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We consider two of the simplest problems associated with the packing of a naturally
flat thin elastic sheet. Both problems involve packing the sheet into a hollow cylinder;
the first considers the partial contact of a cylindrically curved sheet with a cylindrical
surface, while the second considers the partial contact of a conically curved sheet with
the edge of a cylindrical surface. In each case, we solve the free-boundary problems to
determine the shape, response and stability of the confined surfaces. In particular, we
show that an exact description of both the cylindrical and conical structures is given
by solutions of the Flastica equation, allowing us to present a unified description
of a large class of elastic developable surfaces. This includes what is possibly the
simplest example of strain localization, occurring at a point and forming one of the
constituent elements of a crumpled elastic sheet.
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1. Introduction

The study of the large deformation behaviour of solid bodies is difficult, owing to the
complications associated with the combined effects of geometrical and material non-
linearities. In this endeavour it is often efficacious to try to decouple those effects that
arise from geometrical nonlinearities from those due to complex material behaviour.
This decoupling arises naturally in the behaviour of thin elastic sheets and filaments,
which can sustain large deformations while still being in the linear elastic regime,
owing to the geometry-induced separation of scales. The ubiquity of these deforma-
tions scarcely requires comment: elastic sheets arise in technological problems on
scales ranging from micrometres to metres, and in biology on scales from nanome-
tres to micrometres, and surround us in the humdrum of everyday life in everything
from a crumpled sheet of paper to the clothes we wear, although we are but dimly
aware of the complexity associated with a quantitative description of these opera-
tions. In many of these cases, thin sheets usually can and do deform elastically and
reversibly with large deflections of the order of the system size. Two observations of

t Present address: Harvard University, Cambridge, MA 02138, USA (Im@deas.harvard.edu).

Received 30 April 2003 (© 2004 The Royal Society
Accepted 16 June 2004 671



672 E. Cerda and L. Mahadevan

these deformed states must be made immediately: the surface is almost never homo-
geneously deformed, and the surface can often have regions of self-contact where two
regions initially far from each other are adjacent. The inhomogeneous deformations
lead to the localization of strain and highlight a first difficulty in any treatment of
these problems. In addition, contact problems involve a non-local constraint that
complicates the search for solutions of the equations of elasticity which are other-
wise local. Thus, despite the apparent simplicity afforded by linear elastic behaviour
in these situations, there are but a few cases where analytical progress is possi-
ble; indeed these special cases are confined to planar (cylindrical) and axisymmetric
deformations (Antman 1993) which do not involve the additional constraints or free
boundaries associated with contact. Indeed the humble crumpled sheet that is the
result of many a failed calculation is a constant reminder of the difficulties of our
subject, and provides a natural generalization of packing problems, much studied
in discrete geometry and statistical physics, to the realm of continuous objects such
as filaments and sheets. While we are still far from understanding the complexity
manifest in a crumpled sheet, in this paper we address two simple problems that
allow us to understand the fundamental ingredients involved in packing a sheet. We
will limit ourselves to a purely elastic analysis; this assumption would have to be
abandoned in any complete study of large-scale crumpling.

We start with a reminder of the basic physics of deformation of a thin, isotropic,
homogeneous, naturally flat sheet. In the long-wavelength limit considered here, the
sheet has two primary modes of deformation: out-of-plane bending and in-plane
stretching. Cylindrical bending into a circular arc of curvature k preserves the middle
surface of a sheet, but causes elements away from it to be strained. If the sheet has
a thickness h, bending deformation produces strains of order vg &~ kz at a distance
z along the normal to the middle surface. The elastic energy of pure bending is then
Ug =~ [dz~3 =~ h3. On the other hand, stretching of the middle surface produces
homogeneous strains through the cross-section, so that Ug = f dz 7% ~ h. The total
energy for the elastic surface may then be written as (Rayleigh 1922)

energy = h*(bending) + h(stretching). (1.1)
Indeed, as Rayleigh and others observed more than 100 years ago,

...when the thickness is diminished without limit, the actual displace-
ment will be one of pure bending, if such there be, consistent with the
given conditions.

(Rayleigh 1922, p. 396)

The sting in the last phrase poisons the search for a simple solution, for it refers to
the importance of the boundary conditions. A sheet that is stretched clearly cannot
respond by pure bending. However, one that is compressed does indeed respond by
bending once the buckling threshold has been crossed. But there is another subtlety
associated with arbitrary deformations. Since Gauss, we have known that isometric
transformations leave the Gaussian curvature invariant. Thus, it follows that those
deformations which change the Gaussian curvature cannot be isometric, and therefore
must stretch the surface. Said differently, a surface which is curved in two orthogonal
directions has a non-zero Gaussian curvature, and hence must be stretched. Since
this is energetically prohibitively expensive, it follows that when a sheet is crumpled,
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it tries to accommodate the deformations by bending in just one direction almost
everywhere. However, owing to the nature of the constraint imposed by crumpling,
namely that the sheet must be confined within a smaller volume than one that it
originally inhabited, the sheet must deform by stretching in small regions leading to
peaks (Mallock 1908; Ben Amar & Pomeau 1997; Cerda & Mahadevan 1998; Cerda et
al. 1999) and ridges (Mallock 1908; Witten & Li 1993; Lobkovsky et al. 1995) where
the deformation is highly localized. These structures act as hinges about which the
whole sheet can pivot as it is crumpled and packed.

The standard approach to quantify these packing problems involves solving a set
of partial differential equations that couple the bending deformations out of the
plane to the stretching deformations in the plane. For a naturally flat sheet, these
equations are commonly known as the Foppl-von Karman equations (Landau &
Lifshitz 1997). They are only valid for small to moderate deformations, defined as
those where the displacements are of the order of a few times the thickness of the
sheet, but much smaller than the system size. Since this is insufficient for the large
deformation problems considered here, we will eschew this approach. Instead, we
start from the observation that a crumpled surface is isometric to a flat sheet almost
everywhere. Differential geometry teaches us that these piecewise isometric surfaces
to the plane, i.e. developable surfaces must be one of the following: perfectly flat,
cylinders, cones or tangent developables (Struik 1988). Motivated by this, we will
consider the simplest packing problems involving a sheet: the confinement of a cir-
cular cylindrical shell inside a rigid tube with a diameter smaller than that of the
shell, and the conical confinement of a flat sheet inside a rigid conical or cylindrical
container (such as a funnel). In each case, we analyse the free-boundary problems to
determine the shape of the confined sheet which is in partial contact with the rigid
confining boundary, and then consider its response and stability.

In §2 we start with a description of the geometry and kinematics of deformation.
In § 3, we consider constrained cylindrical deformations of sheets as our first example.
This allows us to look at the two-dimensional analogue of crumpling which has one
simplifying feature—the deformations are always smooth. We consider the simple
packing of a cylindrical sheet into a slightly smaller cylindrical drum; the result is a
region over which the sheet loses contact with the drum, leading to a free-boundary
problem paradigmatic of constrained crumpling. This is analysed in terms of the
classical Elastica of Euler, accounting for large cylindrical deformations of a sheet,
or, equivalently, arbitrary planar deformations of a rod. In §4, we focus on the case
of constrained conical deformations of a sheet with a singularity at the vertex of
the cone. These deformations are necessarily three dimensional, but we show that
under fairly general assumptions it is possible to get an essentially exact description
of these deformations using a one-dimensional equation of equilibrium. This leads to
one of our main results: arbitrary large conical deformations of a sheet can also be
described in terms of the classical FElastica using an appropriate coordinate system.
In a sense, we should expect this, since conical deformations involve deformations
in only one direction, i.e. one of the principal curvatures of the sheet vanishes. In
terms of the Flastica we then consider the conical packing of a sheet that is forced
into a cylinder frame (Cerda & Mahadevan 1998; Cerda et al. 1999) and analyse the
resulting free-boundary problem for the so-called conical dislocation that is one of
the main ingredients of crumpled sheet. Finally, in §5 we close with a discussion of
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051 = const.

