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Isotropic-nematic and nematic-nematic transitions from a homogeneous suspension of high aspect
ratio magnetic rods are studied for both Maier-Saupe and Onsager excluded volume potentials.
Asymptotic analysis in the vicinity of critical points yields insight into the stability and type of
polarized nematic states emanating from nonpolarized equilibrium states. This, in conjunction with
recently published global numerical results, yields a unified picture of the bifurcation diagram and
provides a convenient base state to study effects of external orienting fields. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2167811]

Recently, a model for dispersions of acicular magnetic
particles was deve:lopedl’2 using ideas grounded in classical
models for liquid-crystalline polymers.3 Effects of Brownian
motion, anisotropic hydrodynamic drag, a steric force chosen
to be of the Maier-Saupe form and a mean-field magnetic
potential were included. Equations for order parameters ob-
tained via closure approximations as well as more detailed
diffusion equations were solved numerically.1

Although considerable insight is obtained via these
large-scale numerical solution schemes, inherent symmetries
and degeneracies imply that results obtained have to be in-
terpreted carefully—see, for example, Ref. 4. In such cases,
theoretical results, even if limited, can be used to guide effi-
cient numerical calculations. Indeed, such an approach has
been used with excellent results by Forest and co-workers
(see Refs. 5 and 6 and references therein) for the case of
nonmagnetic nematic rods in shear or extensional flows. In
this spirit, it is pertinent to seek a theory for a simple but
nontrivial base problem intricately related to the complete
problem at hand. The aim of this Brief Communication is
precisely this. We study transitions to nematic states from a
homogeneous base state of a suspension of very slender
magnetic particles in the absence of any external orienting
fields. A combination of local stability analysis and available
global numerical results yields a picture of possible solutions
and the symmetries they satisfy. Both Maier-Saupe and On-
sager excluded volume interaction potentials are considered.
Results for the Maier-Saupe case are in excellent agreement
with available numerical solutions of the equations and
complement recent investigations on the classical Doi
model.*

The particles comprising the homogeneous dispersion
are modelled as two point masses connected by a rigid,
massless rod of length L and diameter d. These rods possess
intrinsic magnetic dipoles with the magnetic moment being
along the axis."” The orientation of the rod is specified by
the unit vector u along the axis from one specified bead to its
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complement. In the mean-field approximation it suffices to
consider one test particle in a sea of others, thereby enabling
use of the one-particle orientation distribution function
f(u,1) to describe the suspension. For the case of constant
rotary diffusivity7 one can write the scaled equation,

L o RS+ Vi Vi) m
Here 2R,(.) is the rotation operator and the potentials are
measured in units of k,7. Let us define the average of a
quantity, X(u), as (X(u))= [X(u)f(u)du. The excluded vol-
ume intermolecular potential for the Maier-Saupe (MS) or
Onsager (O) potential can then be written

VEV(U)=jBMS/O(U,U')f(u'J)dU', (2)

where Bys(u,u’)=-IIys(u-u’)? Iy being a phenomeno-
logical constant proportional to the concentration of rods N,
and By(u,u’)=2NL?d|u X u’|. The total potential due to the
mean magnetic field, V,, can then be written

Viy=-32)B(uu)yuu—-A'u-{(u)+ A, +B,. (3)

The first term reflects a net magnetic interaction potential
due to average order,"2 the second term is the mean-field
approximation to the dipole-dipole interaction between par-
ticles, and A, and B, are constants independent of u.

Equations (1)—(3) exhibit rotational symmetry and imply
the absence of preferred orienting directions. Clearly, the iso-
tropic state (/) has no orientation. Nematic states (N) that are
also solutions do possess intrinsic direction (characterized by
the director), but this can vary at random. A convenient way
to incorporate these symmetries is to write u
=(sin O sin ¢)e,+(sin 6 cos ¢p)e,+(cos Hle, and  express
f(u,7) in terms of the spherical harmonic functions Y;'(u)
=Y7"(0, ¢), with e_ being the axis from which 6 is measured.
The constraint that f be real yields
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w4+

flun =2 2 b0y (), )
1=0 m=—1
where b;"(1)=(-1)"b]'(1) V (m=0) with the overbar denot-
ing complex conjugation and b)=(47)~"2V ¢ due to the nor-
malization condition. Nematic states with fore-aft symmetry
satisfy f(u)=f(—u), and for these [ is restricted to the set of
even integers.

