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We give a hydrodynamical explanation for the chaotic behaviour of a dripping
faucet using the results of the stability analysis of a static pendant drop and a
proper orthogonal decomposition (POD) of the complete dynamics. We find that the
only relevant modes are the two classical normal forms associated with a saddle–
node–Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows
us to construct a hierarchy of reduced-order models including maps and ordinary
differential equations which are able to qualitatively explain prior experiments and
numerical simulations of the governing partial differential equations and provide
an explanation for the complexity in dripping. We also provide a new mechanical
analogue for the dripping faucet and a simple rationale for the transition from
dripping to jetting modes in the flow from a faucet.

1. Introduction
Almost since the beginning of the modern revolution in nonlinear dynamics and

chaos, the dripping faucet has served as a paradigm of chaotic dynamics (Shaw
1984). To explain the transition to chaos, various ad hoc mechanical models based
on variable-mass and spring systems have been used to derive return maps and
Poincaré sections for the time between droplet emissions. Nearly twenty years on,
this empirical approach still continues (see Kiyono & Fuchikami 1999 for a recent
example along with a review of earlier work), while the connection to hydrodynamics
remains tenuous. In contrast, over the last decade, the hydrodynamical approach
has been used with great success in studying the pinch-off of a single drop using
a combination of theory, numerical simulation and experiment (for a review see
Eggers 1997). Thus it is natural to bring this understanding of the hydrodynamics
of drop emission to bear upon the complex dynamics of dripping and understanding
its origins. Two recent attempts in this direction are Fuchikami, Ishioka & Kiyono
(1999) and Ambravaneswaran, Phillips & Basaran (2000) who simulate the chaotic
dynamics of dripping using simplified lubrication-like approximations of the Navier–
Stokes equations. However, the mechanistic origins of the complexity in dripping still
remain elusive.

Our goal in this paper is not as much to match the images of chaotic dripping
seen in experiments or numerical simulations as to see how we might qualitatively

† Present address, DEAS, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.



2 P. Coullet, L. Mahadevan and C. S. Riera

explain what seems to be a complex dynamical process as simply as possible. With
this in mind, we derive a series of models culminating in a mechanical analogue, all of
which capture the salient features of periodic and chaotic dripping and jetting, thus
bringing a focus on the physical mechanisms responsible while providing a guide to
further work on related problems. Some preliminary results of this nature were first
announced in a conference proceedings (Coullet, Mahadevan & Riera 2000) a few
years ago. In § 2, we revisit the equations of equilibrium for a static pendant drop.
In § 3, we describe a Lagrangian model based on lubrication theory for the evolution
of the drop and use it to carry out a linearized analysis of the static drop shapes
as a function of their volume. In addition, we also present solutions of the complete
dynamical evolution associated with dripping for a range of flow rates and evaluate
the bifurcation diagram that shows the transition to chaos. In § 4, we analyse these
chaotic solutions using proper orthogonal decomposition and a time-delay method,
both of which suggest that a low-dimensional model should suffice to explain the
complexity of dripping. In particular, we show that the dynamics can be recast in
terms of a hierarchy of low-dimensional models, i.e. coupled ordinary differential
equations and maps, in § 5, which are qualitatively consistent with prior experiments
and yield a simple physically consistent picture of the complex dynamics in terms of
well-known concepts in dynamical systems. Guided by these models, we propose a
new mechanical analogue of the dripping faucet in § 6. We conclude the paper with a
brief discussion in § 7 of how our models can rationalize the transition from dripping
to jetting.

2. Equations of equilibrium
We start with the case where the flow rate is very small, so that a drop remains

attached to the faucet until its volume exceeds a threshold Vc. For a faucet of radius
R that is sufficiently small, drops with a volume V <Vc are stable and axisymmetric
(Padday & Pitt 1973), and we will restrict ourselves to this case. The shape of such
a pendant drop is determined by minimizing the sum of its gravitational and surface
energy subject to the constraint of constant volume. Alternatively, we can write the
dimensionless equation for the balance of forces normal to the interface as

dθ

ds
− cos θ

r
= −z, (2.1)

where the drop interface (r(s), z(s)) is determined by the kinematic conditions

dz

ds
= − cos θ,

dr

ds
=sin θ.