Figure 1. Components of the forces N;;, Q;; and moments m;; along the oriented sections
defined by the coordinate curves as = const. and a; = const.

how our approach may be used as a possible means of unravelling the complexity of
crumpled continua.

2. Geometrical and mechanical description of an inextensible surface

The middle surface of an inextensible sheet preserves its length in any direction. In
differential geometry this is equivalent to the statement that its first fundamental
form is invariant under this class of deformations. More precisely, if the surface is
described by the parametrization r(aq, as), with a; and ag being the Lagrangian
coordinates of a material point of the middle surface, the metric tensor

9ij = 80éir ' 8Otjra Za] = 17 23 (21)

is constant. It follows that any geometrical quantity which is a function only of
the metric tensor will be an invariant of the deformation. One of the most famous
examples of such a quantity is embodied in Gauss’s ‘Theorema Egregium’ (Kreyszig
1991; Struik 1988); since the Gaussian curvature can be expressed purely in terms of
the metric tensor, it is also an invariant of inextensible surfaces. Thus, if a naturally
flat surface with zero Gaussian curvature is deformed inextensibly, its final state
will also have zero Gaussian curvature. Then, the curvature in at least one of the
principal directions at every point is always zero. Assuming that the deformations
are continuous and differentiable, this leads to the conclusion that through every
point one of the lines of curvature is a straight line. These lines are called generators,
and a visualization of their presence is afforded in a bent transparency in ambient
light which reflects strongly off the straight generators.

For any such an isometric deformation, we must augment the previous geometrical
description with a statement about the equilibrium of forces and moments to describe
a physical sheet. We will denote the tangent to the line ay = const. as t1, the tangent
to the line oy = const. as to and the normal to the surface as n, i.e. (0,, = 0/0;):

On. T On,T
t]_ - 171/2, t2: 172/2, n:t]_ Xt2. (22)
911 922

Here as = const. and «y = const. define a local orthogonal coordinate system.

Consider the force per unit length at a cross-section defined by the curvilinear
coordinate ap = const. Since the normal to the cross-section lies along to, we denote
the force F, following the convention introduced by Reissner (1941). This force can
be resolved into its orthogonal components (see figure 1)

F; = Nty + Noots + Qon. (2.3)
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Figure 2. Forces F' and moments M on an infinitesimal segment defined by the intersection of
the coordinate curves a; = const., a2 = const., a1 + da; = const. and a2 4+ daz = const.

Similarly, the force per unit length at a cross-section defined by the coordinate oy =
const. is
F1 = N11t1 + N12t2 + an. (24)

Here Ny1, Nao are the in-plane tensile stress resultants, while Ni5, Nop are the in-
plane shear resultants, and @)1, Q2 are the out-of-plane stress resultants. In general,
N12 # No since they correspond to forces on different elemental areas. If in addition,
we denote the force per unit area as K, the equations of force equilibrium deduced
from figure 2 lead to

— F>dsi1|(ay,a,) T F2d51] (a1 ,as+das)

- Fl d52‘(a1,o¢2) + Fl d82‘(a1+da1,a2) + Kl(a17042) dA =0. (25)

Here ds; = A;da; is the arc length in the t;-direction and A; = 91{2. Similarly,
dss = As da, where Ay = 9522, and dA is the element of area:

dA = (det 9)1/2 dOél dag = AlAQ dOél dOéQ.

Next, we define M, as the couple per unit of length of the middle surface
parametrized by the coordinate ay = const. Since it is generated by a variation
of the stress in the n-direction, it may be written as (see figure 1)

M2 =mn X (m21t1 + m22t2). (26)

Here my1, moo are the bending torque resultants, while mys, mso; are the twisting
torque resultants. Similarly, we define M as the couple per unit of length of the mid-
dle surface parametrized by the coordinate oy = const. Resolving it into components,
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we write
M1 =n X (m11t1 + mlgtz). (27)

The balance of torques may then be deduced from figure 2 and leads to

— M, d81|(a1,a2) + M, d31|(a1,a2+da2) — M, d52|(6¥17(12)

+ M1 ds2|(a; +day,a0)d52t2 X Fadsi|(a,,astdag) T dsit1 X F1dsa|(a,+dar,as) = 0-
(2.8)

Rewriting equations (2.5) and (2.8) to reflect the local equations of force and torque
equilibrium yields

Oay (A2F1) + O0u, (A1 F2) + A1 Ao K = 0’} (2.9)

8a1 (AQMl) + aaz(A1M2> + A1A2(t1 X F1 + t2 X FQ) =0.

Then (2.9) constitutes a set of six differential equations for the ten unknowns cor-
responding to the six force and four torque components at any point on the middle
surface of the sheet. To close the system, we need some constitutive relations that
relate to the physical response of the material of the sheet.

Towards this end, we recall the fundamental theorem in the differential geometry
of surfaces which states that the first and second fundamental forms of a surface
completely define it up to rigid-body motions (Struik 1988). The first fundamental
form is a scalar defined in terms of the components of the metric tensor g;;, while
the components of the second fundamental form can similarly be defined in terms of
the curvature tensor

bij = —Mn- 8%.8%.7‘. (210)

In terms of the coefficients of the curvature and metric tensors, we can define k1 =
b11/911 as the normal curvature along t1, kK3 = baa/g22 as the normal curvature
along the to-direction, and 7 = b12/(911922)1/2 as the geodesic torsion or twist of the
surface.

We pause to consider our sign convention, which is consistent with that of classical
shell theory (Reissner 1941; Dym 1990) but different from that of classical differential
geometry (Kreyszig 1991; Struik 1988). Couples are considered positive when they
have the same sign as couples resulting from positive stresses on the part of the shell
above the middle surface, where above and below is defined by the orientation of the
normal. Furthermore, we define a positive curvature when the centre of curvature
is below the middle surface and a positive twist when the lines a; = const. rotate
clockwise about the axis defined by ¢;.

When the surface is deformed inextensibly, the first fundamental form is preserved
but the second fundamental form (and therefore the curvature) varies. At the lowest
order the constitutive relations relating the couples and curvatures for a naturally
flat sheet are (Love 1944; Dym 1990)

mi ZB(/ﬂ-f—O'/iQ), m22:B(KJ2+O'/i1), mio = Moy :B(I—O')T, (2.11)

where o is Poisson’s ratio of the material of the sheet, B = Eh3/12(1 — 0?) is the
bending stiffness and FE is the Young modulus of the sheet. At this order of approx-
imation the couples mi3 = mo; but it is not true generally for thick shells; higher-
order constitutive relations can be found in Love (1944, pp. 565).
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(@) € (b)

Vl(S)

Figure 3. Schematic of a puckered cylinder. (a) Puckering of a cylindrical surface of radius R
into another of smaller radius b. The puckering can be described by using a two-dimensional
geometry, so that the deformation is given by the vector v(s) = (v1(s),v2(s)). (b) Definition of
the trihedron {ti,t2, n}.

To complete the formulation of the problem, we note that the curvature and metric
tensors must satisfy a set of compatibility relations known as the Gauss—Codazzi
relations, which are (Kreyszig 1991; Struik 1988)

Ooy011 — Oy b2 = bi1 Iy + bio(Igy — 1) — baoI'F,
Ooy012 — Oy b2o = bi1 oy + b1o(Igy — I) — bao IS,

detg 1 P det gI'), _ det gI'ly
det b o det g o g22 2 g22 ’

where I’ Z’; = 0a;04,T  Oa,r are the Christoffel symbols which may be expressed
purely in terms of the components of the metric tensor, i.e. they are invariant for
isometric deformations.

