parallel to its axis
and σ◦ is the drag coefficient associated with rotation about an axis perpendicular to
the interface. The last term in the dissipation function couples the translational degrees
of freedom to the rotational degrees of freedom only in the presence of an anisotropic
drag, and arises purely on the grounds of symmetry (see, for example Happel &
Brenner 1965). However, we have assumed, for simplicity, that the hydrodynamic
effects of the wall and, when we consider trains of connected rods, the other rods
are sufficiently small to be ignored. In a more careful analysis the dependence of the
drag coefficients σ on these other effects would have to be included although this will
enter via a weak logarithmic factor. The Rayleigh dissipation function accounts for
the drag on the rod and modifies the Euler–Lagrange equations to

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+

∂R

∂q̇
= 0 (3.3)

where q is a generalized coordinate. The equations of motion are then

mẍ = −ẋ(σ‖ cos2 φ + σ⊥ sin2 φ) + ẏ(σ⊥ − σ‖) sinφ cos φ,

mÿ = − k

Lc

e−y/Lc
sinh((a/Lc) sinφ)

sinφ
+ ẋ(σ⊥ − σ‖) sinφ cosφ − ẏ(σ‖ sin2 φ + σ⊥ cos2 φ),

I φ̈ = k cot φe−y/Lc

(
(a/Lc) cosh((a/Lc) sin φ) − sinh((a/Lc) sinφ)

sinφ

)
− σ◦φ̇, (3.4)

These equations of motion are solved numerically (using the adaptive step routine
in Mathematica) once a short-range repulsive force is used to prevent the rod from
moving through the wall. For simplicity, we adopt an exponential repulsion of the
form A1 exp(−A2(y − R)) where A1,2 are arbitrary parameters with the proviso that
A2 	 1 to ensure that the effect of the repulsive force is confined to a boundary layer
near the wall. Assuming this form for the force law means that the equations of
motion are altered by a term very similar to the capillary interaction, but using a
more conventional Lennard–Jones potential does not alter the results.

We pause to consider a possible inconsistency since we have assumed a Stokes
drag law but have at the same time included the inertia of the particle. This is not a
problem if the ratio of the fluid inertia to the particle inertia, α,

α =
ρU 2

ρsU 2
=

ρ

ρs

, (3.5)



The wall-induced motion of a floating flexible train 93

Figure 3. Experimental results and simulations for the case of a single rod as it zips up
against a wall. Experiments were performed with two different water–glycerol mixtures: ρ =
1180 kgm−3, γ = 0.0652N m−1, µ= 0.0225 Pa s, B = 0.40, θ1 = 95◦ and θ2 = 86◦ corresponding
to the data � and �; and ρ = 1110 kg m−3, γ = 0.047 Nm−1, µ= 0.0158 Pa s, B = 0.52, θ1 = 35◦

and θ2 = 99.5◦, corresponding to the data �.

is small. In many of the practical situations in which self-assembly occurs, the floating
objects have a density much larger than that of the surrounding fluid (typically a
metal component floating on water), so that α ∼ 0.1. In these situations, our approach
is valid and we may consistently include the particle inertia but ignore the fluid
inertia because of the large density differences. In other situations, when the ratio
ρ/ρs ∼ O(1), the inclusion of inertia simply gives rise to an initial layer at small
time, t � tin ∼ m/σ⊥, during which inertia is important; over longer times viscous
effects dominate. With the parameters typical for the experiments considered here
(and shown in figure 1) we have tin ∼ 0.1 s so that the effects of inertia are short lived
provided that the mass of the rods is small.

To determine the drag coefficients of a rod at the interface and hence calibrate
the theory, we carried out experiments with two different liquids by floating small
lengths of thermo-shrink tubing (a = 0.015 m, R = 0.0015 m and ρs = 463 kg m−3) at
the liquid–vapour interface near a fixed wall. These rods were placed with one end in
contact with the wall so that we observed just the relatively slow zipping motion. The
experimental results showing the distance of the free end of the rod from the wall,
yend , as a function of time are presented in figure 3 along with the results obtained
by solving the equations of motion (3.4) numerically with an effective drag of the
rod at the interface (since it is not completely immersed in either phase). The value
of this effective drag coefficient is in the range [0.4, 0.45] times the drag of the same
rod when completely immersed in the liquid. This value of an effective drag seems to
accord with our intuition: since the rod floats a little less than half-immersed in the
bulk it should have roughly half the associated drag.