 (2.2)

The variables r , s, θ and z are defined in figure 1(a). The characteristic scales are:
l0 =

√
Γ/gρ for length, m0 = ρl30 for mass, t0 = (Γ/ρg3)1/4 for time, where Γ , ρ, g are

the surface tension, density of the fluid and gravity respectively. For water at 20 ◦C,
l0 = 0.27 cm, m0 = 0.020 g, t0 = 0.017 s. The boundary conditions at the bottom of the
drop are r(0) = 0, θ(0) = π/2 and z(0) = Pb/ρg, where Pb is the unknown hydrostatic
pressure at this position and serves as a control parameter that describes the family of
stationary drops. Choosing a value for Pb, we integrate (2.1), (2.2) as an initial value
problem until r = R (R = const) and find the corresponding drop volume V =

∫
πr2 dz.

For a given Pb when R < 1 the condition r = R may be satisfied for up to three different
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Figure 1. (a) Schematic of the static drop. (b) The dimensionless hydrostatic pressure at the
bottom of the drop Pb as a function of the dimensionless volume V of the drop for different
values of the dimensionless faucet radius R = 0.5 (left-hand curve) and R = 1.0 (right-hand
curve). Solutions of (2.1) and (2.2) yield the P –V curves shown, with the the solid line
corresponding to stable static drops and the dashed line corresponding to unstable stationary
drops.

drop volumes and lengths (Riera & Risler 2002). These pendant drops are shown
in figure 1(b) for different faucet radii R. However, the only stable stationary drop
corresponds to the branch starting at the origin and ending at the first turning point
(Padday & Pitt 1973) which denotes the critical drop volumes Vc for which the weight
of the drop is just balanced by the capillary forces. The corresponding shapes have a
waist where the dynamic instability associated with eventual pinch off first starts.

3. Equations of motion
To understand the mechanism of this linear instability dynamically, we consider the

hydrodynamical equations linearized about a stationary solution. Instead of using the
complete Navier–Stokes equations for Eulerian one-dimensional lubrication theories
(Eggers & Dupont 1994), we simplify the analysis by using a new lubrication model
embodied in a Lagrangian approach for the fluid (Fuchikami et al. 1999). The inherent
assumptions in this are the following: (a) the drop remains axisymmetric during its
motion, (b) the radial component of the fluid velocity is negligible compared to the
axial component which depends only on z, (c) there is no overturning of the interface
r(z). These assumptions are asymptotically valid for slender drops of large viscosity,
but recent simulations of the resulting low-order equations (Fuchikami et al. 1999)
have shown good agreement with experiments even for fairly squat drops of low
viscosity. The above assumptions lead to the conclusion that there is no exchange
of fluid between neighbouring horizontal slices of the drop, so that the volume of a
slice is constant during the motion and can be treated as a Lagrangian variable. This
yields a formulation that is essentially equivalent to the earlier Eulerian description.
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Explicitly, the volume between the planes zb(t) and za(t) is

ξ (za, zb, , t) =

∫ zb(t)

za (t)

πr(ζ, t)2 dζ (3.1)

where r is the radius of the drop. In terms of the Lagrangian variable ξ (za, zb, t), we
can write the kinetic energy Ekin, potential energy Ug and surface tension energy UΓ

of the system as

Ekin =
ρ

2

∫ ξ0(t)

0

(
∂z(ξ, t)

∂t

)2

dξ,

Ug = −ρg

∫ ξ0(t)

0

z(ξ, t) dξ,

UΓ =Γ

∫ ξ0(t)

0

√
4πz′ +

(z′′)2

(z′)4
dξ.




(3.2)

Here ξ0(t) is the total volume of the drop at time t , and a prime corresponds to a
partial derivative with respect to the Lagrangian variable ξ . Then we can write the
Lagrangian of the system as

L = Ekin − Ug − UΓ . (3.3)

The effect of viscosity is expressed using the Rayleigh dissipation function

Ėkin = −3η

∫ ξ0(t)

0

(
v′(ξ, t)

z′(ξ, t)

)2

dξ. (3.4)

Lagrange’s equation for the system is

d

dt

∂L
∂v

=
∂L
∂z

+
1

2

∂Ėkin

∂v
. (3.5)

For the purposes of computation we follow the method of Fuchikami et al. (1999)
and discretize the Lagrangian spatially so that the drop is effectively sliced into
N disks; each disk is characterized by three variables: the position zi , the velocity
vi = ∂zi/∂t and the mass mi . A disk is divided in two when its relative thickness (ratio
of its height to its width) exceeds a threshold (0.05 in a typical simulation) to keep it
slender. This occurs because of either the added volume at the faucet or the change
in the shape of the drop in the necking area. Two consecutive disks are combined
when their relative thickness falls below a different threshold (0.075). The splitting
and merging are done so as to conserve volume and momentum†. This auto-adaptive
mesh leads to a variation of N between 50 and 4000 during a typical simulation (see
figures 2 and 3).