The macroscopic state of the suspension can be quanti-
fied by three variables: the structure tensor, S=(uu)- /3,
the concomitant scalar structure factor S,=[9(S-S-8)/2]"3,
and the mean polarity J=(u). For later use, we specify
two inner products: (Y'|f)=[Y(u)f(u,f)du, and
Ay, my| Ly, my|ly,ms) = mel(u)sz(u)Y’"3(u)du and func-
tions d,,= [77(4n+1)(2n 3)”(2n 1)H][2<2"+2>nv (n+ ]!
and ¢, (I")=[(I"=1)(I' =3)"Z][(I’ +2)(I'1")*]"". Using these
and expansion (4), one can rewrite (2) as

Vs=-7 (15)2 E %YW ‘(wp, (5)
and
o 42l
Vo=—4mUY, 2, (41, )Yz,,(u)b2,, (6)

U'=1 m'==2'

with U=2NL?d. In writing (5) and (6) we have ignored con-
stants linear in U and independent of u. The expressions are
the same as those for nonmagnetizable rods because the ex-
cluded volume potential is just dependent on geometrical

[I(I+1)-m(m+1)]
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symmetries. Parameters A’ and B’ in (3) are proportional to
the number density of rods, and can be rewritten as A’
= AU and B’ =BU. Henceforth U, A, and B are treated as
three independent parameters. Combining (1) and (3)—(6)
yields the following evolution equation for mode b}",

dbm ® +P
— =l DB =2 3 (opy+ o), (7)
p=0 g=—p
where
o 4l
[ BS; Ab
oy=4nU> S b;f,bj’f( L2, l’l)\lf (8)
1'=0 m'=-1' 5 3

and ogy depends on the nature of the excluded volume
potential,

o+’
47U
Ous="5 2 X bIby 5 W, 9)
1'=0 m'=-1'
or
o 420
oo=4mUY, 2, T lbgb;’,’\v (10)
1'=0 m'==21'
with

1
W(I,m,p,q,l',m') =—mm'{Lm|p,q|l’,m") - —(

2\[I'("'+ 1) —m'(m" - 1)]”

1( [1(I+1)=m(m-1)]

Examination of (7)—(11) shows that it is possible to have
solutions that comprise only modes with even index /—this
implies that nematic branches corresponding to A4=0, =0
and thus J=0 form a subset of possible stationary solutions
to (7). Note that (S=0,J#0) states are un-physical due to
the way even and odd / modes are coupled.

A linear stability analysis of (7) about the isotropic state,
fo(w)=(4m)~" is readily performed using b)'=(b)"),+eb,™
+0(€), (e<1 being a suitable amplitude) and retaining
terms through O(e). The growth rates \}" corresponding to
the disturbance Y;'(u) can be obtained from the linearized
equations.

For the Maier-Saupe potential, the growth rates for odd
and even [, respectively, are (N}")ys=—{(I+1)(1-6,,.AU/3)
and (\}")ms=—I({+1)(1-U(1+B)8,/5), indicating that the
S=0 isotropic branch has two critical points. At the first criti-

2\[I''+ 1) =m'(m' + D]
12
1) (I,m—-1

12
]) {ILm+1|p,q|l',m’ +1)

(1

cal point, (1+B)UL=5, a fivefold degenerate eigenvalue set
is seen with the destabilizing eigenvectors being linear com-
binations of Y% with m=(-2,-1,0,1,2). At the second criti-
cal point, U’C’=3A_1, the critical eigenvalues that change sign
are threefold degenerate and correspond to the eigenvectors
YT with m=(-1,0,1). In Fig. 1 we plot these analytical pre-
dictions and compare them to numerically obtained
solutions' for the case B=1. We note that for fixed and finite
B, as A— o, Uf —0. As A decreases from very large values,
UIC’< U? initially and then, beyond a critical value of A, we
get UP>U“. For B=1, the two critical points coincide for
A=1.2. Detailed numerical calculations show that for U’
< U, the bifurcating nematic branch is prolate, otherwise it
is an oblate branch.