Substituting the relations (2.11) into (2.9) leads to the elimination of the moments
in favour of the components of the first and second fundamental forms b;;, g;;.
Since we are interested in inextensible deformations, g;; are invariant. Then, the
determination of the shape of the surface and the forces on it requires that we
determine the three coefficients of the second fundamental form b;; and the six
unknown forces Ni1, Nog, N1a, Noy, Q1, @2, i.e. a total of nine unknowns. And we
have exactly the right number of equations: the six equations of equilibrium (2.9)
and the three relations of Gauss—Codazzi (2.12). Of course, these equations must be
supplemented by appropriate boundary condition on some combination of the stress
and couple resultants and/or the displacements. In the following sections we will
consider two concrete examples that apply the preceding equations to the packing of
a naturally flat sheet into a slightly smaller cylindrical drum via either cylindrically
or conically deformed sheets.

(2.12)

3. The puckered cylinder
(a) Geometry

We consider a very long sheet rolled into the shape of a circular cylinder of radius R.
The lateral ends of the sheet are glued to each other, and the resulting long cylindrical
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sheet is then introduced into a cylinder of radius b < R as shown in figure 3. The
excess length of the sheet causes it to pucker with a natural dimensionless control
parameter to describe the packing in this system given by

2 (BB

Assuming that the deformation of the sheet is cylindrical, the position vector describ-
ing the sheet can be written as

(3.1)

r(s,z) = v(s) + zes, (3.2)

where v(s) = vi(s)e; + va(s)eq, s is the arc length of the two-dimensional curve
defined by v(s) and z is the length along the axis of the cylinder (see figure 3a). We
observe that this class of one-dimensional deformations automatically satisfies the
Gauss—Codazzi relations (2.12).

The metric tensor associated with this deformation is gss = 1, g5, = 0, 9., = 1,
and the orthonormal vector triad describing the surface is

t1 = t, to = es, n=tXxes. (33)

Here t = J;v is the tangent and m is the oriented normal to the planar curve that
completely describes the cylindrical sheet. In terms of the angle ¢ between t and
the horizontal (figure 3b), we have t = cos ¢e; + sin pes and n = sin pe; — cos pes.
The components of the curvature tensor are given by bys = K, b,, = b,, = 0, where
k = —n - 0st = ¢ is the curvature of the planar curve shown in figure 3. Here
and elsewhere, we use the notation (-) = J,(-). The lines z = const. and s = const.
are the lines of curvature for all possible deformations, so that the geodesic torsion
7 = 0 identically. Therefore, ms, = m,s = 0. Since the normal curvature along the
line s = const. is zero, mss = Bk, m,, = Bok. Finally, torque equilibrium in the
n-direction yields Ny, = N,5. Here we see an example where the local torques and
forces are symmetric.

(b) Mechanical equilibrium

In the absence of any frictional interactions with the confining cylinder the external
force must be along the normal so that K = —kn (k > 0). For a very long cylinder,
we may safely neglect any variations along the axial direction es, so that 9(-)/0z = 0
in (2.9). Then, we need to consider just the projection of the equations of force and
torque equilibrium on a plane perpendicular to the cylinder axis:t

0sF+ K =0,
(3.4)
oM +tx F =0.

Here the local force resultant at a cross-section is F' = Nt + Qsn and the torque
resultant is M = mgsn xt = Bres. The equations (3.4) then correspond to those for
the equilibrium of elastic rods and their analysis is now classical (Landau & Lifshitz
1997).

1 The other components of the forces and couples can be determined by using the remaining equations,
but they will be sensitive to the forces and couples applied at the lateral ends of the cylinder.
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(¢) Global force balance

Writing out the equilibrium equations (3.4) in component form yields the relations

asts + KQS =0, (35)
0sQs — kNgs = k(s), (3.6)
Bi=Q,. (3.7)

The first two correspond to force balance in the tangential and normal directions,
while the last equation is a consequence of torque equilibrium. By using the relation
(3.7) in (3.5) we can integrate it once so that N + Bk?/2 = —Ba?, where a? is a
constant of integration. Substituting the result in equation (3.6) yields

Blii + (a® + 1k%)K] = k(s), (3.8)

which, together with appropriate boundary conditions, describes the equilibrium
shape of the Flastica of Euler. For the confined cylindrical sheet shown in figure 3,
the radius of curvature is constant and equal to the radius of the external cylinder
k = 1/b in the region where the sheet is in contact with the rigid cylinder. Therefore,
it follows from (3.8) that k = k. = const. in this region. Furthermore, in the contact
region £ = 0 so that (3.7) implies Qs = 0 and (3.6) implies N5 = —bk, i.e. the sheet
is under purely normal compression due to confinement.

To characterize the free region, we define s = 0 as the generator at the centre of
the fold. Solving (3.8) with k(s) = 0 by looking for an even function of the arc length
s yields

k = k1 cn((a® + %fi?)l/Qs | m), (3.9)

where £ is the curvature at s = 0 and m = £%/(4a® + 2x7) is the modulus of the
cnoidal Jacobi elliptic function, cn(- | -).

To determine the forces along the contact line, we consider the conditions imposed
by global force balance. The total force on the right half of the cylinder is given by

TR
Wi = [ ds(—kem) (3.10)
Sc
where s is the arc length at the contact line measured from the intersection of
the sheet with the axis of symmetry. Since ¢ = 6 the polar angle and 8 = 1/b for
Se < s <, we get

Wiight = —bke((1 + cosf.)eq + sinf.es), (3.11)

where 0. = 6(s.). Similarly the force applied on the left half of the cylinder can be
readily obtained as

Wiets = —bke(—(1 + cosf.)e; + sinb.es).

We see that there is an unbalanced external force of magnitude —bk.sin 6. on each
half that acts along the plane of symmetry. To satisfy force equilibrium, localized
forces must be applied at the contact lines to balance the force from the rest of sheet,

i.e. we must have N

/ " dses K| — bkosinf, = 0, (3.12)

c
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where st =s.+n, n — 0, and K] is the localized contribution to the body force

in the neighbourhood of the contact point. Letting K) = —xd(s — s¢)n, we get
x = bk.tan6.. The total body force K is the sum of the uniform normal pressure
over the contact zone and the localized force along the contact line i.e.

K =—k.(14+btanb.0(|s| — sc))m, |s| = sc. (3.13)

Here the form of K is dictated by symmetry. The localized external forces produce
a discontinuity in the internal shear forces in the sheet at the contact line. We can
see this by integrating the first equation in (3.4) in the neighbourhood of the contact
line, so that

sa
F+—F+/ ds K =0, (3.14)

where Fy = F(s. £7). Using the expression for K from (3.13) in (3.14), we find
that the force in the free region is F' = —(bk./ cosf.)e;. Therefore, for the entire
sheet we may write
—bk.t if |s| > s,
F= bk

e; if |s]| < se..
cost9c1 5 ¢

(d) Small-deflection analysis

We now turn to the determination of the unknown parameters k¢, s. and 6. which
determine the contact forces and the location of the free boundaries. The excess
length of the sheet relates s. and 6. via the equation

Sc — bl = (R — b) = wbe. (3.15)

The continuity of ¢ and the curvature ¢ across the contact line which follow by
integrating the equation of equilibrium (3.8) yield ¢(s.) = 6. and ¢(s.) = 1/b, i.e.

/ dsk = 0., (3.16)
0

1
K(sc) = 5 (3.17)
The condition that the sheet, and therefore the curve which is its projection onto
a plane perpendicular to its axis, is closed requires that the total projection of the

curve along the e; is zero. Because 97 = cos ¢, we can write this condition as

TR
/ ds cos ¢ = 0. (3.18)
0

Finally, evaluating (3.8) away from the point s = s. yields an expression for the
dimensionless confining force:
b3k
2,1 c
Before solving the system (3.8), (3.15)—(3.19) for the geometry of the puckered
cylinder, we provide a scaling analysis of this system when ¢ < 1, 6. < 1. Then the
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C

Figure 4. Geometry of the fold. The inextensibility constraint yields
€2 + (b6.)2 — bl ~ wbe? for the excess of length.