The discretized Lagrangian then yields the N equations of motion

d

dt

∂L
∂vi

=
∂L
∂zi

+
1

2

∂Ėkin

∂vi

, i = 1, N. (3.6)

These equations of motion are then integrated using a fifth-order Runge–Kutta
method with an adaptive timestep that is based on the local truncation error (see
figure 2). The initial condition is either a stable stationary solution of the equation of
equilibrium (2.1), (2.2) or a hemisphere.

† Other quantities are not conserved as accurately, as in Fuchikami et al. (1999).
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Figure 2. The evolution of the drop as a function of time computed by solving (3.6). The
snapshots are separated by 0.5 unit of normalized time, unless marked otherwise. Parameters
values for the simulation are R = 1, η = 0.02, g = 1, γ =1, v0 = 0.1.
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Figure 3. Time interval between drops as a function of the exit velocity v0, obtained by
solving (3.6), with R = 0.5, η = 0.02, g = 1, γ = 1. The qualitative features that are apparent
are the oscillation of the time between drops as a function of the exit velocity v0, the single
period-2 oscillations before the chaotic region and finally the transition to chaos via period
doubling and via a boundary crisis. All these features are robust functions of parameters, i.e.
they persist for a range of values. In the inset (i), we show the bifurcation diagram associated
with increasing flow rate and in (ii) the corresponding diagram with decreasing flow rate; we
observe that there is hysteresis.

To determine the stability of the static solution we use the solutions determined in
§ 2 via a shooting method (since there are no analytic solutions for the static shape)
and substitute them into the linearized equation of motion (3.6) in the neighbourhood
of the stationary solutions of (2.1), (2.2) and determine the eigenvalues ωi, i = 1, N ,
of the resulting system. The values of the real part and imaginary part of the three
largest eigenvalues are plotted in figure 4. When V <Vc, Re[ωi] < 0, so that these
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Figure 5. Sketch of the location of the first few eigenvalues when V � Vc . The first ‘nose’ of
the Pb–V curve corresponds to the collision between the unstable ‘saddle’ and stable ‘node’
solutions and leads to a saddle–node bifurcation.

drops are stable. As V → Vc two complex conjugate eigenvalues become real by
colliding on the real axis (figure 5) corresponding to the critically damped oscillator.
As V increases further, the eigenvalues split, but remain on the real axis. One of the
eigenvalues then moves away from the imaginary axis and the other moves towards
it, eventually reaching the origin when V =Vc. This is consistent with figure 5 where
we show the volume of the drop as a function of Pb. The collision of two branches
of stationary solutions, one stable and one unstable, and the disappearance of the
stationary solution when V >Vc is a characteristic of a saddle–node bifurcation.

At low flow rates, the shape of the drop is always close to that of a stationary drop.
The spectrum of the linearized stable solutions with V � Vc, as shown in figure 4
indicates that only two modes are dynamically relevant because the others are rapidly
damped. These modes correspond to (a) an oscillatory damped mode given by the
largest two complex conjugate eigenpairs and (b) a saddle–node bifurcation (figure 5).
To understand the dynamics of drop emission and relaxation, we now turn to the
numerical solution of the equations of motion (3.6) with the eventual goal of justifying
a low-order approximation for this complex process.
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Figure 6. A proper orthogonal decomposition (POD) of the numerical simulation of the
hydrodynamical equations (3.6) for the dripping faucet (R = 0.5, η = 0.02 and v0 = 1.025).
(a) Singular values are plotted for each ‘mode’. (b) The first three modes from the POD
superposed on the average drop shape: 1 corresponds to V1 + rav, 2 corresponds to V2 + rav
and 3 corresponds to V3 + rav (the dashed line corresponds to the interpolated average drop
shape rav) computed as described in the text. Here Vi corresponds to the ith column of the
matrix POD as indicated in the text. We see that just the first three modes capture much of
the dynamical behaviour of the faucet.

