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This report describes the spontaneous folding of flat elastomeric
sheets, patterned with magnetic dipoles, into free-standing, 3D
objects that are the topological equivalents of spherical shells. The
path of the self-assembly is determined by a competition between
mechanical and magnetic interactions. The potential of this strat-
egy for the fabrication of 3D electronic devices is demonstrated by
generating a simple electrical circuit surrounding a spherical cavity.

folding � microfabrication � 3D structure � soft lithography � soft
electronics

The strategies used to form 3D micro- and nanostructures in
cells and by humans differ. Proteins, RNAs, and their

aggregates, the most complex, 3D molecular structures in nature,
form by the spontaneous folding of linear precursors (1). The
ubiquity of this strategy reflects the efficiency with which the cell
synthesizes linear precursors by sequential formation of covalent
bonds. Microelectronic devices, the most complex 3D structures
generated by humans, are fabricated by stacking and connecting
planar layers (2). This strategy is dictated by the availability of
highly developed methods for parallel microfabrication in 2D
and the absence of effective, general methods for fabrication in
3D (3).

Folding of connected, 2D plates [using robotics (4) or spon-
taneous folding (5–9)] can yield 3D microelectromechanical
systems (MEMS) and microelectronic devices. We (10, 11) and
others (4, 12) have explored a number of routes to small 3D
shapes based on self-assembly. These strategies are still early in
their development.

Here, we explore a new strategy for formation of 3D objects
that combines the advantages of planar microfabrication with
those of 3D self-assembly. Our approach comprises four steps
(Fig. 1a): (i) cutting the 3D surface of interest into connected
sections that ‘‘almost’’ unfold into a plane (unpeeling a sphere as
one unpeels an orange is an example); (ii) f lattening this surface
and projecting it onto a plane; (iii) fabricating the planar
projection in the form of an elastomeric membrane patterned
with magnetic dipoles; and (iv) allowing this patterned mem-
brane to fold into an ‘‘almost-correct’’ 3D shape by self-assembly.
This strategy offers the potential to transform easily patterned,
functionalized planar sheets into 3D structures and devices. It
also raises the problem of designing and generating stable 3D
structures by decomposing and projecting these structures into
2D shapes and then balancing the shapes of 2D cuts, the
placement of magnetic dipoles, and the mechanical character-
istics of the membrane.

Converting sheets into 3D objects by folding and creasing is a
very old, remarkably interesting, and still incompletely resolved
problem in applied mathematics (13–16). The inverse problem—
mapping the surface of a 3D shape (specifically, the surface of
the Earth) onto a flat sheet—has been at the core of cartography
since the times of Frisius (1508–1555) and Mercator (1512–
1594). Although it is known that a flat, inextensible surface

cannot fold into a surface that is curved along two orthogonal
axes (17), an exhaustive list of the necessary and sufficient
conditions to fold a planar sheet into a given 3D shape still
remains to be compiled. Theoretical work and modeling have
focused on folding of square sheets without slits (18), on
approximating 3D surfaces with tessellations (19, 20), and on
almost developable conical deformations (21).

Abbreviations: LED, light-emitting diode; PDMS, poly(dimethylsiloxane).
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Fig. 1. Design of flat, planar sheets intended to fold into spherical shells. (a)
Scheme illustrating the general approach explored in this work (see text for
details). The magnetic dipoles patterned on the elastomeric sheets are shown
with arrows. The design parameters we focused on were the 2D shape of the
flat sheets (illustrated in b), the pattern of magnetic dipoles in the folded
structures (illustrated in c), and the shape of the magnetized features (illus-
trated in d).
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Folding a planar sheet into a surface that is curved locally
along two orthogonal axes causes the middle surface of the sheet
to be stretched because of changes in the Gaussian curvature
(22). Because stretching a sheet is energetically more expensive
than bending it, we minimized the geometric incompatibilities
between the planar and the 3D forms by using appropriately
shaped, 2D, soft, elastomeric membranes. We chose magnetic
forces to guide the self-assembly for three reasons: (i) magnetic
interactions are insensitive to the surrounding medium and to
the details of surface chemistry (8); (ii) the distances over which
they act can be engineered to cover a range of sizes (nanometers
to meters); and (iii) magnetic dipoles tend to form stable closed
loops, and these loops are features easily translated into design
rules (23).