2.0
15
S
1.0 &
o
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0
4/31.3
ePkIB | s
0 0.20 0.48 080  1.00

&

Figure 5. The position of the contact angle #. and the dimensionless external force %/ 3%k, /B
as a function of the packing parameter . For € > 0.48, b®k./B < 0, i.c. the external force must
be adhesive to prevent the collapse of the structure.

vertical displacement of the fold £ (see figure 4) and the excess length s. given by
(3.15) are then related by the geometrical equation

Se — b & /€2 + (b0o)2 — b,

L&

o (3.20)
Comparing (3.15) with (3.20), we find that &2/bf. ~ be?. Furthermore, since the
curvature of the fold in the vicinity of the contact point x ~ £/(bf.)? must be the
curvature of the confining cylinder, we have £/(bf.)? ~ 1/b. From these two relations
we find scaling laws for the displacement & ~ be*/3, the contact angle 6. ~ ¢2/3 and
the arc length of the fold s, =~ b0, ~ be2/3,

To estimate the internal forces, we consider moments about the position s = 0.
The internal moment M ~ B/b must be balanced by the torque due to the reaction
forces at the contact point M = bk.£. Therefore, the dimensionless compressive force
due to the confining cylinder scales as

bke b
B~ e4/3, (3.21)

We see that as ¢ — 0, the required compressive stress to stabilize the fold diverges.
This divergence is cut-off when the size of the fold becomes comparable to the thick-
ness of the sheet, as our simple one-dimensional theory accounting for bending alone
is not valid in this limit.
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(e) Large-deflection analysis

To corroborate our scaling analyses and extend our results to the case when the
packing parameter ¢ is not small, we solve the system (3.8), (3.15)—(3.19) numerically.
In figure 5 we show the dependence of 0. and b3k./B on ¢ and see that our scaling
estimates from the previous section are valid when ¢ < 1. However, as € becomes
larger, we see that the dimensionless force b3k./B decreases and eventually vanishes
when e ~ 0.48. Thus the sheet needs adhesive forces to guarantee equilibrium when
€ > 0.48 and suggests that the system with a single symmetric fold is unstable when
€ > 0.48. The mechanism of the instability becomes obvious when we notice that
0. = 7/2 for ¢ &~ 0.48, i.e. it is impossible to balance forces in the es-direction by
using only localized external forces along the lines of contact. Thus, we expect to
see the development of possibly asymmetric folds to stabilize the system beyond this
point, a subject worthy of study but one that we shall not pursue here.

4. The puckered cone

The three-dimensional analogue of packing a planar curve into a circle (or equiva-
lently of packing a cylindrically deformed sheet into a slightly smaller cylinder as
treated in the previous section) is the packing of a sheet into a sphere. However, the
latter problem is far more difficult than one might first imagine owing to the strong
constraints imposed by geometry and the contact conditions. Here we will consider
the somewhat simpler situation of packing a sheet into an open cylindrical frame
which can be achieved via a conically deformed shape much like a coffee filter paper
as depicted in figure 6a, a geometry first studied nearly a century ago by Mallock
(1908), who pointed out the importance of inextensible conical deformations. More
recently (Cerda & Mahadevan 1998; Cerda et al. 1999) we showed that this geome-
try is amenable to analysis and experiment. Here, we revisit this problem and show
that it is possible to reduce the fully nonlinear problem to quadratures allowing us
to examine the solutions in some detail.

(a) Geometry

When a circular sheet of paper of radius R, is pushed into a cylindrical frame
of radius R by applying a centred transverse force directed along the axis of the
cylinder, as shown in figure 6a, it responds by buckling out of the plane to form a
non-axisymmetric conical surface that is only in partial contact with the frame. The
effectiveness of packing is controlled by the axial distance d through which the tip
is pushed into the frame, and defines a dimensionless packing parameter ¢ = d/R.
Geometrically, the surface may be described by a family of generators originating
at the centre of the sheet, with the angle § between a generator and the vector es
characterizing the normal to the plane of the supporting frame. When

cot . =¢ (4.1)

the generators are in contact with the frame and the shape of the sheet is a cone
of opening angle (..t Of course, this conical shape only describes part of the sheet,

1 In the following all the variables evaluated along the contact region will carry the subscript ‘c’.
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(@) €3 €3

pushing force

Figure 6. Schematic of a puckered cone. (a) An axial force at the centre of the plate makes it
buckle into a conical shape with one fold. The normal forces K act along the line of contact
between the cone and the cylindrical frame. (b) The angles 6 and 3 with respect to an Eulerian
frame and the moving orthonormal trihedron {t,w,n} characterize the surface.

since all the generators cannot satisfy (4.1) without violating the inextensibility
condition. The non-axisymmetric conical shape shown in figure 6a is therefore a
natural outcome of respecting the constraint of inextensibility almost everywhere,
except in the vicinity of the tip. In addition to forming a simple system in which to
study the packing problem of a sheet, this example thus affords the simplest example
of stress, strain and energy localization occurring in the vicinity of a point, namely
the centre of the sheet.
The most general description of a conical shape is given by the parametrization

r(s,r) = ru(s), (4.2)

where 7 is the distance from the origin located at the tip, u(s) is a unit vector, and s
is the arc length of the curve (see figure 6b) measured from the position of maximum
elevation of the fold. The motion of u(s) describes a curve C in space. Since the total
length of this curve surrounding the tip is invariant under inextensible deformations,
a circular curve with initial length 27 (at an initial radius = 1) will not change its
length. Therefore, the surface defined by the locus of the straight line ru(s) will be
a developable surface. The metric tensor associated with this class of deformations
has components gss = 72, g5 = 0 and g, = 1 and remains constant. To describe the
surface, we use a moving orthonormal trihedron (equivalent to the repére mobile of
Cartan)

t1 =t, to = u, n=txu. (4.3)

Here t is the tangent vector to the curve C, and ¢t and n are in a plane perpendicular
to u. To parametrize the vectors ¢, u, n while emphasizing the correspondence with
the packing problem treated in §3, we use the vectors ey and ng = u X ey, which
span the plane containing ¢ and m, as shown in figure 6, with ¢(s) being the angle
between t and eg. Then

t = cos ¢pey + sin qbn@,} (4.4)

N = sin ¢ey — cos Pnyg.
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In terms of spherical coordinates we may write u as
u(s) = sin B cos ey + sin [ sin fes + cos fes
= sin e, + cos Bes, (4.5)

where e, = cosfle; + sinfe; is the radius vector in the horizontal plane containing
the cylindrical frame and = §(s) and 6 = 6(s). Differentiating (4.5) yields

dsu =t = cos 6Bep + sin 30ey — Bsin fes (4.6)

in terms of the trihedron {e,, eg, e3}. Comparing the result with the first of relations
(4.4) yields the relations

. oS
0= g (4.7)
B = —sin¢. (4.8)

There remains the issue of describing the deformation itself in terms of the curvature
of the surface. The only non-zero element of the curvature tensor for the deformation
is bgs = —rn - Ost; the other components by, = b, = 0. Thus, the normal curvature

of the surface is
bss ot K

ss rooor’

where k is defined as the curvature of the surface at unit distance from the tip. Using
(4.4), (4.7) and (4.8), we obtain the following equation for the angle ¢:

¢ = Kk — cot 3 cos . (4.9)

The kinematic relations (4.7)—(4.9) are equivalent to the Frenet formulae for the
geometrical description of curves (Kreyszig 1991; Struik 1988). Indeed, transposing
the fundamental theorem of planar curves to our case, we assert that, once k(s) is
known, the conical shape is completely determined by (4.7)—(4.9) up to rigid-body
motions.

(b) Mechanical equilibrium,

Specializing the equations of equilibrium (2.9) for the conical geometry described
in the previous section, we find that

0sFs+ 0,.(rF,.)+rK =0, (4.10)

Os Mg+ 0p(rM,) +r(t x Fs +u x F,.) =0. (4.11)

These equations are closed once the constitutive relations for the torques given by
(2.11) are known. Here My = Bxkn x t/r and M, = Bokn X u/r.