4. Galerkin proper orthogonal decomposition
Proper orthogonal decomposition (POD) (Holmes, Lumley & Berkooz 1998) allows

us to project a high/infinite dimensional system onto a finite number of basis functions
or modes. This may be done using the data from the direct numerical simulations,
time series, etc., and allows us to try and understand the qualitatively important
features of a complex process. The optimality of POD derives from the fact that
a truncated POD describes typical members of the ensemble better than any other
decomposition. We use POD to determine if a low-mode approximation of the
dynamics of dripping is valid. As an example we carry out a POD in a regime with
period-2 dripping (v0 = 1.025 � l0/τ0, flow rate q = πR2v0 and R = 0.5) where there is
noticeable difference in the time required for the formation of large and small drops,
allowing us to clearly distinguish the two periods.

The shape of the drop r(z, t) is recorded periodically and a regular spaced mesh
based on the maximum drop length is used to interpolate the typically irregular mesh.
If a point in the interpolated regular mesh is outside the drop we set the radius r = 0.
This mesh is used to compute both the average shape of the drop and the variation
from this shape. This procedure allows us to follow the variance of the shape and leads
to a rectangular matrix M of size m × n corresponding to m snapshots of the variation
of the drop shape on a regular spaced mesh containing n points. The POD of M is
a decomposition of the form M = UDVT , where V is an n × n matrix and U an m × n

matrix. The columns of the matrix V form an orthonormal basis corresponding to the
spatial modes of the drop. The columns of the matrix U also form an orthonormal
basis and correspond to the normalized projection of each snapshot onto the spatial
modes of the POD, i.e. MV= UD where the diagonal matrix D corresponds to the
singular values.

In figure 6 we show that the singular values of the first two modes are distinct from
the other clustered modes for the particular choice of parameters indicated earlier.
This separation of the singular values is strongly dependent on the scaled viscosity η;
as η decreases all the singular values cluster together. The first mode (1 in figure 6)
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Figure 7. Projection of the dynamics embodied in the solution to (3.6), onto the first three
POD modes. The solid line corresponds to the first mode U1D1, dashed line the second U2D2

and dashed-dotted line the third U3D3, with Uj being the j th column and Dj being the
diagonal entry in the matrix POD as indicated in the text.

is associated with the process of drop growth and emission (figure 7 solid line). The
second mode (2 in figure 6) corresponds to the largest damped oscillatory mode
(figure 7 dashed line). Since the higher modes are rapidly damped, we see that the
dynamics of the dripping faucet can be well approximated using only the first two
modes of the basis obtained using POD in this period-2 regime. Similar results are
obtained in different regimes.

We note that a priori there is no direct connection between the linearized modes
and the POD modes. Here we distinguish the two uses of POD. Traditionally, it is
used as a method of simplifying the complex dynamics of high-dimensional systems.
Here our goal is slightly different; what we want to show is that a low-dimensional
description is possible, and in the following we use the linearly stable modes to
construct a hierarchy of low-dimensional models.

We can also reconstructed the phase space of the dynamics by using the time-delay
method (Eckmann & Ruelle 1985). We use the radius of the drop at a given position
above the usual location of the pinch-off so that the variable remains continuous
during the process. We choose different delays T0 = 0, T1, . . . , TN−1 to define our
new variables rk = r(t + Tk) which gives us a N-dimensional system. The minimum
dimension N of the system is chosen so that the flow does not cross itself in the phase-
space and the delays are chosen somewhat arbitrarily in order to obtain a reasonable
projection. We find that N = 3 is sufficient to capture the dynamics suggested by both
the linear analysis and the POD. In the phase-space generated by the time-delay
method shown in figure 8 we see two qualitatively different regions: a large excursion
corresponding to the dynamics that lead to drop pinch-off, and a much more compact
region corresponding to the damped oscillations following the pinch-off event, that
eventually leads the orbit to the neighbourhood of the saddle–node area whence it
escapes again.

5. Low-dimensional models
We now consider the dynamics of dripping using simplified models. The time scale

for the formation of a pendant drop is τf ∼ R/v0. Once the volume of the pendant
drop reaches Vc, it becomes unstable and pinches off in finite time. This process
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Figure 8. Reconstruction of the flow by the time-delay method obtained by solving (3.6)
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of the flow.

occurs in a time τn ∼ R
√

ρR/Γ (Clanet & Lasheras 1999) which is much shorter than
the time for a new drop to form, and independent of the flow rate. Therefore the
dynamics of dripping will not be affected by the details of drop pinch-off.

