
We do not explicitly consider heterogeneity in sexual activity, although the results are
robust to consideration of contact networks and stratification of the population (see
Supplementary Methods).

The hazard of infection for susceptible individuals in the ith population is

li ¼ ð12 1Þbiyi þ 1bi �y ð1Þ

where 1 is the fraction of contacts that are global, b i the transmission parameter for
population i, and �y is the prevalence among global contacts, which is simply the average
prevalence over the n populations of the metapopulation weighted by the transmission
parameter b i to ensure numbers of contacts between populations balance
( �y ¼

P
nYibi=

P
nNibi). This type of representation of coupling between populations has

been shown to be a good approximation to more explicit mechanistic models of
migration, where individuals spend periods outside their ‘home’ city21,22.

The stochastic version of this model can give sustained oscillations in prevalence and
incidence due to continued perturbation of the system by random events16. In the case that
1 ¼ 0, prevalence in each population oscillates with period

T ¼ 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðgþ mÞ2 0:25ðgþ mþ qsÞ2

q
ð2Þ

where m is the birth/death rate, q ¼ ðgþ mÞ=ðgþ mþ nÞ, s ¼ ðnþ mÞðR0 2 1Þ and R0 the
basic reproductive number given by R0 ¼ b=ðnþmÞ. We omit the subscript i for notational
clarity. Although seasonality has not been shown to be important for syphilis9, we note
that for parameters consistent with syphilis natural history the period predicted by
equation (2) does not change with the inclusion of seasonal forcing, which merely acts to
ensure that the period is an integer number of years. The amplitude of oscillations is given
by the variance in the number of infected individuals, which can be estimated through a
diffusion approximation for reasonably large N as j2

Y ¼ NðR0 2 1Þ=R2
0 (ref. 29). These

oscillations can also occur in the SIR model and persist in both models even when a
significant fraction of individuals do not develop immunity (see Supplementary Fig. 1). As
the metapopulation becomes increasingly coupled (1! 1), these oscillations become
synchronized in phase and frequency, until in the fully coupled system synchronized
oscillations occur with period approximated by equation (2) with a basic reproductive
number given by �R0 þ j2

R0
= �R0, where �R0 is the mean and j2

R0
the variance of the

reproductive number for each population.
The model parameters g, R0 and N for New York City and Houston in Fig. 2b were

estimated from the period, amplitude and mean of the oscillations in case reports, by
making the simplifying assumption that the number of reported cases C < fYn, where f is
the fraction of incident infections that are reported. For this illustration we assume that the
other model parameters are fixed (f ¼ 0.5, n ¼ 9 in New York City and 6 in Houston, and
m ¼ 0.03).

The impact of different levels of coupling (1) on cross-correlation of incidence
(Fig. 3b, c) was examined numerically for a metapopulation where R 0 varies across
cities according to a lognormal distribution (a few cities have high R 0), with mean 2 and
variance 0.5 (although the results are closely consistent for different values of the variance,
including zero). The distribution of N was assumed to follow a power law, in agreement
with the decennial census estimates of the US city sizes in 1970 (ref. 30), but only a small
fraction (1–5%) of the total population is assumed to be at risk of infection. The average
cross-correlation �r shown in Fig. 3c is for 5,000-yr simulations. All other model
parameters are fixed (n ¼ 6, m ¼ 0.03, g ¼ 0.05).
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The rapid closure of the Venus flytrap (Dionaea muscipula) leaf
in about 100ms is one of the fastest movements in the plant
kingdom. This led Darwin to describe the plant as “one of the
most wonderful in the world”1. The trap closure is initiated by
the mechanical stimulation of trigger hairs. Previous studies2–7

have focused on the biochemical response of the trigger hairs to
stimuli and quantified the propagation of action potentials in the
leaves. Here we complement these studies by considering the
post-stimulation mechanical aspects of Venus flytrap closure.
Using high-speed video imaging, non-invasive microscopy tech-
niques and a simple theoretical model, we show that the fast
closure of the trap results from a snap-buckling instability, the
onset of which is controlled actively by the plant. Our study
identifies an ingenious solution to scaling up movements in non-
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muscular engines and provides a general framework for under-
standing nastic motion in plants.