Design of 2D Elastomeric Sheets Patterned with
Magnetic Dipoles
Our initial efforts at design have been subjective and empirical.
We tried to achieve a compromise among five factors: (i) the
strain introduced upon folding; (ii) the fidelity with which the
folded sheet reproduced the target structure; (iii) the maximi-
zation of the favorable magnetic interactions; (iv) the ease of
fabrication; and (v) the potential for embedding and intercon-
necting electrical circuit elements.

We explored elastomeric sheets having three different 2D
shapes: an equatorial cut (Fig. 1bi), an orange-peel cut (Fig. 1bii),
and a flower-petal cut (Fig. 1biii). We generated the shapes of
the flat sheets by using a modified version of the software
package UNFOLD POLYTOPE for MATHEMATICA (www.cs.
mcgill.ca��fukuda�download�mathematica). In the original
package, a polytope (specified as a collection of faces and edges)
is unfolded by cutting a number of edges and rotating the faces
around the remaining edges until they all lie in the same plane.
Fig. 2 illustrates the unfolding process for one vertex, D. The new
location, D�, of the vertex, D, is calculated as

EDD��
� CEC
� �EDD� �

�CEC
� �

.

We modified some routines of the software package so that we
could specify the positions of the cuts and avoid mistakes during
the unfolding process. Fig. 3 shows three stages of the unfolding
of this polytope into a 2D pattern comprising six segments
(flower-petal cut; see Fig. 1biii). First, we created a polytope
approximating a sphere. The unfolding started by selecting one
polygon as a center and specifying radial cuts away from it. A tree
of faces was thus generated, with the central polygon located at
the top and the faces at the ends of the cuts located at the bottom

of the polytope. The polygons were then unfolded as shown in
Fig. 3.

We examined three different patterns of magnetic dipoles: the
patterns in Fig. 4 a and e were designed to form spheres
containing closed loops of magnetic dipoles parallel to one
another (Fig. 1ci), the pattern in Fig. 4c was designed to form a
sphere containing six rows of dipoles connecting at magnetically
opposite poles (Fig. 1cii), and the pattern in Fig. 4g was designed
to form a sphere containing three closed loops of dipoles that
cross one another at the two poles at an angle of 120° (Fig. 1ciii).
By optimizing the shape of the magnetized blocks, it was also
possible to use steric interactions between them to stabilize the
folded structures (Fig. 1d).

Results and Discussion
Folding of Elastomeric Sheets. Self-assembly took a different
course in these four cases. The magnetically patterned sheet
shown in Fig. 4a folded into a sphere (Fig. 4b) either during
peeling from the support or after mild agitation for 1–2 min in
water. The equatorial magnetic loop closed first, followed im-
mediately by the loops at the poles. The sheet shown in Fig. 4c
always folded into the structure shown in Fig. 4d but only after
vigorous agitation for 2–13 min in water. The sheet shown in Fig.
4e almost always folded incorrectly when suspended in water:
Sections facing one another in the planar sheet interacted
through their larger magnetic features. This precursor, however,
folded correctly when we guided the self-assembly process by
placing the sheet at the air–water interface (rather then sus-
pending it in water), with the magnets facing down. Gravity
brought sections adjacent in the flat sheet into close contact
out-of-plane, and the sheet formed a sphere after 1–2 min of mild
agitation (Fig. 4f ). The precursor shown in Fig. 4g did not fold
into a sphere under any experimental conditions (Fig. 4h).

Finite-Element Simulation of Magnetic Field Profiles. We performed
a finite-element simulation of the 2D magnetic field profiles of
the unfolded flat precursors and of cross sections of the folded
3D structures by using the software package FINITE ELEMENT
METHOD MAGNETICS (http:��femm.foster-miller.com). We set
the magnetic field intensity at the surface of each magnet to 0.04
T (the experimentally measured upper limit) and treated the
poly(dimethylsiloxane) (PDMS) membrane as a diamagnetic
material with the magnetic characteristics of air (a preset feature
of the software). From an input of the shape of the flat sheet (or
a cross section of the 3D structure) patterned with magnetic
features of given shape, polarity, and magnetic permeability, this
software calculates and maps the magnetic field intensity and the
magnetic field lines. In the output of the simulation, the intensity
of the magnetic field is depicted by color intensity: Higher field
intensity corresponds to a darker shade of gray. The strength of
the interactions between the patterned magnets can be estimated
from the strength of the magnetic field and the number of field
lines in the space surrounding the magnets. Thus, a magnetic
energy minimum corresponds to a map in which the field
intensity and the field lines are confined only to the regions of
high magnetic permeability (i.e., within the magnets) and do not
extend (or extend only to a negligible degree) into the regions of

