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We present a theoretical and experimental study of a method for the determination of the adhesion
strength between a thin elastomeric film bonded to a rigid substrate and a flexible plate in a geometry
common in the peel test. In particular, we characterize the work of adhesion in terms of the length of an
equilibrium crack, generated by a spacer of known thickness wedged between the flexible plate and adhesive
film, and the elastic and geometric properties of the film and the plate. We treat both the limit of perfect
bonding and that of perfect slippage at the interface of the adhesive film and the flexible plate. A series
of experiments allow us to verify the theory quantitatively and thus validate our method, which ought to
be of value in many technological situations.

Introduction

Adhesion in many situations involves a soft adhesive
interacting with flexible adherents. Despite the generality
of this system in both technology and nature, it is not yet
clear how the dual effects of adhesive thickness and
adherent flexibility can be used to obtain controlled
adhesion between different objects. Conventional contact
mechanics1-3 experiments were designed for estimating
the work of adhesion between two semi-infinite elastic or
rigidmembers.ModificationsofthenowclassicalJohnson-
Kendall-Roberts (JKR) theory to experiments involving
an adhesive layer of finite thickness result in semiem-
pirical expressions for the work of adhesion,4,5 while probe
tack experiments account for the effects of the finite
thickness of the adhesive but not the flexibility of the
contacting plate.6,7 On the other hand, the classical peel
or cantilever beam experiments8,9 do mimic the adherence
of a flexible backing to a thin layer of adhesive. However,
since the adhesive and the flexible backing are typically
subject to large deformations in the peel experiment,
separating their respective contributions is challenging
both experimentally and theoretically. In this paper, we
redress this by focusing on the linear regime of the
cantilever peel test and develop a systematic theoretical
and experimental method that accounts for both material
and geometrical parameters. This allows us to determine
the strength of this soft joint by combining the simplicity
of the peel geometry and the rigorous analysis of contact
mechanics.

Theory
In a typical setup, shown in Figure 1, a thin elastic film

of thickness h (40-450 µm) bonded to a rigid substrate
is used as a model adhesive.10 A flexible silanized glass
coverslip of bending stiffness12 D is peeled from the thin
film in a displacement-controlled experiment by inserting
a spacer of height ∆ in the crack. The distance a between
the spacer and the line of contact of the film and the plate
is a measure of the adhesion strength of the interface.

To determine the work of adhesion, we must analyze
the contact mechanics of this coupled elastic system.
Assuming that the adhesive layer is incompressible,
linearly elastic, and loaded in plane strain, the two-
dimensional equations of elastic equilibrium may be
written as

Here and elsewhere ab ) ∂a/∂b. P(x,z) is the pressure in
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Figure 1. Schematic of a cantilever plate experiment in which
a thin elastic film bonded to a rigid substrate is used as a model
adhesive. A flexible silanized glass plate of bending rigidity D
is peeled from the film in a displacement-controlled experiment
by inserting a spacer of height ∆ between the plate and the
film. The distance a of the contact line (the dashed line) from
the spacer is a measure of the adhesion strength between the
two surfaces.

Px ) µ(uxx + uzz)

Pz ) µ(wxx + wzz) (1)
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the elastic layer, u(x,z) and w(x,z) are the components of
the displacement field in the x and z directions (Figure
1a), and µ is the shear modulus of the adhesive. Equations
1 must be supplemented by the incompressibility relation:

As shown in Figure 1, in the presence of a spacer of height
∆, a crack of length a opens up. For elastic films of
sufficiently small thickness or for flexible plates of
sufficiently large stiffness, the crack front or contact line
does not remain straight but becomes wavy.10 For sim-
plicity, here we will only consider the case of a straight
contact line. Assuming that we have perfect bonding at
the interface of the adhesive film and the underlying rigid
substrate, the boundary conditions at this interface are