To make further progress, we resolve the forces and torques along the orthonormal
trihedron {t,u,n}. Using the relations d;t = —kn — u, dsu = t and dsn = xKt, we
write the force balance equation (4.10) in component form as

83Nss + "QQS =0,
Op (T Nyr) — Nos = 0, (4.12)
0sQs + 0r(rQy) — KNgs — rk(s,r) = 0.
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Here we have assumed that the external force K = —kn with k£ > 0, denoting the
reaction from the cylindrical frame, i.e. we ignore any frictional interactions with
the frame. Similarly, the equation for the balance of torques (4.11) can be written in
component form as

Qs = B%,
2 (4.13)
Qr = _Bﬁ

We observe that equations (4.12) and (4.13) are the natural generalizations of (3.5)—
(3.7) to the case of conical deformations. Substituting the expressions for the shear
forces Qs, @, from (4.13) into the first two equations in (4.12) and integrating, we
get

2
Nys = —B<2’”ﬂ;2 + w’(r)>, (4.14)
N, = B(;:z - W) (4.15)

where ¢’ = dip/dr and ¥ (r) and p(s) are two as yet unknown functions. A similar
elimination of @,, Qs and Ny in the third equation of (4.12) yields

Blit + (1 + 7% (r) + 16%)k] = rk(s,r) (4.16)

for the curvature k(s). The deformed surface is perfectly conical over the region of
contact, where k = const. In the region where the surface is free, & = 0 so that
(4.16) has a solution only when 1+ r21’(r) = a® = const., and the equation for the
curvature £(s) is then

i+ (a® + 1%k = 0. (4.17)

We note that equation (4.16) is completely analogous to (3.8) for the confined cylin-
der considered in §3, but here it describes the inextensible conical deformations of
an elastic sheet. Furthermore (4.17) is exactly the equation for the classical planar
FElastica. The nature of the mathematical analogy that relates conical and cylindri-
cal deformations of thin elastic sheets suggests the following conjecture in higher
dimensions: while the kinematic constraints that describe inextensible surfaces will
necessarily vary according to the dimension of the manifold and its embedding, the
hypersurface which generates isometric embeddings and minimizes the squared cur-
vature always satisfies the FElastica equation (4.17).

(¢) Global force and torque balance

For the case of conical deformations, since 1'(r) = —(1 — a?)/r%, we have 1) =
—(a?® — 1)/r.1 Substituting into (4.14), (4.15), we can deduce the in-plane stresses
B o 2
NSS = _ﬁ(ﬁ + 2(@ - 1)), (418)
B T
Ny =K +20@*-1))(1- 5 ). 4.19
st + 2@ =) (1- 1) (4.19)

t The constant of integration can be absorbed in the definition of the function ¢(s).
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Here ¢(s) is determined by the boundary condition that the radial stresses vanish
at the boundary of the sheet, i.e. N,..(r = R,) = 0. As we will show later (§4 ¢ (i))
a® —1 > 0 for the case of moderate deflections so that the sheet is under compression
in the azimuthal direction and under tension in the radial direction, i.e. Ngy < 0,
N > 0.

(d) Forces in the contact region

Although the solution to (4.17) yields the complete geometry of developable conical
surfaces, the surfaces are not uniquely determined unless a self-equilibrated system of
forces compatible with (4.16) is prescribed. Along the region of the surface in contact
with the cylindrical frame, the externally applied normal force k(s,r) = k.(r) must
be independent of the arc length because of translational symmetry along the line
r = const. However, this result is inconsistent with global torque balance. The torque
due to the contact forces on the right sidet with respect to the tip of the cone is
given by

T R,
Tright = / dAru x K = / dst/ drr?ke(r). (4.20)
right Sc 0

In the region where the surface is in contact with the cylindrical frame, ¢ = 0, so
that t = ey and n = ny. A change of variable from the arc length s to the angle 6
allows us to rewrite the previous relation as

RP
Thignt = sin Be(sin fees + (1 — cos 6.)er) / dr ke (r). (4.21)
0
A similar calculation for the contact forces on the left side gives
RP
Tiety = sin B.(sinf.es — (1 — cosb.)eq) / dr r2kc(7'). (4.22)
0

Adding both contributions, we see that the sum does not vanish unless an additional
component in the es-direction is accounted for. Thus a localized external force is
needed at the points s = +s., where the sheet just contacts the frame. Its magnitude
may be determined by requiring the balance of torques, i.e.

/ ds/ drres - (ru x K) + sin 3, sin 6, / drr?k (4.23)

where s =s.4+n, n — 0. Writing the localized force at the contact points
K = —Xé(s — Sc)n, where 0(s) is the usual Dirac delta function, we find that
X = ke sin . tan 6. and finally

K = —kc(r)(1 4 sin 8. tan 0:.5(|s| — s¢))m,  |s| = se. (4.24)

We observe that the contact force on the cone (4.24) is completely analogous to the
formula for the contact forces on the puckered cylinder (3.13). Here s is the scaled
length and is thus dimensionless.

1 The right side is defined as the region of points with positive coordinate along the ex-direction.
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(e) Force at the tip

The determination of the function k.(r) and hence the value of the total force
applied at the tip can be carried out easily for the case of a conical sheet in contact
with a conical frame with a constant opening angle 3., since in this case the externally
applied force is discontinuous along two radial lines s = =+s., but not elsewhere.
Evaluating (4.16) for this case gives

Rc

%@:Boﬁ+§>ﬂ, (4.25)

where k. is the curvature along the contact region. Then the total external force
is given by integrating (4.24) over the contact region. In the experiments to be
discussed later, a flat sheet is pushed into a cylindrical frame (Cerda et al. 1999;
Cerda & Mahadevan 1998; Chaieb & Melo 1998), leading to a localized distribution
of externally applied forces along the line of contact, rather than along an area of
contact. To circumvent dealing with the resulting singular distribution of external
forces, we use a simpler definition for the averaged force

_oU 10U

~9d RO’
where U is the total elastic energy of the puckered sheet in contact with the cylindrical
frame. Assuming that the energy of a sheet in contact with a cylindrical frame is
approximately equal to the energy U of a sheet in contact with a conical frame
(equivalent to an averaging procedure in the radial direction) U ~ U.

To determine the relation between the contact forces and the variation of the
elastic energy, we use the principle of virtual work which states that

(4.26)

5U:/rdrdsK~(5r, (4.27)
A

where the domain of integration is the entire surface, A, of the cone. Because K =
—kn and is different from zero only in the contact region, the contribution to the
integral arises from terms of the form n - dr = rd,. Substituting for K from (4.24)
into (4.27) leads to

oU 5 , Bo o

e = 2sin” fe(m — s¢ + sin . tan 6,) drrke(r). (4.28)

€ 0

Here, the independent variable §3. has been replaced by de in light of (4.1), and k.
is given by equation (4.25). Finally, in light of the geometrical identities

1
Ke = &, sin Be(m — ) = (7 — sc), sin fc = ma
we may write
10U B, R,2e(a®+ 3&2
_ B B2t aE) L anoy). (4.29)

T RO R R, (1+e2)32
The parameter R, denotes the size of the core region near the tip r = 0, where
the inextensible approximation is invalid owing to the effects of double curvature
which induces stretching deformations. A detailed analysis of this region is beyond
the scope of this paper; later on, we shall present a simple scaling argument for its
size, consistent with earlier experiments.
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(f) Small-deflection analysis
(i) The deflection of the fold

When ¢ < 1, the angle o = %ﬂ — B ~ O(e), and the sheet deflection is small.
Furthermore, the angle of rotation ¢ < 1 and (4.8) and (4.9) show that & ~ ¢, so
that the curvature x yields the following differential equation for the deflection a:

K=&+ a. (4.30)
In this limit, (4.17) for the FElastica reduces to
i+ a’k = 0. (4.31)

To account for the possibility that the conical solution has several folds in different
positions, we first solve (4.31) without choosing a specific origin for the arc-length
coordinate s. If there is no contact between the angles s; < s < s, the general
solution to (4.31) is k = Acosa(s — sp) + Bsina(s — sg) where sg, the fold location
is defined as sp = (s2 + s1)/2. The distance from sg to the contact point sz is then
Sc = S92 — Sp, so that s9 = sg 4+ sc and s;1 = sy — s.. Because the sheet cannot
sustain localized (point) torques in the absence of adhesive forces with the frame,
the curvature is continuous at the contact points, and x(s1) = k(s2) = kc. Matching
the solution of the free region with the perfectly conical region we find that

o = cSo8als — o) (4.32)

COS aS.