Fig. 2. Scheme illustrating the unfolding of two adjoining, triangular faces
of a polytope (ABC and ABD) by mapping the point D to point D� in the plane
of the triangle ABC.

Fig. 3. Scheme illustrating three stages of unfolding of a polytope approx-
imating a sphere into a flat surface shaped as the flower-petal cut.
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low magnetic permeability (i.e., in the plane of the elastomeric
membrane, outside of the magnets).

Fig. 5 shows the results of the simulation. In the unfolded
equatorial cut (Fig. 5a), there were significant interactions
between adjacent magnets positioned in the middle of the
segments. No interactions were observed between the magnets
positioned at the tips of the segments and between magnets
positioned in the middle and at the tips of each segment. In the
unfolded flower-petal cut (Fig. 5b), there was appreciable in-
teraction between the magnets positioned in the middle of the
segments. The central region containing six triangular magnets
formed a completely closed ring of magnetic dipoles and showed
no stray field lines extending away from the magnets. There was
no interaction between magnets positioned at the tips of adjacent
sections of the membrane; there was also no interaction between
those magnets and the magnets positioned in the middle of
the segments. Upon folding of both the equatorial cut and the
flower-petal cut, the magnets positioned at the tips of the
segments (Fig. 5e) and the magnets positioned in the middle of
the segments (Fig. 5f ) formed continuous, closed rings of
magnetic dipoles; the field intensity and the field lines in these
areas were confined exclusively within the rings, indicating
minimized magnetic energy of the folded structures.

In the orange-peel cut (Fig. 5c), the simulation showed
interactions only between magnets positioned at the two ends of

the sheet. In a vertical cross section of the folded structure (Fig.
5g), the simulation indicates the presence of an overall net dipole
moment between the two poles.

The flower-petal cut patterned with magnets arranged anti-
parallel to one another (Fig. 5d) did not form a sphere; it folded,
instead, into stable structures comprising groups of two or four
petals (see Fig. 4h). Fig. 5 h and i shows simulations of an
aggregate comprising three pairs of magnetized features and an
aggregate comprising one pair and a group of four magnetized
features, respectively. These aggregates correspond to cross
sections of the polar regions of a sphere formed from the
flower-petal cut shown in Fig. 5d, in which the groups of two or
four magnetized features are separated by a gap of 400 �m. The
simulation shows that the field intensity in these gaps is very low
or equal to zero; the dipoles aggregated in pairs or in a group of
four have formed closed, (magnetically) stable loops. The energy
gain of bringing these small loops into a single loop comprising
all six segments would be insignificant compared with the energy
gain in the case of a flower-petal cut patterned with equatorially
magnetized features (as the one shown in Fig. 5e).

Estimation of the Elastic and Magnetic Free Energy of the Folded
Structures. The process of folding minimizes the sum of the elastic
and magnetic energies of the system: The increase in mechanical
energy that occurs on folding the elastic sheet is balanced by the

Fig. 4. Three-dimensional structures (b, d, f, and h) self-assembled from magnetically patterned sheets (a, c, e, and g). The direction of the magnetic dipoles
in the magnetized, PDMS features is indicated with white arrows. See supporting information, which is published on the PNAS web site, for details of design,
fabrication, and self-assembly of the patterned sheets.
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decrease in magnetic energy as the magnetic dipoles approach
one another. We used the balance of the two energies to estimate
how changing the size of the components and the thickness of the
elastic membrane affects the stability of folded structures. We
compared the magnetic energy gained in bringing non-
interacting magnetic dipoles into the equatorial loop of the
structure shown in Fig. 4 a and b with the elastic energy cost for
bending the sheet around that loop.