4. Train dynamics
Having thus calibrated our model, we now study the case of many rods connected

by a hinge that has no resistance to bending but is of a fixed length (together
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constituting a flexible, inextensible train). We shall consider the dynamic capillary
interaction between a wall and the train by neglecting the capillary interaction
between the constituent rods and assuming instead that the effect of the wall is
dominant. That this is the case in most experiments can easily be seen since the train
will zipper-up against the wall rather than spontaneously fold in on itself, but is
also explained by the analytical work of Chan et al. (1981): the capillary interaction
between two horizontal cylinders at an interface scales like the product of the radii
squared and so is insignificant compared to the wall–cylinder interaction given by (2.3)
which scales like the radius squared. The dynamics of a train is interesting primarily
because of the non-capillary interactions that arise as a result of the inextensible
connection between the rods.

To facilitate the inclusion of this constraint, we adapt the Lagrangian used in the
last section by adding terms of the form (3.1) together, where the positions and
orientations of the rods are given by (xi, yi, φi) (i = 1, . . . , n). The constraints are
accounted for using the technique of Lagrange multipliers, subject to the condition
that the Lagrangian varies in a direction orthogonal to the gradient of the constraints.
The integration of the equations of motion that result is only complicated by the
presence of unknown Lagrange multipliers appearing in them. To deal with this,
we adopt an approach similar to that used in the investigation of the dynamics of
coupled pendulums by Ruhoff, Præstgaard & Perram (1996).

The constraints can be written in the form f (q) = 0, where q is the vector describing
the positions and orientations of the rods. In particular, f is given by

f2i−1(q) = 0 = q3i+1 − q3i−2 − a(cos q3i + cos q3i+3), (4.1)

f2i(q) = 0 = q3i+2 − q3i−1 − a(sin q3i + sin q3i+3), (4.2)

for i = 1, . . . , n. (Because we have adopted coordinates (xi, yi, φi) for each rod the
constraints take the slightly long-winded form given here. The use of these coordinates
makes other calculations simpler and so is adopted throughout). In general, we may
write the equations of motion as

q̈ = M−1(∇qV − Jλ − FD) (4.3)

where M is the diagonal matrix whose elements consist of the mass of the rod and its
moment of inertia, J is the Jacobian matrix of the constraints Jiα = ∂fα/∂qi , λ is the
vector of Lagrange multipliers and the added term FD is the Stokes drag term given
by the added Rayleigh dissipation term. By the chain rule we also have that

0 =
d2fα

dt2
=

3n∑
j=1

Jjαq̈j +

3n∑
i=1

3n∑
j=1

q̇ i

∂Jiα

∂qj

q̇j . (4.4)

Substituting into this the expression for q̈ from (4.3) yields an expression for the
unknown Lagrange multipliers λ. After substituting these values back into (4.3) the
numerical integration of the equation of motion is now relatively simple, although at
each time step we must project the solution back onto the constraint surface. This is
done using the constraint correction scheme of Ruhoff et al. (1996).

5. Numerical results
The space of possible initial train configurations is immense, so the results presented

here are by no means exhaustive but merely exhibit some of the interesting dynamic
phenomena that are observed. In fact, we shall only address three obvious questions
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Figure 4. For a train consisting of ten rods, the end-of-rod distance is shown as a function of
time. Insets: schematic of the initial configuration of the rods with circular dots representing
the hinges. In (a) the propagation of the inversion wave is evident. The thick black line
overlaying the lower portion of this graph is a schematic representation of the train seen from
above at τ = 500 with arrows showing the directions of rotation for the rods most involved
in flicking. In (b) we see that rods on the shorter segment of the train (dashed line) zip up
against the wall much later than the corresponding rods on the longer segment (solid line).
The parameters in these graphs are: α = 0.1, B = 0.049, Re ∼ 10−2, a/R = 20, θ1 = 1.3 rad and
θ2 = 1.4 rad.