After pinch-off, the remaining liquid recoils due to capillary forces, oscillating with
a characteristic frequency f ∼

√
Γ/(ρV) which varies with the volume V and shape

of the residual drop. For a given flow rate the volume of the pendant drop grows
steadily, and this frequency gradually decreases even as the oscillations are damped

out by viscous fluid motions at a rate 1/τd ∼
√

f η/V1/3 (figure 4). For very small
flow rates, these oscillations are completely damped out by the time the pendant
drop attains the critical volume Vc, so that in this case, droplets are emitted with a
constant periodicity. As the flow rate is increased, these partially damped oscillations
modify the onset of the instability via a saddle–node bifurcation. Equivalently, the
dimensionless ratio of the filling time to the damping time τf /τd advances or delays
the onset of necking and is responsible for the variation of the periodicity (or lack
thereof) of drop emission. For example, as the flow rate is gradually increased, the
constant periodicity ‘drop-drop’ gives way to a ‘drop-drip’ scenario via a period-
doubling bifurcation as follows. Once the pendant drop reaches the critical volume
Vc, a large droplet ‘drops’ leading to a highly elongated residual filament. If the flow
rate is large enough so that the oscillations are not completely damped out, the
next droplet will start the necking process when V < Vc or V > Vc depending of the
direction of the oscillation close to the critical volume, so that a smaller or larger
droplet ‘drips’. This leads to a smaller or larger residual drop whose oscillations will
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Figure 9. Potential corresponding to the capillary–gravitational energy E = a(V )X+b(V )X3/3
of the stable stationary pendant drop as a function of the drop volume V and the state of
the drop X. The stable position (solid line) for the pendant drop corresponds to the local
minimum of the potential, while the dashed line denotes the unstable solution.

be damped out much sooner or later, thereby (possibly) allowing the pendant drop
reach its maximum size Vc before or after it ‘drops’, and so on. The temporal spacing
between two drops arises from the damped oscillations close to the critical volume
which enables the drop to become smaller or larger before the pinching-off regime.

Based on these observations, and the linear stability analysis consistent with
the POD we build a simple low-dimensional model. Let X be a state variable
characterizing the drop in a potential determined by the gravitational and surface
energies as shown in figure 9. Giving a physical interpretation of X is tricky; it
can be related to the centre of gravity of the drop, as used for example by Kiyono
et al. (2003), but only indirectly because different shapes can have the same centre of
gravity. A better interpretation of X relates it to the projection of the complete shape
on a spatial mode of the drop and indicates the location of the drop relative to its
stationary solutions as shown in figure 9 in the spirit of the qualitative behaviour of
dynamical systems. In the vicinity of the minimum of the potential energy the drop
oscillates stably with a frequency determined by the curvature of the potential and
the damping rate determined by the spectrum of the linearized equation of motion.
Close to the saddle point S the drop can oscillate stably or start necking, depending
on the size of the perturbation. Indeed the height of the barrier represented by
the unstable branch U is the energy for drop nucleation. A simple model potential
characterizing this is E = a(V )X+ 1

3
b(V )X3, where V is the drop volume. This potential

evolves with the drop volume so that the stable solution disappears via a saddle–node
bifurcation when a(Vc) = 0. Using these facts, we may then describe the dynamical
evolution of the drop via the equations

∂ttX + η(V )∂tX = a(V ) + b(V )X2, (5.1a)

∂tV = q. (5.1b)

Equation (5.1a) describes the dynamics of the state variable X(t) with a scaled
damping η(V ) in the potential E, while (5.1b) quantifies the increase in the drop
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Figure 10. (a) Total volume at the break-up time as a function of the exit velocity v0 and
(b) the ratio of the volume of the emitted drop to the total volume of the drop. To a first
approximation, this ratio varies linearly with the exit velocity v0.