To estimate the elastic energy of the system, as a first approxi-
mation we considered only the bending energy, Ub, needed to bend
a sheet of thickness h made of a material with Young’s modulus E
into a cylinder by using magnets of length R placed in the middle
of the segments. Thin elastic sheets are most easily folded by
isometric bending of the middle surface, without stretching it (24);
here, we ignored the contribution of the stretching energy that
arises because of the presence of boundary layers at ridges (25, 26)
and peaks (21, 27). Thus, the elastic energy scales as

Ub � Eh3�2A , [1]

where � � 1�R is the local mean curvature at the center of the
sheet and A � R2 is its area. The elastic energy due to bending
alone is largely independent of the radius of the sphere.

To estimate the magnetic energy of the system, we approxi-
mated the magnetic field generated by permanent magnets of
length L (proportional to the radius of the sphere) and square
cross section b with the field generated by a finite, current-
carrying solenoid (28). The magnetic field, Bisolated, inside each
isolated magnet in the unfolded configuration can be described
as the magnetic field along the axis of the finite solenoid:

Bisolated � M0� z

�z2 � b2 �
z � L

��z � L�2 � b2� , [2]

where M0 is the magnetic strength of the material, z is the
distance from the point at which we measure the field to the face
of the solenoid, L is the length of the solenoid, and b is its radius
(proportional to the width of the magnets). To estimate the
magnetic field, Bring, of the folded configuration, we made the
approximation that the magnetic field inside the ring of magnets
is constant (similar to the field inside a solenoid torus); thus, it
can be expressed (28) as

Bring � 2M0. [3]

Using Eqs. 2 and 3, we can express the change of the magnetic
energy, Um, between the unfolded and the folded configurations
as

Um � M0
2�

V

B ring
2 � B isolated

2 dV , [4]

where the integration is done over the volume, V, of the magnets.
We calculated the magnetic energy difference due to folding
numerically, for the limiting case of L �� b, as

Um � M0
2�

V

B ring
2 � B isolated

2 dV � M0
2 b3tan�1� L

b � . [5]

This rough estimation of the magnetic energy ignores the
shape of the closed ring of magnets (in the structures considered
in this work, the ring is shaped as a polygon and not as a circle),
the variation of the magnetic field away from the main axis of the
solenoid, and the magnetic energy outside the volume of the
magnets. Nevertheless, the scaling of the magnetic energy with
the dimensions of the magnets is largely independent of these
effects.

Using Eqs. 1 and 5, we can then express the balance of the
magnetic and elastic energies as

Um

Ub
�

M0
2 b3tan�1� L

b �
Eh3�2A

. [6]

It is readily apparent that the ratio Um�Ub depends on the
ratios M0

2�E, b�h, and L�b. The ratio M0
2�E describes properties

of the materials used (magnets and elastic sheets) and does not
depend on the dimensions of the folded structure. Using the
ratios b�h and L�b, we can estimate how changing the dimen-
sions of the components and the thickness of the elastic mem-
brane will affect the stability of a folded structure: If the width
and the length of the magnets are rescaled by a factor �, the
thickness of the elastic sheet must be rescaled by the same factor
to preserve the balance of the two energies and, thereby, the
stability of the folded structure.

An important factor that this simple calculation does not take
into account is the possibility of coexistence of several stable, folded
shapes for a given set of parameters. The next step in refining the

Fig. 5. Results of the finite-element simulation of magnetic field profiles of
unfolded, flat patterned sheets (a–d) and cross sections of the corresponding
folded 3D structures (e–i). The magnetic field intensity is represented by the
color intensity: higher intensity corresponds to darker shade of gray. The
scheme is not to scale.
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scaling estimate will include studies of the energy landscape of the
folded structures and the kinetics of the folding process.