Plants are not known for their ability to move quickly. Never-
theless, rapid plant movements are involved in essential functions
such as seed and pollen dispersal (exploding fruits in Impatiens,
squirting cucumber and trigger plants), defence (sensitive mimosa)
and nutrition (Venus flytrap, Aldrovanda vesiculosa, bladderwort).
Of these spectacular examples that have long fascinated scientists,
the leaves of the Venus flytrap (Fig. 1a), which snap together in a
fraction of second to capture insects, have long been a paradigm for
study; however, the mechanism by which this engine works remains
poorly understood1,5,8–13. The most frequently proposed expla-
nations are an irreversible, acid-induced wall loosening8, and a
rapid loss of turgor pressure in ‘motor cells’13. However, the validity
of both mechanisms has recently been questioned5,11 on the grounds
that these cellular mechanisms alone cannot explain the rapidity of
closure of the entire leaf on a macroscopic scale; this has led to the
suggestion5 that elastic deformations might be important.

Any mechanistic explanation requires an understanding of the
geometry of snapping. Therefore, we first quantified the change in
leaf geometry during closure by painting sub-millimetric ultra-
violet-fluorescent dots on the external face of the leaves and filmed
closure under ultraviolet light, using high speed video at 400 frames
per second (Fig. 1b, see Supplementary Methods for a movie). Using
a pair of mirrors to record stereo images, we reconstructed the leaf
geometry and the change therein using triangulation (Fig. 1b, c; see
Methods). As Darwin had already noted1, the leaf is curved outward

(convex) in the open state and curved inward (concave) in the
closed state (Fig. 1a). The leaf shape can be naturally characterized
in terms of its spatially averaged mean curvature (km) and its
spatially averaged gaussian curvature (k g), both of which are
invariant under rigid body motions and are thus indicators of
shape. In Fig. 1d we plot km as a function of time and observe that
the snapping motion is characterized by three phases: a slow initial
phase (20% of total displacement in 1/3 s), a rapid intermediate
phase (60% of total displacement in 1/10 s) and finally a second slow
phase (20% of total displacement in 1/3 s). The existence of the three
phases is consistently observed, but the quantitative values may
vary. Most of the leaf displacement occurs in the intermediate phase,
during which the leaf geometry changes from convex to concave.
Figure 1e shows k g as a function of time. We see that kg is not
constant, and also that kg changes slowly and then rapidly as it
passes through a minimum. As changes in k g correspond to
stretching the mid-plane of the leaf14, these observations imply
that closure is characterized by the slow storage of elastic energy
followed by its rapid release.

To understand the origin of these curvature changes, we
measured local strains by recording the position of fiducial markers
over the entire outer surface of a leaf before and after closure (see
Methods). Our measurements of the strain (Fig. 2a) are consistent
with earlier point-wise measurements5,12, but go beyond these by
characterizing the spatial structure of the strain field over the entire
leaf. Figure 2a shows that the maximum strain perpendicular to the
midrib (x-direction) is six times the maximum strain parallel to

Figure 1 Dynamics of Venus flytrap closure. a, The Venus flytrap in its open and closed

states. b, Schematic diagram of the imaging technique and typical stereo image showing

fluorescent dots on the leaf surface under ultraviolet light. c, Dynamic sequence of the leaf

closure. The time between images is 0.04 s. Colour indicates the value of the local mean

curvature (blue km , 0, red km . 0). d, e, The spatially averaged mean curvature km (d)

and the spatially averaged gaussian curvature kg (e) as a function of time. The plant was

triggered at t ¼ 0. The closure dynamics are characterized by three phases (I–III): a slow

initial phase, a rapid intermediate phase and finally a second slow phase. The solid line

corresponds to the theoretical model (see Methods). Scale bar, 1 cm in (a) and (b).
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the midrib (y-direction). Furthermore, we find that the strains on
the inner surface of the leaf are #1%, implying that closure is
triggered primarily by differential strains in the x-direction. To
corroborate this picture, we cut recently-closed leaves to determine
the residual strains in them. Cutting a closed leaf in the x-direction
eliminates the constraining effect of curvature in the y-direction and
allows it to recover its natural curvature in the x-direction, kxn, as
seen in Fig. 2b. Similarly, cutting the leaf in the y-direction allows us
to observe the natural curvature in the y-direction, k yn. We see that
k xn reverses sign during closure, but k yn does not. This is consistent
with previous observations5 and provides quantitative evidence
that a change in kxn drives leaf closure. Evidence supporting a
mechanistic basis for this anisotropic deformation comes from

microscopic examination of the leaf surface (see Supplementary
Fig. 1); we observe that the cells on the outer surface are highly
elongated in shape, with their long axis oriented along the x-axis. As
the cylindrical cell wall is reinforced azimuthally by microfibrils5, it
follows that any changes in turgor would lead to deformations that
are primarily in the x-direction, consistent with our macroscopic
observations that kxn changes much more than k yn.