At the interface of the film and the flexible plate, the latter
is in contact with the film only over part of the domain.
Since the maximum slope of the flexible plate is less than
1°, we may use a linear theory for the deflection of the
plate. In the region 0 < x < a, with the origin corresponding
to the contact line, there is no traction either on the plate
or on the film so that the boundary conditions read

Here σab denote the components of the two-dimensional
stress tensor (and not derivatives), and ê(x) ) w(x,h)
denotes the vertical deflection of the plate. In the region
x < 0, continuity of the normal stress across the interface
of the film and the contacting plate (z ) h) yields

For the tangential traction, we consider the following
generalized boundary condition:

where R is a parameter characterizing the nature of the
bonding at the interface of the film and the cover plate.
R ) 0 corresponds to a perfect adhesion at the said interface
(case I), while R ) 1 implies that σxz(x,h) ) 0 and
corresponds to the case of perfect slippage at the interface
(case II). In general R ∈ [0,1].

For a thin film (x . z), we may use the lubrication
approximation13 so that the equations of equilibrium 1
simplify to

Physically, this simplification results from the dominant
balance between shear stress and the horizontal pressure
gradients in these thin layers. Integrating eqs 7 and 8 in

the region x < 0 and using the boundary conditions 3
yields

Here, the constant c ) 1 for the case of perfect adhesion
(case I) and c ) 2 for the case of perfect slippage (case II).
Substituting this result into eq 2, integrating the equation
across the thickness of the film, and linearizing the result
for small deflections yields an equation for the vertical
displacement of the interface of the elastomeric film in
the region x < 0 where it is attached to the flexible plate:

We require that the solution of eq 10 decay far to the left
of the contact line so that

Continuity of the displacement, slope, bending moment,
and vertical shear force at the contact line results in the
following four conditions:

In the region 0 < x < a, the deflection of the flexible plate
must satisfy the equation êxxxx ) 0 since it is freely
supported. At x ) a, where the flexible plate is supported
by a spacer of height ∆, the following two conditions are
consistent with a hinged support:

Finally, at the contact line we must use a condition that
determines the nature of the stress in its immediate
vicinity. The Barenblatt/Dugdale cohesive zone approach
suggests that the pressure at the crack tip will be on the
order of the van der Waals disjoining pressure, the
magnitude of which is in the range of 1 GPa. For rubbery
materials, the modulus is about 1 MPa so that one may
expect severe crack blunting14 leading to a typical stress
comparable to the modulus. At the molecular level, the
normal stress near the crack tip is a product of the force
f supported by a single chain and its areal density Σ. At
equilibrium, balancing the chemical potential of the
bonded and the detached chains implies that the normal
stress near the crack is15

where Σ0 is the areal density of bonded and unbonded
chains, ε is the energy of interaction between the chain
and the substrate, ks is the spring constant of the chain,
kB is Boltzmann’s constant, and φ ) f2/2ks is the elastic
energy stored in the chain. It is easy to show that the
normal stress σn at the crack tip goes through a maximum
near the crack tip with its value being proportional to the
modulus of the polymer. This situation is quite similar to
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that reported by Vorvolakos and Chaudhury,16 who found
that themaximumfrictional stress foraweakly interacting
rubber and a flat substrate (where φ depends on sliding
velocity) is also directly proportional to the modulus of
the former. However, for our purpose, we will ignore these
molecular details and assume that the pressure becomes
maximally tensile in the vicinity of the contact line x )
0 (up to a molecular Flory-like length scale), i.e.,

Solving eq 10 subject to eqs 11-13 and 15 for the film
displacements u(x,z) and w(x,z) in the adhered region x <
0 and the displacement of the flexible plate ê(x) in the free
region 0 < x < a yields

where

and

Here F′ and k-1 are the two characteristic length scales
in the problem: the first accounts for the response of the
plate to the displacement ∆ of its pivoted end, while the
second length scale17 measures the relative deformability
of the plate and the film in terms of the size of the effective
contact zone identified by Dillard. For an incompressible
elastic film, the dependence of k-1 on various parameters
is different from that for a compressible film as derived
by Kaelble,8 who ignored the hydrostatic stress state of
the adhesive and derived the length scale k-1 ) (Dh/µ)1/4.
We note that for typical parameter values associated with
thin films (µ ∼ 106 N/m2, h ∼ 10-4 m and D ∼ 0.02 Nm,
kh ∼ 0.2), kh ∼ (µh3/D)1/6 < 1 so that we can simplify the
expressions above by neglecting terms such as (kh)2 and
higher order terms.