Three-Dimensional Electrical Circuit. We used this strategy to gen-
erate elementary 3D electrical circuit (Fig. 6). We fabricated each
section of a sheet having the design shown in Fig. 6a to include an
electrically isolated wire (see supporting information for fabrication
details). This wire connected the cathode and the anode of a LED
to two pairs of solder pads placed at the tips of each section, near

the edge of the membrane; these solder pads were intended to
provide electrical connectivity between LEDs placed on adjacent
sections of the sheet. The solder features (wires and contact pads)
were embedded within the PDMS membrane, with the wires close
to the middle surface of the sheet that is not stretched when rolled
into a cylindrical surface (29, 30) (Fig. 6b). When cutting the sheet
to shape, we cut through the outside edges of the embedded solder
pads and, thus, produced four edges exposing bare solder adjacent
to the magnets at the tips of each section. For self-assembly, we
suspended the sheet in water at 60°C (the melting temperature of
the solder was 47°C) and agitated gently. Within 1–3 min, the planar
sheet folded into a sphere; simultaneously, electrical connections
formed between the six sections by fusion of the drops of molten
solder (Fig. 6c). The heat also restored the electrical continuity of
wires that had broken during bending of the flat sheet. After
self-assembly was complete, and the resulting structure had cooled
to room temperature and dried, we connected one top and one
bottom contact pad to a battery. Fig. 6d shows that all six LEDs
illuminate and demonstrates the continuity of an electrical circuit
that traces a path through all six sections of the structure.

Conclusions
This work describes an intriguing new strategy for formation of 3D
structures starting with 2D sheets and suggests a new route to 3D
electrical circuits. It combines concepts extracted from biology (e.g.,
self-assembly, folding of flexible precursors in 3D, and stabilization
of 3D structures by dipole–dipole interactions) with processes and
objects familiar from the world of man-made fabrication (e.g.,
planar patterning, elastomeric polymer membranes, and formation
of closed loops of magnetic dipoles).

This work also identifies a remarkably interesting problem in
applied mathematics: the analytical design of planar sheets that
can fold into 3D structures with minimized global (magnetic and
mechanical) free energy. Answering the core question—how to
translate a global goal (designing and generating a stable 3D
structure) into local interactions defined by the shape of the 2D
cut, the placement of the magnetic dipoles, and the mechanical
characteristics of the membrane—will require further develop-
ment in both fabrication and applied mathematics.

This approach combines the efficient methods of photo- and soft
lithography for fabrication of flat, patterned surfaces with self-
assembly to form 3D from 2D structures. It can be generalized to
other interactions (e.g., interactions between patterned electrical
monopoles or dipoles, and capillarity) and to a broad range of
materials. This strategy is relevant to the fabrication of ‘‘soft’’
electronics (31) (e.g., displays, thin film transistors, and sensor
skins) and deployable structures (32). The most immediate problem
that should be solved in moving toward applications is to improve
the method of fabrication of the precursor membranes. In principle,
both fabricating the sheet (with embedded electrical components)
and patterning the magnetic dipoles can be accomplished by using
planar microfabrication (33, 34).
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Supplementary Information 

 

1. Design of the 2D shape of the flat, elastomeric sheets. We generated the 

shapes of the flat sheets using a modified version of the software package Unfold 

Polytope for Mathematica1. In the original package, a polytope—specified as a 

collection of faces and edges—is unfolded by cutting a number of edges and rotating the 

faces around the remaining edges until they all lie in the same plane.  Figure S1 

illustrates the unfolding process for one vertex, D. The new location D' of the vertex D 

is calculated as  

||

||
' →

→
→→

=
C

D
CD

CE

DE
CEDE . 

 

 

 

 

Figure S1. Scheme illustrating the unfolding of two adjoining, triangular faces of a polytope—

ABC and ABD—by mapping the point D to point D' in the plane of the triangle CAB. 

We modified some routines of the software package so that we could specify the 

positions of the cuts, and avoid mistakes during the unfolding process. First, we created 

a polytope approximating a sphere. Figure S2 shows three stages of the unfolding of this 

polytope into a 2D pattern comprising six segments (flower-petal cut, see Fig. 2e, g of 

the main text). The unfolding started by selecting one polygon as a center and  
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Figure S2. Scheme illustrating three stages of unfolding of a polytope approximating a sphere 

into a flat surface shaped as the flower-petal cut.  

specifying radial cuts away from it. A tree of faces was thus generated, with the central 

polygon located at the top and faces at the ends of the cuts located at the bottom of the 

polytope. The polygons were then unfolded as shown in Figure S2.   