that might be asked about the dynamics of a single train: (a) What is the nature
of the zipping motion for this extended system? (b) Does a train that, when viewed
from above, initially resembles a monotonic function of the distance along the wall
remain monotonic for all time? (c) Do those ends of the train that start closest to
the wall always hit the wall first? We shall see that the answer to the first leads to an
interesting question of front propagation, while the answer to the last two questions
is in the negative even for relatively simple initial conditions.

Our numerical experiments use a variety of different initial configurations (although
we always started the rods from rest). Initially we studied long trains with several
hundred constituent rods but found that the results obtained are qualitatively very
similar to those obtained with trains of up to ten rods.

The numerical results are presented in dimensionless terms with lengths being
scaled by the radius of the rod R rather than the capillary length Lc and times being
scaled by R/vtyp , where

vtyp =
γLc cot θ1BC

4πµa

(
ln

2a

R
− 0.5

)
; (5.1)

vtyp is a characteristic velocity obtained from a naive balance between the perpen-
dicular Stokes drag on the rod and the capillary force (scaled as the potential V

divided by the capillary length, Lc).

5.1. Non-monotonicity

Starting with a train at rest where all but one of the rods are parallel and one of the
end rods is at an angle to the wall (see the inset of figure 4a), we see immediately
that monotonicity is not preserved. Plotting the distance of the end points of each
rod from the wall, as in figure 4(a), we see that successive rods have one end flicked
out as their predecessor is attracted to the wall but that the other end stays roughly
where it was. This monotonicity breaking is propagated along the train in a discrete
‘inversion’ wave.
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The explanation for this effect is simple and is shown pictorially in the schematic
configuration of the rod superimposed on the numerical results in figure 4(a). When
one rod is in the final rotating motion towards the wall (i.e. one of its ends has
already touched the wall), the rod connected to it is flicked out because of the torque
associated with the tension that keeps this rod in contact with the rotating rod. This
flicking of the second rod in turn affects the third rod since one of its ends is also
flicked, although the effect is smaller at this point since the tension acting at the
hinges is smaller. This explanation suggests that reducing the viscosity of the medium
will reduce this effect, while increasing it will enhance the effect, as is observed
numerically.

We expect from this explanation for the flicking motion that the initial distance of
the rods from the wall is of crucial importance in determining the form of the wave
and even whether it propagates at all. Indeed, we should expect that if the horizontal
portion of the initial shape is closer to the wall then the size of the flick will decrease
as there is not so much necessity for the first rod to rotate as it zips up. This is indeed
observed and by decreasing the distance of the horizontal portion from the wall
sufficiently, we can cause the wave to disappear at arbitrary points along the train.

The discrete wave observed in these numerical results has a wave speed associated
with it dependent on the various parameters of the system. Although such a concept
is ill defined because of the discreteness, there remains the characteristic velocity vtyp

used in the non-dimensionalization of time, and so we conclude that vwave ≈ vtyp . The
precise value of the wave velocity will be dependent upon the exact form of the initial
conditions but the above estimate is indeed a good one (to within a factor of 2) for a
range of values of the parameters. The dependence on the initial configuration arises
because of the dependence of the drag force on the orientation of the rods. The fact
that this wave is reproduced in simulations where the density ratio α ∼ O(1) (and
hence inertia is negligible in all but a very short initial layer) is also confirmation
that the front is a result of the geometry of the situation, the attractive force and the
viscosity of the liquid, rather than particle inertia.

5.2. Non-preservation of order

To illustrate that the rods do not necessarily touch the wall in the order we might
expect, we start with the train in a parabolic shape, consisting of two unequal
segments joined by a horizontal rod. The shorter segment consists of four rods while
the longer segment consists of five and so has one rod closer to the wall initially than
the shorter segment (see the inset of figure 4b). In figure 4(b) we see that the rods
on the longer segment touch the wall before some of their counterparts on the other
segment even though they were initially further away. This is clearly a manifestation
of the inextensibility constraint: the tip of the longer segment touches the wall first
and then pulls the rest of that segment with it helping them to beat their counterparts
on the shorter segment.