The above equation defines a two-parameter family of solutions characterized by
the number of folds and their amplitude, once the total deflection angle ¢ is given.
To determine the shape of the sheet, we solve the approximate equation (4.30) and
enforce continuity of the function « and its first and second derivatives at the contact
points. Using «a(s1) = a(s2) = ¢ and &(s1) = &(s2) = 0 yields the solution

o e <sin sccosa(s — sg) — asinas. cos(s — 30)) (4.33)

sin s, CoOS as; — a Sin as, CoS S

subject to the constraint of continuity of the azimuthal curvature, i.e. the second
derivative, at the contact point given by

atan s, = tanas.. (4.34)

The condition (4.34) can be rewritten, by using the variable x = as., as

tan s _ tanx. (4‘35)

Se¢ x

This relation defines a single-valued function s.(z) for 0 < s. < 7 (see the appendix),
and defines the first condition that determines the shape of the sheet.
A second condition is given by the requirement that the surface is continuous when
the arc length s varies from 0 to 27. At the lowest order (4.7) gives
) 1= 14 .
0 ~ 2~ 1—1(a®—d?),

N—i
12a
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so that this requirement may be written as fir dsf = 27 or
/ ds(a? — &%) =0. (4.36)

The evaluation of this integral requires knowledge of the number of folds, IV, in the
surface; each fold contributes

/52 ds (a? — a?) = &2 sesec

S1

2z — tan s. (222 — s2)

2
Sc

= 521(;5)7 (437)

where we have used relation (4.35) to simplify the integral, and the last relation
defines the function I(x). Although the angular size of the free region so — s1 = 25,
can be different for each fold, here we will not consider this case, and we will assume
that all folds are identical. Since the contribution from the contact regions to the
integral (4.36) is €2(2m — N X 2s.(7)), so that the inextensibility constraint (4.36)
reads

g(x) =2m+ N(I(x) — 2s.(x)) = 0. (4.38)

Solving this last equation yields z and thence s. via (4.34). We observe that since
the inextensibility constraint is not sensitive to the position of each fold, the actual
phase of the folds, sg, remains undetermined. In §4 f (iv) we will see that this phase
is determined by a symmetry-breaking instability in the system.

Since it is possible to find solutions of (4.38) which have multiple folds, we must
compute the energy of each solution to determine its relative stability. The bending
energy stored in the deformed sheet is given by

U, =1BIn gp / ds k°. (4.39)

* —T

In light of (4.30), (4.33)—(4.35) the contribution to the energy of each fold is

R,
Up =1Bln / (&4 ) —1BlnR £2(tan s. + s. sec? )

R
= 1B R—js%(w), (4.40)
and the total bending energy of the structure with N folds is
R
U, = 3BIn R—p52(27r + N(e(x) — 25¢(z))). (4.41)

(i1) A fold with sub-folds

For the case of a single fold, substituting N = 1 in equation (4.38) leads to g(x) =
2(m — s¢(z)) + I(x) = 0 with a graphical solution depicted in figure 7. There is a one
parameter set of solutions for this case and each corresponds to just one main fold
but with a different number of sub-folds. The first root of g(z) = 0 is x; = 4.61 and
has the profile a7 in figure 8. For this case, the azimuthal size of the free region is
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8(x)
21 SC(X) T
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Figure 7. Graphical solution of the equation g(z) = 2(w — sc(z)) + I(z) = 0,
which defines the azimuthal size of a single fold following (4.35), (4.38).

o

~

Oy —,

N
—T T

Figure 8. Angular profile a;(s) corresponding to the different solutions given in table 1.

Table 1. Energies for different configurations of one main fold

(The solution with one sub-fold (¢ = 2) has three times more energy than the solution for no
sub-fold (2 = 1) (see figure 8).)

i i 2. 2U»/BIn(R/R.)

1 461 243 133
2 780 244 380
3 11.0 244 751

2s. = 2.43 ~ 139°, consistent with experiment (this is the solution reported in Cerda
& Mahadevan (1998)).

Continuing with this analysis, we find that the ith root of g(x) = 0, x; has i sub-
folds; a good approximation to its value is x; = (2i + 1) /2. However, the azimuthal
extent of the free region does not change much and has an accumulation point close
to 2s. & 2.44 (see table 1). To estimate the energy of these different solutions, and
thence their stability, we use the expression (4.41) for the bending energy, simplified
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Figure 9. The conical elastica with (a) one fold and (b) two folds (see table 2).

Table 2. Total energy of the folds given in figure 9

N T 2sc  2Up/BIn(R/R.)

1 4.61 2.43 133
2 460 224 169

Figure 10. Photographs of a conical shape with (a) one fold and (b) two folds. The observations
are consistent with our calculations, which show that the two solutions are energetically similar.

by using the inextensibility constraint so that

2
Up = Bln & [62 <$> (7 + tan s — s¢) |- (4.42)
R. Se¢

In table 1, we show the values of the bending energy for configurations with zero
(i = 1), one (i = 2) and two (i = 3) sub-folds. We see that the energy for the
configuration with a single sub-fold, depicted by as in figure 8 is approximately
three times the bending energy of the basic fold depicted by a1, explaining why
main folds with sub-folds are not observed. Because a main fold decorated with sub-
folds is always energetically less favourable than one without any, from now on we
will limit ourselves only to simple folds.

(iii) Two or more folds

We now consider the case with two or more folds. When the number of folds
N = 2 the solution to the relation (4.38) yields = 4.60, corresponding to two
simple folds with an azimuthal width 2s. = 2.24 for each fold and is depicted in
figure 9b, adjacent to the shape with one fold. The corresponding bending energy
calculated using equation (4.41) is shown in table 2. Although the solution with
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pushing force

Figure 11. Schematic of set-up and geometry when the packing force is applied
at a distance b from the centre of the frame.

one fold is energetically preferred, the relative energy difference (Uy[two folds] —
U [one fold])/Uy[one fold] = 0.3 is not so big. Indeed, it is possible to observe the
solution with two folds (see figure 10) when some care is taken.

For the case N = 3 the relation (4.38) yields x = 4.58 but this solution is inad-
missible because the total angular sector over which the sheet is in contact with the
cylinder is (2 — 3 x 2s.) < 0. This conclusion is also qualitatively consistent with
our observations.