Work of Adhesion. Having determined the deforma-
tion field, we now proceed to determine the work of
adhesion W. The total energy of the system includes the
bending energy of the cover plate, the elastic energy in

the film, and the interfacial energy of adhesion and may
be written as

where the deformation fields are as determined in the
previous section. We note that when solutions 16 and 17
are substituted into eq 18, the result can be expressed in
terms of a single parametera, the crack length. Minimizing
the total energy Π with respect to a, i.e., setting ∂Π/∂a )
0, we get the work of adhesion W in terms of the crack
length a. In the limit kh < 1 corresponding to the typical
adherent geometry, this yields

where the function g(ak) for the perfectly bonded case
(case I) and the free slippage case (case II) is

allowing W to be determined in terms of experimentally
measurable quantities. When ak . 1, i.e., for an extremely
pliable cover plate or for a rigid adhesive film, eq 19
simplifies even further and we recover the classical result
of Obreimoff18 for the peeling of a plate from a rigid
substrate:

Critical Normal Stress. The normal traction on the
film surface is obtained from eq 16 since

In Figure 2 we plot the dimensionless normal traction
σzz/Dk4F′ and the dimensionless vertical displacement ê/F′

(16) Vorvolakos, K.; Chaudhury, M. K. Langmuir 2003, 19, 6778.
(17) Dillard, D. A. J. Appl. Mech. 1989, 56, 382. (18) Obreimoff, J. W. Proc. R. Soc. London, Ser. A 1930, 127, 290.

Px|x)0 ) 0 (15)

u(x,z) )
6z(z - ch)F′
(3c - 2)kh3

φ1(x)

w(x,z) )
z2(3ch - 2z)F′

h3(3c - 2)
φ2(x) x < 0

ê(x) ) F′(2(ak + 1) + (3ak + 2)kx + ak(kx)2 -
(kx)3/3) 0 < x < a (16)

φ1(x) ) ekx/2(akekx/2 + 3ak + 4
x3

sin(x3kx/2) -

ak cos(x3kx/2))
φ2(x) ) ekx/2(akekx/2 + 3ak + 2

x3
sin(x3kx/2) +

(ak + 2) cos(x3kx/2))

F′ ) 3∆/(6 + 12ak + 9(ak)2 + 2(ak)3)

k-1 ) ((3c - 2)Dh3/12µ)1/6 (17)

Figure 2. The dimensionless normal traction σzz/Dk4F′ and
the dimensionless displacement w(x,h) ) ê/F′ at the interface
(z ) h) as a function of the dimensionless distance kx from the
contact line show oscillatory behavior with an exponentially
decaying amplitude. The curves correspond to ak ) 25. Similar
oscillatory displacement profiles with different decay lengths
were first noted by Kaelble (ref 8) and observed in peel
experiments using tracer particles (refs 20 and 21).

∏(a) ) ∫-∞

a D
2(d2ê

dx2)2
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0 ∫0

h µ
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∂x )2

dz dx + Wa (18)

W ) Gog(ak) ) 9D∆2

2a4
g(ak) (19)

g(ak) )

8(ak)4(12 + 46(ak) + 72(ak)2 +
56(ak)3 + 21(ak)4 + 3(ak)5)

3(6 + 12(ak) + 9(ak)2 + 2(ak)3)3
(20)

W ) Go ) 9D∆2

2a4
(21)

σzz(x,h) ) -Dêxxxx ) - D∆k4ekx/2
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(3akekx/2 - 6(1 + ak) cos(x3kx/2) + 2x3 sin(x3kx/2))
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as a function of the dimensionless distance kx from the
contact line. We see that both σzz and ê are oscillatory
with exponentially decaying amplitudes away from the
contact line.