Although the molecular and cellular processes underlying the
water movements that control anisotropic curvature changes
remain poorly understood, we now argue that the macroscopic
mechanism of closure is determined solely by leaf geometry. For a
doubly-curved leaf (one that is curved in two orthogonal direc-
tions), bending and stretching modes of deformations are
coupled14, meaning that bending the leaf causes its mid-plane to
be stretched. If the coupling is weak, the leaf can change its shape
from open to closed by varying its gaussian curvature and stretch
without a large energetic cost. In such a situation, the leaf deforms
smoothly to accommodate the change in k xn. If the coupling is
strong, the leaf will not deform much (owing to the large energetic
cost of stretching its mid-plane), until eventually the change in k xn

becomes so large that the leaf snaps shut rapidly (Fig. 3). To quantify
the smooth–snapping transition, we modelled the leaf as a thin,
weakly-curved elastic shell with principal natural curvatures k xn

(which changes) and k yn (which remains constant) and initial
curvatures k x(t ¼ 0) ¼ k y(t ¼ 0) ¼ k (see Methods). The shape of

Figure 3 Smooth–snapping transition in leaf closure. We plot the dimensionless mean

curvature Km ¼ (Kx þ Ky )/2 as a function of the control parameter Kxn (see Methods).

For a , ac ¼ 0.8 we observe a smooth transition from the open to the closed state, but

for a . ac the system passes through a region of bistability before undergoing a rapid,

‘snapping’ transition. In the lower part of the figure we provide a schematic of the

continuous transition (a ¼ 0.5); the upper part of the figure shows a similar schematic for

the ‘snapping’ transition (a ¼ 1). Red denotes the inner surface and green denotes the

outer surface of the leaf.

Figure 2 Strain field and natural curvature. a, Measured strain field of the outer face due

to closure, where positive strains correspond to extension and negative strains correspond

to contraction of the surface in the principal directions as shown. The maximum strain

of 9% is perpendicular to the midrib (x-direction), whereas the strain parallel to the midrib

(y-direction) is much smaller (^2%). b, Cutting the closed leaf along the dotted lines

eliminates the coupling between bending and stretching in the doubly-curved leaf and

shows k xn and k yn, the natural curvatures in the respective x- and y-directions. We find

that k yn remains unchanged during leaf closure, but k xn changes actively and provides the

motive force for snapping. The illustrations show the cut leaf overlaid on the uncut leaf; the

smaller images show the cut leaf. For this leaf, the inner surface is red and the outer

surface is green. Scale bar is for the illustration, 1 cm.
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the leaf is found by minimizing the dimensionless elastic energy
Uðkx;ky ;kxn;aÞ ¼ Ubending þaU stretching; which depends on the
dimensionless natural curvature in the x-direction (K xn, which is
controlled by the plant), and also depends on the dimensionless
geometric parameter a¼ L4k2=h2; which quantifies the coupling
between bending and stretching deformations in terms of the leaf
thickness h, the leaf size L, and the observed curvature of the open
leaf k (see Methods). A larger value of a implies that it is relatively
more difficult to stretch the mid-plane by changing the gaussian
curvature of the leaf. In Fig. 3 we see that Uðkx;ky ;kxn;aÞ has a single
minimum when a # a c (weak bending–stretching coupling), but
has two minima whena. ac (strong bending–stretching coupling)
for some values of K xn. Our model thus predicts a region of
bistability in which both the open and the closed states of the leaf
are stable to small perturbations.

