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We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that
separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an
evolution equation for its motion, accounting for the effects of elastic bending, viscous lubrication, and
body forces. We then analyze various steady and unsteady problems for the sheet, such as peeling,
healing, levitating, and bursting, using a combination of numerical simulation and dimensional analysis.
On the macroscale, we corroborate our theory with a simple experiment, and, on the microscale, we
analyze an oscillatory valve that can transform a continuous stream of fluid into a series of discrete
pulses.
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FIG. 1 (color online). A schematic of the system and an
image of a simple experiment showing a propagating peeling
front in a plastic shim on a layer of glycerine. Dark solid lines
indicate experimental data; dashed lines are the result of
solving (7) and (8) numerically. These plots show a snapshot
in time as the plastic peels off the underlying substrate.
Experimental parameters are �f � 1:2 g=cm3, � � 10 g=
cm s, Q � 3:3 cm2=s, E
8:3�1010 dynes=cm2, b 
 0:1 mm,
�� � 5 g=cm3. This corresponds to Hg � 2:0 cm, Lg �

12:0 cm, and G � 283:2.
We have all had the experience of the runaway trans-
parency in the midst of a seminar; one that slides off the
projector by riding on a thin film of air before coming to
rest as far away from the speaker as possible [1]. The basic
mechanism responsible for this event is the lubricating
effect of a thin fluid film [2–4]. This mundane situation is
hardly unique and is paradigmatic of many industrial
processes involving moving tapes, paper, and textiles
[5] and in small scale biological and microelectrome-
chanical systems (MEMS) [6–8]. In all of these situ-
ations, the competition between the elastic and fluid
forces eventually leads to effects such as the surly behav-
ior of the unruly transparency. These problems are ana-
logs of free-surface flows in hydrodynamics that arise in
many applications (see [9], and references therein) but are
qualitatively different owing to the presence of the elastic
sheet.

An experimental realization of this class of problems is
exemplified in Fig. 1. A flexible sheet of plastic is
clamped at the left slightly above a rigid floor; when
glycerine is pumped in from the lower left, the plastic
sheet lifts off and balloons as a peeling front advances to
the right. Following a short transient, the front moves at
constant velocity and the sheet eventually lifts off, com-
pletely supported by the fluid. In this Letter, we will focus
on some of the simplest problems motivated by this
example, both on the macroscale and microscale using
an asymptotic description of the ‘‘elastohydrodynamics’’
of fluid-lubricated elastic sheets.

We start by considering the two-dimensional dynamics
of a fluid-lubricated elastic sheet of thickness b and
length L (L � Hg � b, where Hg is a typical gap thick-
ness), density �s, Young’s modulus E, Poisson ratio �, and
bending stiffness B � Eb3=12�1 � �2� in a geometry
shown in Fig. 1. The intercalating incompressible fluid
of density �f and viscosity � satisfies the equations of
momentum and mass conservation:
0031-9007=04=93(13)=137802(4)$22.50 
�f�ut � u � ru� � �rp��r2u� �fg; (1)

r � u � 0; (2)

where p is pressure, u � �u; v� is the fluid velocity, and
g � �0;�g� is gravity. Along the rigid floor y � 0, the
fluid does not slip or penetrate the solid so that ujy�0 � 0,
while along the elastic sheet y � h�x; t�, the no-slip con-
dition reads ujy�h�x;t� � 0 and the kinematic boundary
condition reads ht � ujy�hhx � vjy�h. Here and else-
where subscripts denote derivatives. Finally, continuity
of traction normal to the center line of the elastic sheet
requires that
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n ��f �n�
Eb�1���

�1����1�2��
�hxx�Bhxxxx��sbhtt�f�h�:

(3)

Here �f � �pI���ru�ruT� is the fluid stress ten-
sor, t � �1 � h2

x�
�1=2�1; hx� and n � �1 � h2

x�
�1=2��hx; 1�

are the tangent and outward normal to midplane of the
elastic sheet, � is the in-plane elastic strain and
Eb�1���

�1����1�2���hxx is the contribution of the in-plane tension
to out-of-plane forces, Bhxxxx is the contribution due to
out-of-plane bending, �sbhtt is the inertia of the sheet,
and f�h� is a body force (per unit area) acting on the sheet.
For the example shown in Fig. 1, f�h� � ���gb �

���s � �f�gb is the buoyancy-corrected weight of the
sheet, while for the microscopic situation that we will
treat later, f�h� � ��h� is the disjoining pressure due to
van der Waals forces, although we note that gravity and
van der Waals body forces will never appear together in
physical situations. We have also assumed the sheet to be
weakly tilted from the horizontal so that typical gap
thicknesses are much smaller than characteristic bending
length scales and hx � 1. We quantify this by first noting
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that the horizontal length scale Lg 
 �Eb3=jf�h0�j�
1=3 is

set by the competition between bending and the external
body force, and the vertical length scale Hg �

��QLg=jf�h0�j�
1=3 is set by the competition between the

external body force and viscous lift, where Q is the
average flux in the gap. Furthermore, the horizontal ve-
locity scale is U � Q=Hg, while the vertical velocity
scale is V � �U, where � � Hg=Lg � 1. Using these
scales, we define the dimensionless variables x̂ � x=Lg,
ŷ � y=Hg � y=�Lg, û � u=U, v̂ � v=�U, t̂ � Ut=Lg �

Qt=LgHg, and p̂ � p=P � p=f. Substituting the scaled
variables into (1)–(3), with f � ��gb, we get (on drop-
ping the hats)

�2Re�ut�uux�vuy���px��2uxx�uyy;

�4Re�vt�uvx�vvy���py��4vxx��2vyy��G;

ux�vy�0 (4)

subject to the boundary conditions ujy�0 � ujy�h �

vjy�0 � 0, vjy�h � ht, and
�pjy�h�

�
2�2

1��2h2
x
�vy�hx�uy��2vx���2h2

xux�
�
y�h

�
�1���LgHg

�1����1�2��b2�hxx�
�hxxxx

12�1��2�
��3�sRe

��G
htt�

H3
g

�QLg
f�h�:

(5)
Here Re � QLg�f=�Hg is the Reynolds number and G 

�fgH3

g=�Q is the ratio of fluid hydrostatic pressure to
viscous stresses. For an acetate sheet skimming over a
table on a lubricating layer of air, the body force f �
���gb, b� 10�2 cm, E� 1010 dynes=cm2, �s �
1 g=cm3, �� 10�4 g=cm s, �f � 10�3 g=cm3, U�
10 cm=s, so that Lg � 10 cm, Hg � 0:3 mm, G � 1, ��
10�3, Re � 103 (note that the scaled Reynolds number
�2Re � 10�3); thus both fluid and solid inertia are unim-
portant to leading order. In addition, provided the sheet
has a free end and is sufficiently short [10], we can drop
the �hxx term in the normal stress boundary condition,
further simplifying the analysis.

Using the fact that � � 1, we look for a solution to (4)
and (5) of the form u � u0�x; y� � �u1�x; y�, v �
v0�x; y� � �v1�x; y�, p � po�x; y� � �p1�x; y�, etc., and
find that, to order O��2�,

u 

1

2
pxy�y� h�;

p 

H3
g

�QLg
f�h� � �G�h� y� �

�hxxxx
12�1 � �2�

:
(6)

Substituting these results into the depth-integrated con-
tinuity equation ht � �

R
h
0 udy�x � 0 yields a single non-

linear evolution equation for the transverse motion of the
elastic sheet
ht �
�
12

�
h3hxxxxx

12�1 � �2�
�Gh3hx �

H3
g

�QLg
fx

�
x
� 0: (7)