volume due to a flow rate q . Equation (5.1a) characterizes a simple damped oscillator;
the nonlinearity is the normal form for the saddle–node bifurcation while the damped
oscillations arise when we account for the stable oscillations of the recoiling drop.
Thus the equation is a natural consequence of the stability analysis and the POD of
the governing partial differential equation. A mechanical analogue of (5.1a, b) is a
damped particle moving on a curved surface forced in the direction V with a velocity
q but free in the orthogonal direction X. To ensure that the potential characterizes the
drop close to its stationary solution the spectrum of our dynamical system (5.1a, b)
must approximate that obtained from the linear stability analysis of the stationary
pendant drop described in § 3. This leads to the following approximations for the
functional form a, b, η for V � Vc:

a(V ) =
V 2 − V 2

c

V
,

b(V ) =
α

V 3
,

η(V ) = −2β − 2γ

δ + V
,




(5.2)

where α, β, γ and δ are fitting parameters computed to match the spectrum of (3.6).
The fitting functional forms for (5.2) of a, b, η are chosen to be simple and to
have a minimum of parameters. However other functional forms do not change the
qualitative behaviour of the solution to (5.1). The state variable X eventually diverges
when it goes over the unstable branch U or when V >Vc which event corresponds
to the ejection of a drop. The system is then reset, bringing back X and V close to
a stable solution in the same way as the drop goes back to a volume V <Vc and
close to a stable drop shape after pinch-off. In figure 10, by solving (3.6) numerically,
we plot the total volume V of the drop at the break-up point as well as the ratio
of the ejected volume Ve to the total volume V as functions of the exit velocity v0.
We find that Ve ∼ v0V , so that the volume of the attached drop is a function of
the total volume. Therefore, we choose the new value of X for the pendant drop
keeping ∂tX the same as at the break-up time; this last reinjection process is arbitrary
but does not influence the results qualitatively. Numerical simulations of the simple
model (5.1), (5.2) plotted in figure 11(b) yield a bifurcation diagram for the time
between droplets τn as a function of v0. Comparing it qualitatively with the same data
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Figure 11. Bifurcation diagram derived from (a) the full hydrodynamic model (3.6)
(R =0.5, η = 0.02, g = 1, γ = 1), (b) the simple low-dimensional model (5.1), (5.2) (α = 10,
β =0.028, γ = −0.106, δ = −0.154). τn corresponds to the time between two drops and v0

is the exit velocity. The two bifurcation diagrams are qualitatively very similar.

derived from the hydrodynamic model (3.6), figure 11(a) shows that the transition
to chaos occurs in a similar way as the flow rate increases, i.e. τn oscillates as a
function of v0 followed by a simple period doubling and then by a transition to chaos
via a period-doubling bifurcation. When the dripping is chaotic we can also notice
several qualitative similarities, like a period-3 dripping between two chaotic regime,
a reverse period-doubling bifurcation ending in a period-2 dripping regime with a
large difference in the interval of time between drops, etc. The surprising similarities
between the bifurcation diagrams suggest that simple rationally derived models can
capture much of the qualitative dynamics of dripping.

The model (5.1), (5.2) is robust with respect the choice of the functional form
a, b, η and with respect to the reinjection process, emphasizing that the qualitative
features of the dripping faucet are due to primarily the saddle–node bifurcation
and the damped oscillations leading to it. We note that although our model (5.1),
(5.2) may be reminiscent of the widely studied family of mass–spring models (see
Shaw 1984 as well as Kiyono et al. 1999 and references therein) there is a qualitative
difference. Unlike in all previous models, we account for the all-important saddle–node
bifurcation represented by the nonlinear term in (5.1) and thus naturally describe the
onset of the necking process.

An even simpler model which ignores the temporal dynamics and focuses exclusively
on the interval between drop emissions leads to a return map

∂tU = (iω − λ)U,

∂tZ = ε + Z2.

}
(5.3)

Here U =X +iY is the amplitude of the oscillatory damped mode with the associated
eigenvalue iω − λ (λ> 0) and ε characterizes the flow rate and is associated with
the growing mode Z. As shown in figure 12 the return map is defined using a
parallelopiped of length (A, A, B) in the phase-space (X, Y, Z) centred at the saddle–
node point (figure 12a). We first contruct the map from the plane Y = A, before the
saddle–node area, to the plane Z = B , after the saddle–node area. A point (Xi, A, Zi)
is mapped into (Xi+1, Yi+1, B) (see figure 12a) via