For the Onsager potential, the eigenvalues for odd and
even [ are (N")o=—I(I+1)(1-AU&,/3) and (N]")po=-I(I
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FIG. 1. A plot of A(U) at which the instability to Y|',m=-1,0,1 modes
arises on the isotropic J=S=0 branch for the Maier-Saupe potential. The
diamonds are renormalized computed results obtained from a numerical
solution for B=1 from Bhandar (Ref. 1).

+D)[1-U(1+B)8,,/5+Umc,(1)/2]. Thus for odd I, as for
the Maier-Saupe potential, there is one critical point on the
S=0 line, viz Ui’. The destabilizing eigenvectors are, as be-
fore, the three independent components of Y7'(u). Let us de-
note the critical points for even / by US(l) such that the
critical eigenvectors at each point are the 2/+1 independent
components of Y}'(u). The first critical point occurs at
U%?2)=[mc,(2)/2+B/5]" and corresponds to the eigenvec-
tor set Y5'(u). Higher-order bifurcations (for /=4) occur at
U(1) =2 e, (D]

We now turn to characterizing J> 0 branches bifurcating
from the nontrivial (J=0,S # 0) nematic states when the in-
termolecular potential is of Maier-Saupe type. To do that we
need to delve a bit more into the nature of the S#0, J=0
branches.

As mentioned earlier, Egs. (1), (3), and (7)-(9) with A
=0 exhibit rotational symmetry and so we consider a base
nematic state of the form (3) with director n=e, such that
cos #=(u-n) and coefficients (b}"), real and nonzero only if
both [ and m are even. The potential U and the parameter 3
can be combined into one dimensionless factor, W=U(1
+B). Then the steady, uniaxial base solutions are of the form
f(0)=exp (3WS cos 26/4)/P, P being a normalizing con-
stant. Substituting this in (1) yields

25+1 ! 3.\, ! 3
= exp| -WSt |t-dt exp | -WSt |dt
3 0 2 0 2

plotted in Fig. 2(a). The solid lines are linearly stable
branches. The oblate phase where the rods are oriented ran-
domly in the (6—nn) plane, is unstable to director fluctua-
tions but stable if these are suppressed; specifically, the open
circles are solutions obtained via time integration of (1) in
such a special subspace.4 Brownian dynamics simulations of
the system for the Maier-Saupe potential8 and 5,,=0 indicate
that results using time integration for short times can yield an
apparently stable oblate phase, thus mimicking the effect of a
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FIG. 2. (a) The equilibrium bifurcation diagram of the base nematic states
with J=0 for A=0. The prolate branch arising from U is unstable to struc-
ture factor fluctuations but regains stability beyond the turning point at W
=U(1+B)=4.49. The dash-dot line is the curve corresponding to the
asymptotic expansion. Inset: (b) Eigenvalues corresponding to the destabi-
lizing eigenvectors Y% at Ul when A=0. M denotes multiplicity.

pinned director. However, long time integration of the sto-
chastic system leads to the oblate branch being destabilized
by perturbations to the director. Similar considerations hold
for B=0. A regular perturbation expansion in the small pa-

rameter, W= W-5 indicates that along the nematic branches,
we have for |[W/5|<1

B 7~ 119 ., 29981 ..
SW)=-—W+-—W-——F—W, (12)
25 625 17 1875

also plotted in Fig. 2(a) as the dash-dot line. The structure
factor for these base nematic states has the form S,
=—S(W)SW/3, where Sii)=SLIV)=—S$)/ 2 with other terms be-
ing zero. Critical eigenvalues corresponding to the destabi-
lizing eigenvectors Y are shown in the inset. There are five
eigenvalues that are zero at U?, of which three attain nonzero
values along the nematic branches. The eigenvalue corre-
sponding to Yg (the structure parameter mode) has multiplic-
ity M=1. The other four correspond to director fluctuations
and occur in two pairs. Since there are two independent ways
to rotate a director on a sphere, we expect two neutral eigen-
directions (or two zero eigenvalues) along each S # 0 branch.