(iv) Determination of the phase and position of a fold

We now consider the azimuthal location of the fold. If the sheet is pushed axisym-
metrically at the centre of the frame, the position of the fold is undetermined and
sp is unknown. This symmetry is broken if the force is applied at a distance b from
the centre, as shown in figure 11. Then the angle o that the generators make with
the horizontal plane must satisfy the inequality

a > e(0), (4.43)

where £(0) = d/¢(0), with £(6) = —bcos 6 + (R? — b?sin® §)/? being the distance
from the point of application of the force to the cylindrical frame and the angle 6 as
measured in figure 11. In terms of the two dimensionless parameters, ¢ = d/R and
d = b/R, we can write

5
~ —dcosf+ (1 —62sin?9)1/2°

e(0) (4.44)

Since the relations (4.30), (4.31) remain valid in this regime, the shape of the sheet
in the free region can be written as

a = Acosa(s — sg) + Bcos(s — sg) + Csina(s — so) + Dsin(s — sg). (4.45)

However, the continuity conditions at the point of contact with the frame are
now different from the earlier case where the sheet is pushed symmetrically. To
leading order, s & 6, so that continuity of the deflection «(s) and its derivative
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Figure 12. The photographs show a fold at (a) m, (b) /2 (—m/2 corresponds to a reflection
about an axis connecting the centre of the circle to the point of forcing) and (c) 0.

yields a(s1) = e(s1) and &(s1) = £(s1), etc. Therefore,
1
2

« ((e2 +€1)sinsc + (€2 — €1) cos s¢) cos a(s — Sp)

— ((é2 — €1) cos ase + (2 + €1)asinas.) cos(s — so)]

+ ——[((e2 — 1) cos sc — (€2 + £1) sin s.) sina(s — sg)
2W,
+ ((¢2 + €1) sinas. — (e2 — €1)acosas.) sin(s — sp)],
(4.46)
where €1 = £(s1) and &1 = £(s1), etc., and
W1 = (sin s. cos as. — asin as. cos s¢), W5 = (sin as. cos s, — asin s. cos as.).
The continuity of the second derivative (azimuthal curvature)
d(Sl) = 5(81), 6&(82) = 2"5.(82) (447)
gives
a(ss) + alsy) = E(s2) + €(s1),
H(22) ..( ) ..( ?) ..( 2 (4.48)
G(sg) — G(s1) = &(s2) —E(s1).

These two conditions together with the inextensibility constraint (4.36) are sufficient
to determine the contact parameters a, s. and sq.

We are now ready to consider the limit § <« 1 and determine the phase of the
fold. In this limit the conditions (4.47) yield £(s) ~ 0 and &(s2) ~ @&(s1) ~ 0, so that
(4.47) is equivalent to (4.35) studied for the axisymmetric case in §4 f (i). However,
the second condition in (4.48) does not have a corresponding limit and an expansion
of this equation to second order gives

(a® — 1) sin® s sin as.
Wa

= (2sin s, sin s9)ed + 4sin s, cos s¢ sin 25002 4+ O(5°).

(2sin s sin sg)ed + ( 4+ cos sc) sin s, sin 250262 + O(6°%)

As 6 — 0, the above equation has the approximate solution sin2sg = 0, so that the
phase of the fold sy = 0,+7/2, 7, and can be verified for arbitrary § using a more
sophisticated calculation. By pushing a sheet of acetate into a cylinder with small
variations in the centre of force, it is easy to observe that the fold will be in one of
these positions, as shown in figure 12.
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(9) Large-deflection analysis

To understand the onset of nonlinear behaviour, we consider the force—displace-
ment response of the system. We start with (4.29), which yields F' ~ & when € < 1,
i.e. the system behaves like a linear spring for small deformations. Using the linear
solution obtained in (4.32), we find that the curvature amplitude is £/ cosas, with
cosas. = cosx ~ —0.1 for the solution with one fold (z ~ 4.61 ~ 37/2 in table 2).
Therefore, we expect nonlinear behaviour when the maximum curvature is no longer
small, i.e. when € ~ 0.1.

(i) Determination of the displacement

The set of angles {0, 3, ¢} that determine the shape of the developable cone corre-
sponds to the classical Euler angles for the kinematics of rigid-body motion. While
this allows us to study the large deformation behaviour of sheets, this representa-
tion breaks down at the polar singularities § = 0, 7. To describe arbitrary rotations,
we resort to the use of a singularity-free parametrization of rotations in terms of
the Euler parameters qo, g1, ¢2, g3 (which are the components of the quaternions of
Hamilton) recalling that the Euler angles are related to the Euler parameters via the
relations (Goldstein 1980)

qucos%ﬂcos%(t?—l—gb), q2 :sin%ﬂsin%(e—@, (4.49)

q :sin%ﬁcos%(e—d)), q3:cos%ﬁsin%(9+¢). ‘
Once the curvature of the conical surface is determined by solving (4.16), the shape
of the surface is reduced to the integration of the kinematic relations (4.7)—(4.9).
In terms of the Euler parameters, these nonlinear equations acquire extraordinary
simplicity and yield the linear system

do = —3 (kg3 + q2), Go = —3(kq1 — QO)a} (4.50)

¢ = 3(kg2 — g3), s = 5(kqo + @)

In the contact region the integration is accomplished trivially since the curvature
is constant. Then 8§ = 7 — (7 — s)/sinf., B = B. and ¢ = 0 with S.(g) given by
relation (4.1), and immediately yields the values of the quaternions in terms of (4.49)
there. In the free region, equations (4.17) and (4.50) for the free Elastica are coupled
and must be integrated simultaneously for 0 < s < s. with the boundary conditions
B(sc) = fe, 0(sc) = be, ¢(sc) = 0and k(s.) = ¢, 6(0) =0, $(0) = 0 and £(0) = 0 (the
symmetry of the solution ensures that the curvature is an even function of the arc
length, so that its derivative is zero in the plane of symmetry). The five unknowns:
B, 0, ¢, k and £, and the unknown parameters s. and a? can then be found using a
shooting method to solve (4.50) in light of the seven boundary conditions.

Figure 13a shows the arc length s. and the angle of contact 6. as a function of
the parameter €. We observe that s. and 6. are similar when & < 0.1 as expected,
but diverge for larger values of €. Our analysis of the forces in §4d showed that
the contact angle 6. < 7/2 in the absence of any adhesive contact forces. This limits
the validity of our analysis to situations where € ~ 0.97 or (. ~ 46°. Beyond this
the conical structure is unstable, and in a displacement-controlled experiment the
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Figure 13. (a) Numerical values of the contact arc length s. and its projection 6. as a function
of the vertical displacement e. (b) The dimensionless force Fo and the Lagrange parameter a®
as a function of €. These solutions were obtained by solving (4.17), (4.50).

Figure 14. Geometry of the conical solution for the value € ~ 0.97.
The structure collapses when € > 0.97 in a displacement-controlled experiment.

conical shape will collapse on itself with new regions of contact to balance torques
globally. Figure 14 shows the shape of the surface for this limiting value of €.

To understand the response of the sheet to a force, in figure 13b we plot the
dimensionless axial force Fy = RF/BIn(R,/R.) and the Lagrange multiplier a?(¢),
which is a measure of the azimuthal force as a function of the packing parameter
e. We observe the expected linear relation Fy ~ ¢ and a® ~ const. for ¢ < 1. Since
a® ~ const. the azimuthal force Ny, = —B(a? — 1)/r% < 0 (see equation (4.18)), as
expected. As ¢ is increased, a? and thence Ny, decrease monotonically, and can switch
sign, eventually becoming tensile for € ~ 0.97. A second consequence is that the total
force Fy, which depends on a?, as seen in (4.29), is a non-monotonic function of € and
has a maximum when € &~ 0.32; hence the structure will collapse in a force-controlled
experiment when F' > Fy(e =~ 0.32) ~ 24.65. The physical mechanism driving this
instability can be seen most easily by considering its two-dimensional analogue, which
arises when a thin plate is pushed in between two supports by a force that acts normal
to the line joining the supports. In the absence of friction, the reactions from the
supports gradually rotate towards each other until they can no longer balance the
applied force, leading to a collapse of the structure.
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Figure 15. Experiments for two sheets of different materials. We plot the dimensionless force
Fy = RF/BIn(R/R.) after fitting the linear part by using the parameter R.. For acetate
B=51x10""Nm, R=10x10"2m and R, = 1.5 x 1072 m, so that the size of the core is
found as R. = 3.4 mm. For steel, B=7.8x10"*Nm, R=3.8x102?mand R, =4.3x10?m
and then the size of the core is R, = 3.6 mm.

(ii) Comparison with experiment

We now turn to a comparison of our results with experiments on the response of
a conically deformed sheet (Chaieb & Melo 1998; Cerda et al. 1999) that is packed
into a cylindrical frame. In figure 15 the response curve showing the force F' versus
the displacement € € (0,0.2) is given for sheets of acetate and steel.