This equation, valid in the limit of a thin fluid-filled gap,
is similar to those seen in the context of free-surface
flows [9], except for the term arising from elasticity,
and represents a tremendous simplification from the par-
tial differential equations that describe the coupled mo-
tion of the sheet and fluid. To complete the formulation of
the problem, we need an initial profile and six boundary
conditions. Motivated by the experiment shown in Fig. 1,
for a clamped-free sheet, the appropriate boundary con-
ditions are

h � h0

hx � !0

q�h; hx:::� � 1

9>>=
>>; at x � 0;

hxx � 0

hxxx � 0

p � �G
2 h

9>>=
>>; at x � L=Lg; (8)

where q�h; hx; . . .� �
R
h
0 udy is the fluid flux. The first

three boundary conditions correspond to a prescribed
height, slope, and fluid flux at the clamped end x � 0,
while the last three correspond to the condition of zero
force, zero torque, and a matched pressure at the free end.
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Solving the system (7) (with fx � 0) and (8) numeri-
cally using a finite difference method, we find that the
numerical solution matches the experimentally observed
transient peeling profiles (Fig. 1) with no adjustable pa-
rameters. In Fig. 2(a) we show the evolution of the peel-
ing traveling wave. Although these peeling waves are
known to exist in the membrane-tension dominated re-
gime [6], here they are dominated by bending and are thus
qualitatively different. In the inlet region [roughly x � 0
to x � 4 in Fig. 2(a)] bending and hydrostatic forces
balance each other so that Eb3�H=L4

entry � �g�H, which
yields a scaling law for entrance length

Lentry � Lg�G��1=4: (9)

In the central region [roughly x � 4 to x � 35 in
Fig. 2(a)], the membrane is relatively flat, and bending
does not play a prominent role. The dominant balance is
between viscous stresses and hydrostatic pressure so that
�fghlev=Lg ��Q=h3

lev, leading to a scaling law for the
levitation height

hlev �Hg��G��1=4: (10)

The scaling laws (9) and (10) are confirmed over a range
of parameter values as shown in Figs. 2(b) and 2(c).
Finally, in the outlet region, there is a small tail where
the sheet is slightly curved to accommodate the free-end
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FIG. 2. (a) The evolution of a peeling front obtained by
solving (7) and (8). Successive profiles are shifted vertically
(thus time increases from bottom to top in the plot). (b) The
entry length Lentry as a function of the dimensionless hydro-
static pressure G; the line is the scaling law (9). (c) The
levitation height hlev as a function of �G; the line is the scaling
law (10). (d) The velocity of the peeling front vf as a function
of G=�; the line is the scaling law (11). In each case, the points
correspond to the results of numerical simulations of (7) and
(8). In (d), points deviate from the predicted scaling at small G
where the assumption that hydrostatic effects dominate breaks
down.
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condition; the horizontal and vertical extent of this zone
scale with Lg and Hg, respectively, although there is a
weak dependence on other parameters as well.

While these length scales characterize the steady lev-
itating sheet, the transient behavior leading up to this
involves a peeling front moving at a velocity, vf, which
is constant as long as the front is sufficiently far from the
inlet and the exit. At the front, the viscous power dissi-
pated (per unit width) must be balanced by the work done
against the hydrostatic load so that ��vf=hlev�

2hlevLg �

�fgLg�Lp�hlev=Lg��vf. In dimensionless terms, this
yields

vf
U

�

�
G

�

�
1=2

: (11)

This scaling law is confirmed numerically as shown in
Fig. 2(d). As expected, the scaling breaks down for small
G when hydrostatic forces no longer play a dominant role
in the dynamics.

Having used this simple macroscopic setting as a test-
bed for our theory, experiment, and numerical simula-
tions, we now turn to a microscale phenomenon moti-
vated by fluid-actuated switches and valves in MEMS and
microfluidics [8], where van der Waals forces can poten-
tially play a role. We consider the geometry shown in
Fig. 1, but now set the body force to be the disjoining
pressure between the elastic sheet and the rigid surface
with f � ��h� � 1