At the contact line, the maximum tensile stress is

where σc defines the critical stress necessary to propagate
a crack at the interface. In the limit ak . 1, σc ) 3D∆k2/
2a2 and g(ak) ) 1. Thus, using eq 19, eq 23 can be rewritten
in terms of the adhesion energy W as

Here c ) 1 corresponds to the perfectly bonded case (case
I) and c ) 2 corresponds to the freely slipping case (case
II), so that the critical failure stress σc for case I is found
to be 22/3 ) 1.6 times that for case II. It is useful to compare
the above expression for the critical stress with that of a
rigid cylindrical indenter of radius a being pulled off a
layer of adhesive in contact with a rigid substrate, as
derived by Yang et al.19

Here again, c ) 1,2 refer to the cases of perfect bonding
and free slippage as before. We note the similarity of eqs
24 and 25 up to the definition of a prefactor and the length
scale k-1 which in our experiments with a flexible plate
is equivalent to the radius of the indenter a. However,
there is a qualitative difference in terms of how the critical
stress varies with the thickness of the adhesive: σc ∼
1/h3/2 for the rigid indenter, while σc ∼ 1/h for the flexible
plate. In essence, the effect of finite thickness of the
adhesive layer on the critical failure stress is somewhat
more pronounced for a rigid indenter than for a flexible
contacting plate.

Experimental Results and Discussion
Following the experimental protocol described in Ma-

terials and Methods, we measure the geometrical and
material parameters for the peel test. For the purpose of
comparison with theory, the expression for the work of
adhesion given by eq 19 is rearranged to read

where f1(ak) ) (8(ak)4/3g(ak))1/2 and γ ) 20 mJ/m2 is the
surfaceenergyof thepoly(dimethylsiloxane) (PDMS) films.
The crack length a for different spacer heights ∆, film
thicknesses (h ) 50-450 µm), and layer shear moduli (µ
) 0.2-0.9 MPa) and for cantilever plates of different
flexural rigidities (D ) 0.02-0.84 Nm) are scaled following
eq 26 and plotted in Figure 3a which shows ∆D1/2k2/γ1/2

as a function of f1(ak). Here we have assumed that the
bonding between the flexible cover plate and the adhesive
film is perfect, corresponding to case I. We see that all
data collapse on a single straight line going through the
origin yielding the slope (W/12γ)1/2 ) 0.43. Therefore W )
44 mJ/m2, which compares well with the value of 42-44
mJ/m2 obtained from JKR contact mechanics experiments

of the same elastomeric networks21 in contact with
hexadecyltrichlorosilane-coated glass substrates.

For comparison with experiments, we also rewrite the
expression for σc given in eq 24 as

and determine the constantC using the experimental data.
Substitution of this expression in eq 23 and subsequent
rearrangement and normalization yields

where f2(ak) ) (6 + 12ak + 9(ak)2 + 2(ak)3)/(ak + 2). In
Figure 3b, we plot ∆D1/2k2/γ1/2 as a function of f2(ak)
following eq 28 and see that the data nicely collapse on
a single straight line passing through the origin with slope
C(W/108γ)1/2 ) 0.36, thus yielding C ) 1.78. Expectedly,
this value of C is somewhat lower than its theoretical
asymptotic value of 61/2 determined in eq 24.

When the experimental data are interpreted as corre-
sponding to the case of free slippage between the adhesive
film and the cover plate, i.e., case II, we find that W ) 46
mJ/m2 and C ) 1.8. This relatively small difference
between the two interpretations suggests that our experi-
ments cannot really determine the nature of the contact
between the elastomer and the plate which is likely to be
neither perfectly bonded nor perfectly frictionless but
subject to partial slippage. On the other hand, the critical
failure stress σc estimated for different combinations of
elastic films and the flexible cover plates varies from about
0.04 to 0.2 MPa, orders of magnitude smaller than that

(19) Yang, F.; Li, J. C. M. Langmuir 2001, 17, 6524.