Since the axial force given by equation (4.29) is a universal function of the deflec-

tion e except for a factor
E In By
R R.

(see equation 4.29), we expect all the experimental data to collapse onto this curve.
In figure 15 we show that this is indeed true. We note that the data collapse requires
fitting the linear regime to determine the size of the core R, which we verify to
be consistent with the experimentally measured values; the bending stiffness B, the
diameter of the cylinder R and the plate radius R, are all independently measured.
Furthermore, the curves show that the linear relation between force and deforma-
tion persists for € < 0.1, beyond which the sheet responds by softening nonlinearly,
consistent with our theoretical estimates.

This softening behaviour has a simple geometric origin. In the absence of fric-
tion, the contact forces from the confining container are always normal to the sheet.
Thus as the deformation increases, these forces rotate and eventually cannot sustain
the sheet in equilibrium. This leads to a geometric instability in a force-controlled
experiment—one that saturates when different parts of the sheet come into contact.

(iii) The size of the core

We now estimate the core size characterized by the radius R., which results from
a balance between the bending and stretching energy. In the core of area AS, the
stretching energy is U; ~ Esy2AS, where 7 is the in-plane strain and Ej is the
stretching stiffness. The bending energy in the core is Uy, ~ Epk2AS, where & is
the mean curvature in the core and characterizes the bending strain and Ejy, is the
bending stiffness of the sheet (=B for the case of an isotropic sheet). When o, o < 1,
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Up ~ K% ~ a? ~ &2. Therefore, for small deformations, k ~ &/R,. The stretching

strain can be estimated from the change in length of a typical generator of length R
(corresponding to the size of the cylinder), the scale over which forces and torques
are exerted. Due to the stretching induced by bending in the core region the length
of the generator becomes 1/ R? + 2 R2; this leads to a stretching strain of order

VR2+eR2—R eR, \
’YN R ~ .

R

Substituting these strains into the expression for the total energy leads to

g2 eR?
U~Up,+Us ~ (EbR2 + E 2 )AS. (4.51)
We note that this energy increases when R, is too big or too small, so that there is a
natural optimum size of the core for a given displacement ¢. Minimizing U in (4.51)
with respect to R, yields the scaling law

B \/6
R, ~ <Eb> eTBR2B. ek, (4.52)

S

consistent with our prior experimental results (Cerda et al. 1999). The first factor
in the scaling law is associated with material properties; for an isotropic material,

Ey h?
E, 1-—v%
where h is the sheet thickness and v is Poisson’s ratio. The second arises from the

geometry of deformation since € characterizes the cone angle. This factor also hides
a subtle dependence on the force

since the force—deflection relation, discussed earlier, is of the form

_(FR
E—UEb,

where v(s) is a dimensionless function. There is also a logarithmic dependence on
the sheet radius Rj,. The third factor characterizes the length R associated with the
moment arm of the reaction force along the hoop. We note that this scaling law is
valid for contact with a cylindrical edge where the forces and torques are applied
over a length R much larger than the core size R, < R so that the sheet responds
to stretching only very gently in response to the constraint of packing. If, on the
other hand, the sheet is packed into a perfect cone, it will come into contact with
this enveloping cone everywhere except in the core region. Then R ~ R,, so that the

scaling law (4.52) is modified to
- By 1/2671
* ES

(Ben Amar & Pomeau 1997; Cerda & Mahadevan 1998).
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In Cerda et al. (1999), when € > 0.1, we reported a second scaling law. However,
this claim is not borne out under further scrutiny, and evidence for this comes from
the fact that the force—displacement curve does not show any scaling behaviour for
moderate/large €.

5. Discussion
The packing of continua generally involves a number of features:
(i) a reduction in the available area or volume that is main cause of packing;

(ii) the presence of regions of contact of the sheet, either with itself or with the
confining boundary;

(iii) a small number of constituent ‘elements’ that interact with each other to pro-
duce a structure with a distribution of length-scales;

(iv) the presence of nearly singular structures such as contact lines and peaks;
(v) disorder in the distribution of the inhomogeneities and structures.

In both problems studied we used a combination of exact solutions and dimensional
reasoning to analyse some of these features; the strong geometrical similarity between
the two problems allowed us to treat them in a unified way. Our treatment has,
however, been limited to answering only the simplest of questions associated with
the shape, response and stability of the ‘elementary excitations’ in these packing
problems in the limit of weak to moderate confinement. As the confinement becomes
strong, the number of these ‘excitations’ increases and they interact with each other
to form higher-order structures on a range of length-scales. The difficult question
of how the topological constraint of impenetrability is manifested in the physical
realization of crumpling is one which we have not addressed here. However, this is
clearly one of the defining characteristics of strongly crumpled sheets, and has, to
the authors’ knowledge, never been treated in a systematic way.

We conclude with a discussion of how our results might shed light on the ques-
tion of crumpling and packing of continua. It might be easier to treat the case of
cylindrical packing, since we know that the shape of the cross-section of the multi-
lobed cylindrical sheet must be made up of circular arcs (where it is in contact with
the confining cylinder), elliptic functions (solutions to the Elastica equation) and
flat regions (where different parts of the sheet are in contact with each other in the
interior of the cylinder). In the packed sheet, these elementary ‘excitations’ must
be glued together along contact lines where the curvature of the sheet is continuous
but its tangential derivative suffers a jump proportional to the normal force between
the sheet and itself and/or the confining boundary, as we have already seen in the
analysis of a single ‘bump’ in the puckered cylinder.

In the case of true three-dimensional packing and crumpling, our study has uncov-
ered the role of geometric instabilities that lead to the generation of smaller and
smaller length-scales. A series of such events, i.e. geometric softening, dynamic snap-
through, local topological stiffening, provides us with a microscopic mechanism for
the crumpling of a large thin elastic sheet. As the sheet is deformed by a force, it
forms a developable cone that deforms, softens and eventually becomes dynamically
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Figure 16. A plot of the function sc(z).

unstable, and an acoustic pulse is emitted when the sheet pops into a folded configu-
ration. This stiffens the sheet locally, but soon new developable cones and stretched
ridges which connect them begin to form. Ridges may buckle in the plane of the
ridge by forming a developable cone about which the ridge pivots and folds, locally
leading to roughly the same scenario as that for a single conical dislocation, or they
may buckle in a direction perpendicular to the ridge by forming two dislocations
that move apart along a new ridge about which the original ridge folds, leading to a
scenario like that seen during the bending of a drinking straw. This second scenario
stiffens the sheet enormously by forming a convex cylindrical structure. A cascade
of these instabilities on ever decreasing length-scales leads to the formation of new
conical dislocations as the sheet crumples, and the energy of deformation is pumped
down to smaller and smaller scales. As the size of these folds becomes smaller, the
incremental deformation is concomitantly less, and a cross-over to the regime where
stretching and bending deformations are of the same order is likely. However, any
analysis of this stage in crumpling must also account for inelastic deformations. On
length-scales much larger than the thickness but much smaller than the length or
breadth of the sheet, these dynamical snap-throughs could constitute a self-similar
cascade. This is an area that could quite clearly benefit from further computational,
theoretical and experimental work.
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Appendix A. Definition of the function s.(x)

Relation (4.35) can be written as

sela) = y<ta”) (A1)

X
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and defines s.(z). For the function u(y) = tany/y in the interval 0 < y < m, we find
that tany/y > 1 or tany/y < 0 so that the inverse function y(u) is undefined in
0 <u <1 (see inset in figure 16).

The non-existence of the function y(u) for a range of values of u implies that
sc(x) does not exist for a range of z determined by 0 < tanz/xz < 1, i.e. when
x € [nm,ry), n = 1,2..., where r, is the positive root of the equation tanz = x
when nm < x < (1 + n)w. For instance, r; = 4.49, ro = 7.72, etc. In figure 16 we
show the particular form of s.(z) which determines the shape of the sheet with one
or two folds.
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