Consistent with this prediction, we have observed leaves that
begin to close when stimulated, but do not snap or reach the closed
state. However, by squeezing the leaves with our fingers we were able
to induce a snap transition mechanically, indicating that the leaf was
indeed in a bistable configuration. Because the amount of mid-
plane stretching required for the leaf to close increases with a, the
mechanical barrier to snapping is determined by this geometrical
parameter. Thus we expect that large, highly curved leaves will
release more energy and snap more rapidly than smaller, weakly
curved leaves. To test this, we measured the speed of leaf closure as a
function of the geometrical parameter a for many different leaves
and plants. Figure 4a shows a clear positive correlation between the
maximum speed of the snap and a. Interestingly, the time delay

between the beginning of the motion and the snap increases with the
parameter a (Fig. 4b), as does the maximum speed of snapping.
This is probably because the delay reflects the time required to cross
the stretching barrier, which increases with a. For a typical leaf a¼
L4k2=h2 < ð1 cmÞ4ð0:1 cm21Þ2=ð0:1 cmÞ2 < 1 < ac; suggesting that
the leaves are poised at the transition between smooth closing and
snapping. As the plant is clearly best served both by minimizing
the delay between triggering and closure, and snapping rapidly
rather than closing smoothly, this value of a might not be a
coincidence.

The actual speed of snapping (the leaf closure time) is a critical
parameter for trap function. Observations show that the motion is
rapidly damped once the trap is closed. As the timescale of the
fundamental bending mode of the leaf tB < ðL2h21Þðr=EÞ1=2 <
0:001–0:01 s is much less than the observed timescale of the motion
(,0.1–1 s), and we observe no ringing, we conclude that inertial
effects are not relevant in setting the timescale of motion. Further-
more, on comparing the elastic force acting on the leaf, F E, to the
force due to motion through the external air, FA, we see that
FA=FE < rf V2L2=Eh3k< 1026; where V ¼ 1 cm s21 and r f is the
density of air. Hence the damping must occur internally. Because
the leaf is highly hydrated, a natural candidate for damping is
provided by the flow of interstitial water through the surrounding
elastic tissue. The curvature change during closure induces a
transient flow perpendicular to the leaf surface, which occurs over
a timescale tP < mh2=kE (refs 15, 16), where k is the hydraulic
permeability of the leaf tissue, m is the interstitial fluid viscosity and
E is the drained bulk modulus of the tissue. Using a measured
value of Young’s modulus E < 10 M Pa and taking k=m<
10212 m2 Pa21 s21Þ (ref. 17) we find that tP < 0.1 s, consistent
with the snapping time. Our experiments on the response of the
leaf tissue to impulsive and step loads are consistent with these
estimates (see Supplementary Methods). A quantitative model that
balances the change in elastic energy with the energy dissipated by
fluid flow captures the three phases of snapping (Fig. 1d, e; see
Methods and Supplementary Methods).

Our kinematic and mechanical measurements allow us to ident-
ify two distinct pieces in the puzzle of trap snapping: an active
biochemical component and a passive elastic component. Upon
stimulation, the plant ‘actively’ changes one of its principal natural
curvatures, k xn, the microscopic mechanism for which remains
poorly understood. Once this change occurs, the geometry of the
doubly-curved leaf provides the mechanism by which elastic energy
is both stored and released, and the hydrated nature of the leaf
induces the rapid damping that is equally crucial for efficient prey
capture. A single geometrical parameter (a) determines the nature
of closure: if a # a c < 0.8, the leaf closes smoothly, and if a . a c,
the leaf snaps rapidly. This ingenious solution to the problem of
scaling up movements and speed from the cellular to the organ level
in plants, nature’s consummate hydraulic engineers, shows how
controlling elastic instabilities in geometrically slender objects
provides an alternative to the more common muscle-powered
movements in animals. A

Methods
Stereoscopic reconstruction and curvature measurements
Plants were grown at room temperature (25 8C) and received 12 h of fluorescent light daily.
All experiments were performed on healthy adult specimens. To record the three-
dimensional (3D) shape of the leaf during closure, freshly excised traps were positioned in
front of a pair of mirrors 2 m from a high-speed camera (Phantom V; Fig. 1b). Excised
traps behaved as uncut traps as long as the time between excision and triggering was
less than a few minutes. The stereo videos were post-processed using ImageJ software
(http://rsb.info.nih.gov/ij/) to give the coordinates of the fluorescent dots for both left and
right images. The corresponding 3D coordinates were obtained using a far field
triangulation scheme (see Supplementary Methods for details).