2. Estimation of the elastic and magnetic free energy of the folded structures. 

In this estimate we considered the folding of a sphere from a precursor shaped as the 

equatorial cut (see Fig. 2a, b of the main text). 

To estimate the elastic energy of the system, as a first approximation we 

considered only the bending energy Ub needed to bend a sheet of thickness h made of a 

material with Young’s modulus E into a cylinder using magnets of length R placed in 

the middle of the segments. Thin elastic sheets are most easily folded by isometric 

bending of the middle surface, without stretching it2; here, we ignored the contribution 

of the stretching energy which arises due to the presence of boundary layers at ridges3,4 

and peaks5,6. Thus, the elastic energy scales as  

AEhUb
23~ κ  (1), 

where κ ~1/R is the local mean curvature at the center of the sheet, and A~R2 is its area. 

The elastic energy due to bending alone is largely independent of the radius of the 

sphere. 
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 To estimate the magnetic energy of the system, we approximated the magnetic 

field generated by permanent magnets of length L (proportional to the radius of the 

sphere) and square cross-section b with the field generated by a finite, current-carrying 

solenoid7. The magnetic field Bisolated inside each isolated magnet in the unfolded 

configuration can be described as the magnetic field along the axis of the finite 

solenoid: 

( ) 
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bLz

Lz
bz

zMBisolated

 (2), 

where M0 is the magnetic strength of the material, z is the distance from the point at 

which we measure the field to the face of the solenoid, L is the length of the solenoid, 

and b is its radius (proportional to the width of the magnets). To estimate the magnetic 

field Bring of the folded configuration, we made the approximation that the magnetic 

field inside the ring of magnets is constant (similar to the field inside a solenoid torus); 

thus, it can be expressed7 as  

02~ MBring  (3). 

Using equations (2) and (3), we can express the change of the magnetic energy Um 

between the unfolded and the folded configurations as  

dVBBMU isolated
V

ringm
222

0 −∝ ∫
 (4), 

where the integration is done over the volume V of the magnets. We calculated the 

magnetic energy difference due to folding numerically, for the limiting case of L>>b, as 
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 (5). 
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This rough estimation of the magnetic energy ignores the shape of the closed ring 

of magnets (in the structures considered in this work, the ring is shaped as a polygon 

and not as a circle), the variation of the magnetic field away from the main axis of the 

solenoid, and the magnetic energy outside the volume of the magnets. Nevertheless, the 

scaling of the magnetic energy with the dimensions of the magnets is largely 

independent of these effects.  

Using equations (1) and (5), we can then express the balance of the magnetic and 

elastic energies as 

AEh
b
LbM

U
U

b

m
23

132
0 tan

κ









∝

−

 (6). 

It is readily apparent that the ratio Um/Ub depends on the ratios M0
2/E, b/h, and 

L/b. The ratio M0
2/E describes properties of the materials used (magnets and elastic 

sheets), and does not depend on the dimensions of the folded structure. Using the ratios 

b/h and L/b, we can estimate how changing the dimensions of the components and the 

thickness of the elastic membrane will affect the stability of a folded structure: if the 

width and the length of the magnets are rescaled by a factor α, the thickness of the 

elastic sheet must be rescaled by the same factor in order to preserve the balance of the 

two energies, and thereby, the stability of the folded structure.  

An important factor that this simple calculation does not take into account is the 

possibility of co-existence of several stable, folded shapes for a given set of parameters.  

The next step in refining the scaling estimate will include studies of the energy 

landscape of the folded structures and the kinetics of the folding process.   

3. Finite-element simulation of magnetic field profiles. We performed a finite-

element simulation of the two-dimensional magnetic field profiles of the unfolded flat 
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precursors and of cross-sections of the folded 3D structures using the software package 

Finite Element Method Magnetic8. We set the magnetic field intensity at the surface of 

each magnet to 0.04T (the experimentally measured upper limit), and treated the PDMS 

membrane as a diamagnetic material with the magnetic characteristics of air (a pre-set 

feature of the software). From an input of the shape of the flat sheet (or a cross-section 

of the 3D structure) patterned with magnetic features of given shape, polarity, and 

magnetic permeability, this software calculates and maps the magnetic field intensity 

and the magnetic field lines. In the output of the simulation, the intensity of the 

magnetic field is depicted by color intensity: higher field intensity corresponds to a 

darker shade of grey. The strength of the interactions between the patterned magnets can 

be estimated from the strength of the magnetic field and the number of field lines in the 

space surrounding the magnets. Thus, a magnetic energy minimum corresponds to a 

map in which the field intensity and the field lines are confined only to the regions of 

high magnetic permeability (i.e., within the magnets) and do not extend (or extend only 

to a negligible degree) into the regions of low magnetic permeability (i.e., in the plane 

of the elastomeric membrane, outside of the magnets). 