Are there critical points on these /=0 nematic branches
where instability to the /=1 mode sets in? As a point of
departure to frame our answer, we focus on the vicinity of
the critical concentration U%=U" and study bifurcations as A
and U are varied with B held fixed. Impose small perturba-
tions to the base state, b,", comprised only of even m modes
while / can be both even and odd. The equation for the
growth of mode b{o with W(;)=V(1,0,2,0,1,0)=1/(5m)
and W(,,=W(1,0,1,0,2,0)==3//(5m) is then
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db;’ 0( UA 27UA )
——==2b"\ 1 = —+ ——(by) ¥
dr ! 3 3 ¥
4mU S82
™ ’ I?ll
_T(I+B)E 2 2 bpq(b2 )0
P=09==p p'=—3
XW¥(1,0,p,q,2,m"). (13)

Close to criticality, the b{o mode dominates. A good ap-
proximation for small S can be obtained by ignoring the p
=3 term in (13) and setting the growth rate to zero,

c

2T
1+ ?(1 +BUDBY), Yo | = [1-27(53), %],

3
(14)

valid close to the critical point U%(=U"). Now we expand
all quantities in terms of a small parameter & [distance from
the critical point along the (J=0) branches] to obtain the

following: (a) U=5(1+B)"'(1+80), (b) A°=3(1+B)(1
+8A)/5, and (c) (b9),=8(b3), = U (d/dU)o(b3),= Sk, U
with the slope km=—7yf’§(10\"77)‘1. Substituting these in
(14) yields at O(9)

AC=[2m(W gy + W)k, — 110 =90/5. (15)

Thus, close to the critical point as we move along the pro-

late with U locally decreasing, A¢ decreases as well. As one
moves along the oblate towards more higher values of U

(i.e., U increases), ./21“ increases. In short, critical points on
the (J=0,5<0) oblate state have A°>1.2 and on the (J
=0,5>0) prolate state satisfy .4°<1.2.

Though asymptotic in nature, our local linear analysis
accords very well with global numerical solutions (far from
the critical point) obtained by Bhandar' for B=1. A combi-
nation of the two yields the scenario depicted in Fig. 3. Let
us recast the results in terms of the dependence of A€ on the
scalar structure parameter. For a fixed value of A, there are
two critical points at which the J=0 branch becomes un-
stable to disturbances comprised of ¥" components. One of
them is always on the (S=0,J=0) isotropic branch and the
other is always on the (§#0,/=0) nematic solution. When
A<1.2, the J>0 branches bifurcate at one point in the seg-
ment (S=0,U>5/2) and at one point in the prolate branch
(J=0, $>0). Even though the J=0 nematic prolate has a
turning point at U=2.245, the salient qualitative results of
the local analysis holds even far from the critical point.9

Consider now the effects of an imposed external mag-
netic field H modeled by adding a term proportional to u-H
to the potential to (1) and (3). Such a field breaks the rota-
tional degeneracy of the system by introducing a natural ori-
enting direction. We anticipate that for fixed values of U, A,
and B, the degree of order S, as well as the extent of average
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FIG. 3. Schematic sketch of the bifurcation scenario obtained by combining
local analysis and global numerical results for B=1. Region (A) corresponds
to 0<U<UY, S,=J=0, and % < A°<1.2. As U increases, the critical value
of A decreases, reaching 1.2 at U=U%=5(1+B)"". Region (B) corresponds
to Ut<U<ow, §S=J=0, and 1.2<A°<0. In region (C) (/>0,5>0) nem-
atic branches bifurcate from the (J=0,S>0) prolate curve. In this region, as
one moves to S— 1, A€ decreases from 1.2 to 0. Finally, in region (D) along
the oblate branch with (J=0,5<0), we find A° increasing from 1.2 as §
decreases from 0 to —1/2.

polarization J, change continuously with H. The transition
from an isotropic to nematic state is replaced by a transition
from a weakly aligned (paranematic) state to a strongly
aligned state. Our results provide a mathematically conve-
nient and physically relevant starting point to investigate
these scenarios.

A.G. thanks Dr. A. S. Bhandar for providing the numeri-
cal data used in Fig. 1 and Professor Forest for pointers to
related work on liquid crystal polymer flow problems.
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