We used two different approaches to compute local curvatures on the reconstructed
leaf surface: first, global interpolation of the surface using p-splines (Matlab software) with
the curvatures computed using finite differences, and second, local quadratic
approximation of the surface18. Although the two methods gave similar qualitative

Figure 4 Speed of closure and delay between triggering and snapping. a, Maximum

angular velocity q plotted against a. b, The time between triggering the leaf and

snapping, rapid closure plotted against a (note the semi-logarithmic scale). Identical

symbols correspond to different leaves on the same plant.
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outcomes, quantitative differences between the two results (,30%) arose due to intrinsic
noise in the reconstruction and the limited number (,50) of points per leaf.

Strain field measurements
Moulds of the outer and inner surfaces of six different leaves were made before and after
closure using a non-invasive replica technique19. We used a high-resolution digital camera
fitted with a microscope lens to track the microscopic hairs of the outer face and the
digestive glands of the inner face. The local strain field associated with closure (that is, the
principal strains and the corresponding principal directions) was computed by local
orientation-averaging of the strains (see Supplementary Methods) before determining
their maxima and minima.

Measurement of a, maximum angular velocity and time delay
a ¼ L4k 2/h 2 was computed experimentally using L ¼ (L 1 þ L 2)/4, where L 1 is the length
across the leaf measured parallel to the midrib and L2 is the length measured
perpendicular to the midrib. Measuring L/h for over 30 traps, we find that L/h < 20. k is
the initial mean curvature of the leaf. The maximum speed of the snap is the maximum
angular speed of the vector perpendicular to the midrib that extends to the centre of the
leaf ’s edge. The time delay is the time it takes the mean curvature to change from 5% to
50% of the total mean curvature change.

Elastic shell statics
We modelled the leaf as a thin, shallow shell with radius L, uniform thickness h, Young’s
modulus E, and natural curvatures kxn, k yn. Here we outline a minimal theory that
captures the essential feature of these complex theories, namely that bending a doubly-
curved shell leads to stretching because of changes in the gaussian curvature. This bend–
stretch coupling is formalized in equations that describe the finite deformations of plates
and shallow shells20. Postponing the consideration of a complete theory, here we opt for a
simplified energetic treatment that neglects the role of Poisson contraction and extension
to enable us to focus on the essential mechanisms involved. Experimental data shows us
that we may approximate the leaf shape as an elliptic (or hyperbolic if the two principal
curvatures have opposite sign) paraboloid given by f ¼ ðkxx2=2Þþ ðkyy2=2Þ; where kx and
k y are the spatially homogeneous principal curvatures. Consistent with our experimental
observations, we take the natural curvature in the y-direction to be a constant, equal to the
initial curvature in the x- and y-directions before snapping, so that kxðt ¼ 0Þ ¼ kyðt ¼
0Þ ¼ kynðtÞ ¼ k: Then we can write the dimensionless total energy due to bending and
stretching20:

UðKx ;Ky ; Kxn;aÞ ¼ Ubending þaU stretching ¼ ðKx 2KxnÞ
2 þ ðKy 2 1Þ2 þaðKxKy 2 1Þ2

where Kx ¼ kx=k; Ky ¼ ky=k and Kxn ¼ kxn=k are dimensionless. The geometric coupling
parameter a ¼ L4k2/h 2 characterizes the relative energy penalty of bending-to-stretching
deformations. Minimizing U(K x,Ky;K xn,a) with respect to K x, Ky; that is, solving:

›U

›Kx
¼

›U

›Ky
¼ 0

for different values of a yields the change in leaf shape as a function of Kxn. When
a . a c < 0.8, there is just a single minimum, whereas for a typical leaf when a < 1, we
see the appearance of a second minimum (Fig. 3).

Poroelastic shell dynamics
To model the dynamics of snapping, we treat the leaf tissue as a poroelastic material. When
the leaf snaps shut, the changes in curvature cause the movement of interstitial water relative
to the elastic tissue, which dissipates energy. For an impermeable poroelastic plate with
dimensionless curvatures K x(t) and Ky(t) and fluid volume fraction w (ref. 16), balancing
the elastic power due to curvature changes with the viscous dissipation rate due to fluid
flow yields the dimensionless energy-balance equation (see Supplementary Methods):

dU

dT
¼ A

›KxðTÞ

›T
þ
›KyðTÞ

›T

� �ðT

0

e2ðT2T 0 Þ b
›KxðT

0
Þ

›T 0
þ
›KyðT

0
Þ

›T 0
cdT

0

where A ¼ 196/p4. Here we have used a scaled time T ¼ t/tp, where tp ¼ ðwmh2Þ=ðp2kEÞ is
the poroelastic time, and have scaled the curvatures and elastic energy (U) as in the
previous section. We assume that Kx and Ky follow the path of steepest descent in the
energy potential. In the absence of microscopic physiological information for the change
in dimensionless natural curvature upon x-direction changes, we chose the form Kxn ¼