Figure S3 shows the results of the simulation. In the unfolded equatorial cut (Fig. 

S3a), there were significant interactions between adjacent magnets positioned in the 

middle of the segments. No interactions were observed between the magnets positioned 

at the tips of the segments, and between magnets positioned in the middle and at the tips 

of each segment. In the unfolded flower-petal cut (Fig. S3b), there was appreciable 

interaction between the magnets positioned in the middle of the segments. The central 

region containing six triangular magnets formed a completely closed ring of magnetic 

dipoles, and showed no stray field lines extending away from the magnets. There was 

no interaction between magnets positioned at the tips of adjacent sections of the 

membrane; there was also no interaction between those magnets and the magnets 

positioned in the middle of the segments. Upon folding of both the equatorial cut and  
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Figure S3: Results of the finite-element simulation of magnetic field profiles of unfolded, flat 

patterned sheets (a-d) and cross-sections of the corresponding folded 3D structures (e-i). The 

magnetic field intensity is represented by the color intensity: higher intensity corresponds to 

darker shade of grey. The scheme is not to scale. 
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the flower-petal cut, the magnets positioned in the middle of the segments (Fig. S3e) 

and the magnets positioned at the tips of the segments (Fig. S3f) formed continuous, 

closed rings of magnetic dipoles; the field intensity and the field lines in these areas 

were confined exclusively within the rings, indicating minimized magnetic energy of 

the folded structures. 

In the orange-peel cut (Fig. S3c), the simulation showed interactions only between 

magnets positioned at the two ends of the sheet. In a vertical cross-section of the folded 

structure (Fig. S3g), the simulation indicates the presence of an overall net dipole 

moment between the two poles. 

The flower-petal cut patterned with magnets arranged anti-parallel to one another 

(Fig. S3d) did not form a sphere; it folded instead into stable structures comprising 

groups of two or four petals (see Fig. S2h in the main text). Figures S3h and S3i show 

simulations of an aggregate comprising three pairs of magnetized features and an 

aggregate comprising one pair and a group of four magnetized features, respectively. 

These aggregates correspond to cross-sections of the polar regions of a sphere formed 

from the flower-petal cut shown in Fig. S3d, in which the groups of two or four 

magnetized features are separated by a gap of 400 µm. The simulation shows that the 

field intensity in these gaps is very low or equal to zero; the dipoles aggregated in pairs 

or in a group of four have formed closed, (magnetically) stable loops. The energy gain 

of bringing these small loops into a single loop comprising all six segments would be 

insignificant compared to the energy gain in the case of a flower-petal cut patterned 

with equatorially magnetized features (as the one shown in Fig. S3c).  

4. Fabrication and self-assembly procedures. Figure S4 summarizes our 

fabrication strategy, illustrated for a membrane having the equatorial cut (see Fig. 2a, b 

of the main text). We spin-casted (spin conditions: 25 s at 470 rpm) the polymer  
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Figure S4: Fabrication and self-assembly of a planar, elastomeric sheet patterned with 

magnetized features. See text for details. 
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precursor (Sylgard 184 from Dow Corning, http://www.dowcorning.com) against glass 

slides treated with (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane (United 

Chemical Technologies, Inc., http://www.unitedchem.com) vapor9. The prepolymer was 

thermally cured for at least 2 hours at 60 °C; the thickness of the resulting PDMS 

membranes was 240 µm. To fabricate the magnetized features, we used the procedures 

of soft lithography as previously described9. Briefly, we prepared PDMS molds 

containing holes shaped as right, regular, triangular prisms and truncated, right, 

rectangular pyramids using replica molding (Fig. S4a). The depth of the holes—

corresponding to the thickness of the magnetized features—was one millimeter. After 

silanizing the molds as described above, we filled the holes with PDMS prepolymer 

containing approximately 70% (w/w) ferrite powder (Hoosier Magnetics, Inc., 

http://www.hoosiermagnetics.com), and covered the molds with silanized glass slides 