Xi+1 = (Xi cos(ωτi) − A sin(ωτi))e
−λτi ,

Yi+1 = (Xi cos(ωτi) + A sin(ωτi))e
−λτi ,

}
(5.4)
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Figure 12. Bifurcation diagram for the simple return map (5.3) (a). τn corresponds to the time
between two emitted drops and ε to the flow rate (Here A = 1.4, B = 1, λ= 2.6 and ω =20).
Again, we see the similarity to the bifurcation diagram obtained from the complete model
(figure 11a) as well to that obtained from the ODE model (figure 11b).

where τi is the return time,

τi =
arctan(B/

√
ε) − arctan(Zi/

√
ε)√

ε
(5.5)

In order to complete the construction of the dynamical model, we again need a
global reinjection process that resets the system and replaces the dynamics of pinch-
off. The simplest way to model the reinjection flow is via a rigid rotation, as for
instance

Xi+1 → Xi+1,

Yi+1 → Zi+1.

}
(5.6)

Using (5.4) and (5.6), the Poincaré map which models the process is then given by

τi =
arctan(B/

√
ε) − arctan(Zi/

√
ε)√

ε
,

Xi+1 = (Xi cos(ωτi) − A sin(ωτi))e
−λτi ,

Zi+1 = (Xi cos(ωτi) + A sin(ωτi))e
−λτi .


 (5.7)

A numerical simulation of this return map shown in figure 12(b) leads to a
bifurcation diagram very similar to that of the hydrodynamical model shown in
figure 11(a) and the ODE modes (figure 11b).

6. A mechanical analogue of the dripping faucet
A natural mechanical analogue of the dripping faucet arises from the analysis

presented in the previous sections and is shown in figure 13(a), where a frictionally
damped particle sits inside a corrugated cogwheel rotating about an axis perpendicular
to gravity. The particle may start at the bottom of one of the local minima, but as the
cogwheel rotates, this stable static solution eventually disappears via a saddle–node
bifurcation. The particle then escapes into a new minimum similar to the previous
one, and the scenario is repeated. We see immediately that the rotation rate plays
the role of the flow rate in the dripping faucet, while the locally cubic periodic
potential characterizes the capillary–gravity potential for the drop. The dripping then
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Figure 13. (a) A mechanical model for the dripping faucet consists of a damped particle
moving inside a cogwheel rotating with an angular velocity Ω . The teeth, i.e. the local minima,
correspond to the local minima associated with static drops, and the angular velocity of
rotation is similar to the flow rate. (b) The bifurcation diagram for the particle in a cogwheel
showing τn, the time for the particle to move from one tooth to another, as function of Ω
obtained by solving the equation (6.1), (6.2) with k = 13, ν = 0.25, a = 0.01. Again, note the
similarity of this bifurcation diagram to that shown in figures 11 and 12.

corresponds to the large excursion of the particle from one minimum to another,
accompanied by inertial oscillations and damping. As the rotation rate becomes
similar to the frequency of the particle about its local minima, we can expect complex
dynamics here just as in the dripping faucet.

To quantify our mechanical analogue, we use an arc-length coordinate S(t) for the
position of the particle. Then its equation of motion, in dimensionless form, is

∂ttS + ν∂tS = −∂sy. (6.1)

Here the vertical position of the particle y(S(t), t) is determined by the instantaneous
position of the cogwheel which is given by

x(s, t) = (1 + a cos k(θ(s) + Ωt)) cos θ(s),

y(s, t) = (1 + a cos k(θ(s) + Ωt)) sin θ(s).

}
(6.2)

As usual, here the relation between the Cartesian coordinates and arc-length
coordinate along the cogwheel is given by ds =(dx2 + dy2)1/2 which leads to

ds =

√
1 + 2a cos k(θ(s) + Ωt) + a2 cos2 k(θ(s) + Ωt) + a2k2 sin2 k(θ(s) + Ωt) dθ.

(6.3)

In (6.2), Ω is the angular velocity of the cogwheel, k the wavenumber of the
modulation of the cogwheel, a the amplitude of the cogs, and ν the dimensionless
friction parameter. When Ω = 0 the particle sits in a stable static position in between
two teeth. An unstable solution close to the tip of the neighbouring tooth separates
the particle from another static stable solution, and a large enough perturbation will
enable the particle to go to this solution just as a static drop with a volume less than
Vc hanging from a faucet with the flow rate q = 0 will drip if perturbed strongly.
When Ω �= 0 but is still small, the particle moves from one local minimum to the
next, accompanied by damped oscillations at a typical frequency (∂sy)1/2, which varies