12að12 e2bT Þ: To fit the data in Fig. 1d, e we used a ¼ 3, b ¼ 0.05, tP ¼ 1/94 s and
a ¼ 1. Other functional forms (for example, K xn ¼ 1 2 aT) do not change the qualitative
dynamics of snapping, although quantitative aspects of the waiting time before the snap
and the post-snap dynamics are affected.
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Mathematical models have become a necessary tool for organiz-
ing the rapidly increasing amounts of large-scale data on bio-
chemical pathways and for advanced evaluation of their structure
and regulation. Most of these models have addressed specific
pathways using either stoichiometric1 or flux-balance analysis2,
or fully kinetic Michaelis–Menten representations3, metabolic
control analysis4, or biochemical systems theory5–7. So far, the
predictions of kinetic models have rarely been tested using direct
experimentation. Here, we validate experimentally a biochemical
systems theoretical model of sphingolipid metabolism in yeast8.
Simulations of metabolic fluxes, enzyme deletion and the effects
of inositol (a key regulator of phospholipid metabolism) led to
predictions that show significant concordance with experimental
results generated post hoc. The model also allowed the simu-
lation of the effects of acute perturbations in fatty-acid precur-
sors of sphingolipids, a situation that is not amenable to direct
experimentation. The results demonstrate that modelling now
allows testable predictions as well as the design and evaluation
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Supplementary Information for “How the Venus flytrap snaps” 

Plant material 

Plants were provided by the nurseries Nature et Paysage (French National Collection, 32360 

Peyrusse-Massas, France), and South West Carnivorous Plants (2 Rose Cottages, Cullompton, 

EX15 3JJ, United Kingdom).  

Stereoscopic reconstruction and curvatures measurements 

To record the 3D shape of the leaf during closure, freshly excised traps were positioned in front 

of a pair of mirrors two meters from a high-speed camera (Phantom V; Fig. 1b). Excised traps 

behaved as uncut traps as long as the time between excision and triggering was less than a few 

minutes.  The stereo videos were post-processed (ImageJ software, http://rsb.info.nih.gov/ij/) to 

give the coordinates of the fluorescent dots for both left and right images. The corresponding 3D 

coordinates (x,y,z) were obtained using a far field triangulation scheme: x= (xr +xl)/(2cos(2θ)) ; 

y= (yr + yl)/2 ; z= (xr – xl)/(2sin(2θ)), where θ is defined in Fig. 1b. As discussed in Methods, we 

used both a local (quadratic surface) and a global (spline) approach to determine the leaf 

curvatures.  

Strain field measurements 

Moulds of the outer and inner surface of six different leaves were made before and after closure 

using a non-invasive replica technique20. To avoid any bias due to the 3D shape of the leaf, a 2D 

impression of the replica was made by applying a thin (typically 0.1 mm) transparent film of nail 

polish onto the mould. The film was peeled off before it completely dried and placed between 

two microscope cover slips.  We used a high-resolution digital camera fitted with a microscope 

lens to track the relative movement of microscopic hairs on the outer face and the digestive 



glands on the inner face. The leaf was divided into 2mm x2mm windows each containing 

typically 50 of these fiducial markers.  For each window, the position of each marker i before 

closure, (x1,y1)i and after closure, (x2,y2)i was obtained. The local strain (Δl/l)(φ) in a given 

direction φ was computed using the formula 
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% , where the sum is over all 

pairs (i,j) for which the position vector was in the window [φ , φ+dφ]  and Nφ is the number of 

such pairs.  Assuming that the strain field is homogeneous in the selected window, it can been 

shown easily that 

! 

"l

l
(#) = $1 cos(# % #0) + $2 sin(# % #0) , where λ1, λ2 are the principal values of 

the strain field and φ0 is the angle of the principal axes with respect to the coordinate reference 

frame (Supplementary Fig. 1). We observe that the principal directions and the maximum strains 

are strongly correlated with the highly anisotropic cell shapes on the outer surface of the leaf. 