6. Experimental results
Having seen the behaviour predicted by the simple model presented above, we now

turn to the original experiments that motivated this study. Returning to figure 1,
we see that there is qualitative agreement between the observed phenomena and the
model results. In particular, we see snapshots of the propagation of the inversion
wave and also that the rightmost rod, despite starting close to the wall, zips up last.
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Figure 5. The distance–time graph of the ends for a train consisting of four rods. The
theoretical results (solid lines) are compared with experimental values (dashed lines). The
parameter values used in the model were θ1 = 99◦, θ2 = 80◦, B =0.4 and α =2.55. Inset:
schematic of the initial configuration of the rods with circular dots representing the hinges.

To check some of the predictions of the model, trains consisting of around five
rods were fabricated (initially the trains contained up to ten rods but these quickly
disintegrated owing to the delicate strand of polymer connecting them). The rods were
cut from small sections of thermoshrink tubing and connected by a thin (diameter
∼ 10 µm) very short polymer thread, which acted as a flexible hinge. The trains
were floated at the interface between a 2:1 glycerol/water solution and air (so that
γ = 0.0652 N m−1 and µ =0.0225 Pa s; the effective drag coefficients on the partly
immersed cylinder are assumed to be 0.4 times the drag coefficients when the cylinder
is completely immersed).

The fabricated train (finally consisting of four rods) was floated with one end in
contact with the wall. The experimental results are shown in figure 5 and compared
to the predictions of the model there. Although the comparison is not particularly
favourable quantitatively, we see that the qualitative trends are similar to those
predicted by our model. The main difference between theory and experiment is that
the evolution of the zipping is delayed somewhat in reality, which is most likely a
manifestation of the way the rods are connected to each other. For example, the
polymer thread which connects the rods is almost certainly is not the perfect hinge
assumed in the model; it has a finite length and a small but finite bending stiffness.

7. Discussion
In obtaining the equations of motion (3.4), we made a number of assumptions whose

validity we shall consider briefly. A typical Reynolds number here is Re = 0.01 (based
on a rod radius R = 1 mm, a velocity of 1 mm s−1 and a kinematic viscosity ν = 10−4

m2 s−1, which is 100 times that of water) and so the assumption of low Reynolds
number is reasonable. We also assumed that the drag of rods at an interface is of
the same form as the drag of the rod within the bulk fluid but with a lower effective
viscosity. To remove this assumption an analysis similar to that of Danov, Dimova
& Pouligny (2000) for a rod at an interface would be required. We also used the
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Nicolson approximation to calculate the interaction between the cylinder and the wall.
In a more refined analysis an approach similar to that of Gifford & Scriven (1971)
could be used to calculate the interaction force numerically which would liberate our
analysis from the restriction that B � 1. Finally, the dynamics of the contact line on
the rods have been ignored as has any contact angle hysteresis. Since the surface of
the rods is rough, the contact line may well be pinned (as appears to be the case from
informal observations) and so this assumption is also reasonable.

Without the above assumptions, our simple analysis would founder. The naive
model presented here, however, appears to encapsulate the essential physics of the
problem since it has allowed us to understand the results of simple experiments
qualitatively and, to a degree, quantitatively. Within our formulation, many interesting
questions remain to be answered such as the role of self-interaction and the dynamics
of a flexible hair interacting with a wall. Another possibility is the modelling of what
might be termed ‘Janus trains’ consisting of alternate rods which attract/repel the
wall (and are thus reminiscent of the Janus beads studied by Ondarçuhu et al. 1990).
Experimentally this could be achieved in two ways: either by coating the sides of the
rods differently so that one type is hydrophilic and the other hydrophobic; or rods
of different density would cause different meniscus curvatures leading to analogous
effects.
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of Trinity College. H.Y.K. was supported by a collaborative grant from the Royal
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