6# �Ar=hm � Aa=hn� in (3), where Aa

and Ar are the attractive and repulsive Hamaker con-
stants, respectively; here n � 3 and m � 9 corresponding
to the standard f6; 12g Lennard-Jones potential.
Following the asymptotic reduction procedure that led
to (7) for the macroscopic problem now yields

ht �
�
12

�
h3hxxxxx

12�1 � �2�
�A

hx
h
�R

hx
h7

�
x
� 0; (12)

where A � 3
6# �Aa=�QLg� and R � 9

6# �Ar=�QLgH
6
g�

are rescaled Hamaker constants, with the length scales
Hg; Lg defined using f � ��h0� instead of f � ��gb.
Solving (12) subject to the boundary conditions (8), with
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FIG. 3. (a) Bursting events driven by attractive van der Waals
forces. As in Fig. 2(a), successive profiles are shifted vertically.
G � 0, � � 0:02, R � 0:1, A � 103, and Hg � 0:1. (b) Scaling
law for the time between bursting events tburst when attractive
van der Waals forces dominate. Points represent data from
numerical simulations of (7) and (8); the line corresponds to
the scaling law (13).
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FIG. 4. (a) Top panel shows an alternative representation of
the data in Fig. 3(a). Grey scale indicates gap thickness and
time increases along the vertical axis. The sharp horizontal
lines illustrate the rapid time scales associated with gap closure.
The bottom panel shows the vertical position of the end of the
membrane as a function of time. (b) Expanded view of the
white box in (a) and associated time series for the vertical
position of the end of the membrane illustrating venting. Time
has been shifted by tshift � 2500 to coincide with the first spike
in (a). (c) Expanded view of the white box in (b) showing
healing. Time has again been shifted by tshift � 2500. The
membrane zips shut from left to right expelling fluid.
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pjx�L=Lg
� �H3

g=�QLg���h�, numerically we find two
types of behavior. When repulsive effects dominate, the
profile evolves to a steady state with gap thickness in-
creasing monotonically in x. However, when repulsive
and attractive effects are of the same order of magnitude,
we observe time periodic bursting events as illustrated in
Fig. 3(a). In this popping regime, the peeling and healing
events are very asymmetric; peeling is relatively slow,
while healing is extremely rapid. The peeling occurs with
a roughly constant velocity when the front is sufficiently
far away from the inlet or the exit.When the front reaches
the exit, the sheet bursts open, releasing a small amount
of fluid [Fig. 4(a)]. The high pressure underneath the
membrane is vented [Fig. 4(b)] and subsequently
van der Waals forces cause the sheet to rapidly zip shut
[Fig. 4(c)]. This temporal asymmetry can be easily under-
stood in terms of the characteristic gap thickness in the
neighborhood of the propagating front. In the peeling
case, fluid must be squeezed into a thin gap, slowing
the front; in the healing case, fluid may flow essentially
unobstructed into the far reservoir.

The amount of fluid released during each bursting event
is dictated by the speed of the peeling front, vp. To
determine this, we note that the thickness of the smallest
possible gap determined by the balance between attrac-
tive and repulsive van der Waals forces is given by Hp �

�R=A�1=6, while a characteristic width of the peeling
front Lp is set by balancing viscous and bending stresses,
so that �Q=H3

p � Eb3Hp=L
5
p, which yields �Lp=Lg�

5 �

��Hp=Hg�
4. Finally, at the front itself the power dissi-

pated (per unit width) due to viscous effects must be
balanced by the work done by the attractive
van der Waals potential, so that ��vp=Hp�

2HpLp �
A
H3
p
�
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�Lp�Hp=Lp��vp. Combining this with the condition that
the time between bursting events tburst is essentially a
filling time, i.e., tburstvp � L, we find that vp=U�

A�H9
g=�H9

p�
1=5; hence

tburst �

�
L5n5R3=2

A5�3=2H8
gL

6
g

�
1=5

: (13)

This scaling law is confirmed in Fig. 3(b) over a certain
range of parameter values but breaks down as A be-
comes small and the attractive forces become relatively
weak. Choosing a typical value for the attractive
Hamaker constant of Aa � 10�13 dyne cm, a flow rate of
U� 1 cm=s, Hp � 100 nm, and Hg � 100 �m, gives a
bursting time scale of tburst � 0:1 s, suggesting that such a
design might be experimentally feasible.

We conclude with a brief discussion of various general-
izations of our ideas. These include the free motion of a
falling sheet of paper, which requires an additional equa-
tion for the horizontal velocity of the center of mass of
the sheet, the touch down of a sheet of paper (which
admits a similarity solution), as well as generalizations
to account for solid inertia to understand the flutter of the
sheet in the context of voice and song production, all of
which are subjects of current study.
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