Temporal response of the leaf tissue to impulsive and step loads 

To corroborate our simple estimates for the dynamical time scales based on the geometry, 

elasticity and hydraulic permeability of the leaf, we directly measured the response time of the 

tissue to both impulsive and step loads. A thin strip of a closed leaf was clamped at one end and 

free at the other. If an impulsive load is applied at the free end, then we see a short ringing 

transient of period ~ 10 ms (Supplementary Fig. 1a), consistent with our estimate for the inertial 

(bending) mode which is much faster than the time of closure. If on the other hand the strip is 

released suddenly after being statically deflected at the other end for a while, we get a very 

different response. In Supplementary Fig. 1b, we see that after a short inertial transient the 

unloading is best described by a single exponential with a time constant τp ~ 0.1-0.4 s, consistent 

with our simple poroelastic picture as the dominant mechanism operating during the dynamics of 

snapping. 

 



Poroelastic shell model: dynamics 

When the leaf snaps shut, the stored elastic energy is dissipated via the viscous flow within the 

leaf tissue. To model the dynamics of snapping we treat the leaf tissue as a poroelastic material: a 

linearly elastic solid skeleton with an interstitial fluid (i.e. a wet sponge). Following Skotheim 

and Mahadevan16, we see that an impermeable poroelastic plate with curvatures κx (t) and κy (t), 

Young’s modulus E, Poisson’s ratio ν = 0 for the elastic skeleton, and fluid volume fraction Ψ, 

generates a pressure in the interstitial fluid in response to mid-plane mean curvature given by  
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4 , where the poroelastic time scale is 
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. This expression arises from the solution of a Darcy-type diffusion equation for the 

fluid pressure, which in turn gives rise to a moment resisting the bending
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$  where 

z is the coordinate perpendicular to the leaf surface. Fluid motion through the tissue leads to 

dissipation with a rate 
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) dA* . Then, balancing the elastic power with the 

viscous dissipation rate yields the dimensionless equation stated in the Methods section 
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A =
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" 4
.   Here the time is 

scaled with the poroelastic time t = τp Τ,  curvatures are scaled with the initial curvature 

κx = κ Κx, κy = κ Κy, and the elastic energy is scaled with the bending energy, 

! 

u = C E h
3
 " 2

 U , 

where the dimensionless energy U is given in the Methods section 

 

Definition of variables used in the text 

! 

"
x

=  observed curvature in the direction perpendicular to the midrib (x-direction). 

! 

"y =  observed curvature in the direction parallel to the midrib (y-direction). 

! 

"
xn

=  natural curvature in the x-direction. 



! 

"yn =" =  natural curvature in the y-direction.  

! 

"
x0

=" = initial curvature in the x-direction. 

! 

"y0 =" = initial curvature in the y-direction. 

! 

"g ="x"y =  Gaussian curvature. 

! 

"m =
"x +"y

2
= mean curvature. 

capitalized symbols, e.g. 

! 

K
xn

 refer to the scaled (dimensionless) versions of the same quantities, 

i.e. 

! 

K
xn

=
"
xn

"
 etc. 



Supplementary Figure 1a Typical measurements of the local strain field associated with
leaf closure, determined using the replica technique. The arrows indicate the sign of the strain
and the size of the lines indicate their magnitude. b  The local strains (∆l/l)(φ) measured on
the outer surface of the leaf inside the dashed region corresponding to a region close to the 
midrib aqre superposed on a micrograph of the leaf surface. We note that the principal strains 
and directions are strongly correlated with the cell orientations. Since the cells are reinforced 
azimuthally by microfibrils, but are soft axially, the strain field is consistent with the constraints 
imposed by the microstructure of the leaf surface; thus closure occurs primarily because of 
changes in the natural curvature in the x-direction κxn. Scale bar: 100 µm.
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Supplementary Figure 2 The response of a strip of the closed leaf to impulse and step 
loads, when one end is clamped and the other end subject to a displacement u(t).
a, shows the response to an impulsive load that acts over a time of ~1 ms, leading to an 
inertial ringing that is purely elastic and corresponds to a time scale of  ~0.01 s, which is
much faster than the observed speed of closure. b, shows the response to the unloading 
of a step displacement that is applied on a longer time scale giving the leaf time to 
equilibrate, before being released suddenly. In this case, we see that, after a short inertial 
transient (not shown), the behavior of the leaf is well fit by a single exponential with a time
constant τp~0.1-0.4 s, consistent with a poroelastic mechanism for the overdamped
dynamics of the snapping.
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