(Fig. S4b). We incubated these filled molds for 2 hours in a magnetic field generated 

between two Nd-Fe-B magnets (residual induction 1.23x104 G, from Master Magnetics, 

Inc., http://www.mastermagnetics.com), and, without removing the molds from the 

magnetic field, thermally cured the prepolymer for at least 2 hours at  60 °C. Incubation 

and thermal curing of the PDMS/ferrite mixture in the magnetic field induced 0.03—

0.04 T magnetic dipoles in the features; the orientation of these dipoles corresponded to 

the orientation of the features in the magnetic field (Fig. S4c). We attached the 

magnetized features to the preformed PDMS membranes in the desired pattern 

manually, using PDMS prepolymer as glue (Fig. S4d). After thermally curing the glue 

(30 minutes on a hotplate heated to 80 °C), we cut the membranes to shape using a razor 

blade (Fig. S4e). Self-assembly of the membranes patterned with magnetic dipoles (Fig. 

S4f) occurred either on peeling the membranes from the support on which they were 

fabricated, or required agitation while suspended in a container filled with water or 

while placed at the air/water interface. We performed each self-assembly experiment at 

least 4 times, with indistinguishable results in all cases. 
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5. Fabrication and self-assembly of a spherical electrical circuit. Figure S5 

summarizes the fabrication procedure. We fabricated a PDMS membrane of thickness 

100 µm (spin conditions: 5 s at 500 rpm, followed by 20 s at 1150 rpm) supported on a 

silanized glass slide, as described in the previous section (Fig. S5a). After exposing the 

membrane to an oxygen plasma for 5-10 seconds, we deposited on it a 1-nm thick film 

of titanium (as an adhesion promoter) followed by 15 nm of gold using e-beam 

evaporation10. We defined a pattern of wires and contact pads on the membrane using 

photolithography with positive photoresist (Shipley 1813 from Shipley Company 

L.L.C., http://www.rohmandhaas.com) followed by wet etching using commercial gold 

and titanium etchants (TFA- and TFTN-type, respectively, from Transene, Inc., 

http://www.transene.com) (Fig. S5b). We dip-coated the wires and the contact pads with 

solder (LMA117 from Small Parts, Inc., http://www.smallparts.com, melting 

temperature Tm = 47 °C) as described11. Next, we attached six LEDs (BL-HS136-TR 

from Bright LED Electronics Corp., http://www.brightled.com) onto contact pads 

defined on each wire using rosin-core solder wire (from Kester, http://www.kester.com) 

(Fig. S5c). We covered this patterned membrane with a 90-µm-thick layer of PDMS 

(spin conditions: 5 s at 500 rpm, followed by 20 s at 1270 rpm), which we cured 

thermally as above (Fig. S5d). We cut the sheet to shape using a razor blade; the cuts 

were made through the outside edges of the solder pads embedded between the two 

layers of PDMS, and thus produced four edges of bare solder near the tips of each 

section (Fig. S5e). On top of the membrane, we attached magnetized PDMS features as 

described in the previous section (Fig. S5f). 

For self-assembly, we suspended the patterned membrane in a container filled 

with water (adjusted to pH 3 with acetic acid, and containing a drop of detergent Triton 

X), heated the water to 60 °C on a hotplate, and gently agitated the container with the 

suspended membrane. The planar membrane folded into a sphere within 1-3 minutes. 

After self-assembly was complete, we cooled the resulting structure to room  
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Figure S5. Fabrication of an elastomeric membrane, patterned with magnetized features and 

containing embedded metal/solder wires and contact pads. The thickness of the layers is not 

drawn to scale, to emphasize the structure of the sheet. See text for details. 
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temperature and dried it in air for at least 3 hours. We connected one top and one 

bottom contact pad to a 3V battery using isolated copper wire (California Fine Wire 

Company, Inc., http://www.calfinewire.com). 
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