Chaotic dripping faucet 15

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

zcut

zcut

1.45 1.50 1.55
v0

Figure 14. Location of the point of drop detachment zcut as a function of the exit velocity
v0. We see that as v0 increases, the shape of the remaining drop, which is originally close to
that of the stable solution with no waist (see figure 1), becomes closer to that of the first
unstable stationary solution (the drop with one waist, also shown in figure 1). Our simple
models are clearly not valid in this regime, but by including this second mode, the model can
be made better. As v0 increases even further, the remaining drop becomes long and slender,
thus marking the transition from the dripping to the jetting regime as seen above.

with the location of the particle as for the drop. This periodic transition between
teeth eventually becomes chaotic when Ω becomes large enough via a sequence
of bifurcations as shown in figure 13(b). We see that this bifurcation diagram is
qualitatively similar to those seen in the dripping faucet shown in figure 3, and the
hierarchy of models considered earlier, i.e. the ODE model bifurcation diagram in
figure 11, and the return-map bifurcation diagram shown in figure 12.

7. Discussion
Based on the study of the stability of a pendant drop and numerical simulations

of a lubrication-type model for the hydrodynamics of a dripping faucet, we have
constructed a hierarchy of simple models that qualitatively account for the various
experimentally observed behaviours of a dripping faucet. Following a numerical
simulation of the lubrication equations that is used to obtain a bifurcation diagram
for the dynamics of dripping, we first show that a simple ODE model based on the
dynamics of just two modes is sufficient to capture the qualitative features of the
bifurcation diagram. This led us to an even simpler model of a discrete map which
also shows the same qualitative behaviour. Finally, we propose a new mechanical
analogue for the dripping faucet, one whose behaviour is similar to that of the other
models.

All our models differ qualitatively from the many models proposed for dripping
over the last two decades, by focusing on the two key elements that govern the
dynamics of drop formation and ejection: (a) the stability analysis of the static
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drop close to its critical volume, and (b) the reinjection of the system back to the
neighbourhood of a stable static solution. These models are corroborated by a POD
of the numerical solution determined by solving (3.6) and the spectral analysis of the
static solution close to the instability threshold. From the perspective of dynamical
systems, our models incorporate a coupled system that invokes two classical normal
forms associated with the saddle–node bifurcation and the Shilnikov mechanism. As
we have discussed, the former corresponds to a loss of a stable ‘node’ solution via the
‘collision’ with an unstable ‘saddle’ in the context of the linear stability of a drop with
V � Vc. The Shilnikov mechanism for chaos is associated with the presence of damped
oscillations and a global reinjection (Guckenheimer & Holmes 1983; Arneodo et al.
1985) which are physically manifested in the damped capillary oscillations and the
pinch-off process which effectively resets the system.

We conclude by pointing out the limitations and extensions of our simple hydro-
dynamical models for dripping. They are valid for small and intermediate flow rates
when the dynamics of dripping is strongly influenced by the static solution, i.e. the
remainder of the drop after ejection is still similar to the static solution. This notion
allows us to characterize and explain the transition from dripping to jetting, observed
by Clanet & Lasheras (1999), Ambravaneswaran et al. (2004) and others, in a rational
way. Our simulations of the lubrication equations in § 3 showed that the necking time
τn is independent of the exit velocity. During this time, the point at which the drop
eventually detaches travels a distance ld ∼ v0τn (see Clanet & Lasheras 1999). As the
flow rate increases, the length of the remaining drop after ejection increases and so the
shape is no longer close to one of the stable stationary solutions shown in figure 1.
Then the dynamics of the dripping is influenced not just by the stable stationary
solution considered hitherto in all our models but also by the unstable solutions.
The resulting scenario shown in figure 14 defines the transition from dripping to
jetting; in particular, the influence of the faucet on the dynamics is negligible in
this regime as the stable static solution ceases to influence the dynamical behaviour
of the system. The long slender fluid filament in the jetting regime also eventually
breaks into drops through the Savart–Plateau–Rayleigh instability, a regime that is
qualitatively different from the one we have treated here.

More generally, our approach should be applicable to a variety of systems where
we see two relatively common ingredients: the loss of a static stable solution via a
saddle–node bifurcation and the dynamical return to a nearby state via a damped
oscillatory mode. Examples that come to mind readily include the chaotic nucleation
of plumes in convection, frictional oscillations at a rough interface, etc.
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