(20) Bi-min, Z. N.; Chaudhury, M. K.; Brown, H. R. Science 1995,
269, 1407.

(21) Amouroux, N.; Petit, J.; Léger, L. Langmuir 2001, 17, 6510.

Figure 3. (a) The scaled displacement ∆D1/2k2/γ1/2 as a function
of f1(ak) allows us to determine the work of adhesion W using
eq 26. (b) The scaled displacement ∆D1/2k2/γ1/2 as a function of
f2(ak) allows us to determine the constant C in eq 28, yielding
a second comparison with theory.

σc ) C
khx Wµ

(3c - 2)h
(27)

∆D1/2k2

γ1/2
) C( W

108γ)1/2
f2(ak) (28)

σmax|x)0 ) σc )
3D∆k4(ak + 2)

6 + 12(ak) + 9(ak)2 + 2(ak)3
(23)

σc ) 1
khx 6Wµ

(3c - 2)h
(24)

σc ) a
hx 3Wµ

2(3c - 2)h
(25)

∆D1/2k2

γ1/2
) ( W

12γ)1/2
f1(ak) (26)
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estimated from the van der Waals disjoining pressure (103

MPa assuming molecular contact over a range of a few
angstroms) at the open surfaces of the crack. While it is
tempting to infer that this rather large discrepancy is due
to the roughness of the surfaces, very low values of σc
measured even for atomically smooth surfaces suggest
that roughness is not uniquely responsible for this
discrepancy.

The theory and experiments presented here complement
existing methods for measuring adhesion by accounting
for the dual effects of the thickness of the adhesive film
and the flexibility of the contacting plate, albeit in a
geometry that involves small deformations. In contrast
with the probe tack test involving the indentation of a
cylindrical indenter of radius a into an adhesive layer,
the peel test involves the appearance of a natural length
scale k-1 ) (Dh3/12µ)1/6 which depends on the material
and geometrical parameters in the problem. Tuning this
length scale using these parameters thus allows us to
probe a range of situations.

Materials and Methods
Vinyl end-capped poly(dimethylsiloxane) oligomers of molec-

ular weights ranging from 2000 to 52000 received as a gift from
Dow Corning Corp., Midland, MI, were used to form a thin
adhesive layer. Hexadecyltrichlorosilane was bought from United
Chemicals Technologies, Inc., Bristol, PA. The rigid substrates
used in this experiment were Corning microslides with dimen-
sions of 25 × 75 × 1 mm obtained from Fisher Scientific. The

flexibleplateswereCorningcoverplatesalsoobtained fromFisher
Scientific. The slides were oxygen plasma cleaned in a Harrick
plasma cleaner (model PDC-23G, 100 W) before surface treat-
ment. Two sets of filler gauges (spacers) of various thicknesses
were used for making films of uniform thickness and were also
used as the spacers.

Uniformly thin elastic films of PDMS were used as a model
adhesive layer in our experiments. These cross-linked elastomers
of shear moduli between 0.2 and 3.1 MPa were prepared by
following the procedures described in refs 10, 11, and 16. The
films remained strongly adhered to a rigid substrate. JKR4 contact
mechanics experiments of the networks indicated that they were
purely elastic and exhibited no hysteresis. The work of adhesion
for all these networks was estimated to be 40-42 mJ/m2.
Microscope coverslips coated with self-assembled monolayers of
hexadecyltrichlorosilane (prepared followingGhatak etal.10)were
used as flexible plates. The plate and the film were first rinsed
thoroughly in deionized water to remove any static charge and
blow-dried innitrogengas.Theplatewas thenbrought intopartial
contact with the adhesive layer with the help of a spacer that
supported the plate at its free end and allowed to equilibrate till
the crack length a did not change.
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