Langmuir2006,22, 163—-168 163

A Simple Microscopic Model for the Dynamics of Adhesive Failure
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We consider a microscopic model for the failure of soft adhesives in tension based on ideas of bond rupture under
dynamic loading. By focusing on adhesive failure under loading at constant velocity, we demonstrate that bimodal
curves of stress against strain may occur due to effects of finite polymer chain or bond length and characterize the
loading conditions under which such bimodal behavior is observed. The results of this analysis are in qualitative
agreement with experiments performed on unconfined adhesives in which failure does not occur by cavitation.

1. Introduction model the response of a viscous suspension of finite length
polymer chains. More recently, Roos and Crétosed experi-
mental data to fit a nonlinear constitutive equation based on the
“slip-tube” model of polymer elasticity to data obtained via tack
tests. While some of the qualitative features of the tack curves

The failure of natural and artificial adhesives is a subject of
greatimportance involving the confluence of physical chemistry
as well as statistical and continuum mechanics, but is as yet

poorly understood. This is because of the multiple hierarchy of shown in Figure 1 are reproduced by these models, neither

spatial and temporal scales involved, from the failure of individual . A -
molecular bonds to that of the macroscopic sample, that c)Ccur{:\ccounts for the failure of the material V|.aareasonable desprlptlon
overtemporal scales that can also span many orders of magnitude'.n terms of the rupture of bonds or eqt_nva_alent molec_ular_ picture.
From a practical viewpoint, a particularly simple, yet useful, Here, we attempt to remgdythls.omlssmr.l by considering Fhese
method of probing the failure of an adhesive is to stretch it at moleculareffect;Wlthm asimple microscopic model of the failure
constant speed and plot the nominal stress against strain thaP'OCcess: In particular, we shqw how changes in the nature of the
yields the so-callethck cuwesto deduce some insight into the adhesive an_d the rate .Of Ioao_llr_]g may lead to bimodal t"?‘Ck CUrves
physical processes involved in failure. In Figure 1, we show whose physical onglnilsthefmlte Iepgth ofeltheradheswe'bonds
some typical tack curves observed during the loading of an or th_e polym_e_rs within the z_adheswe. We also charact_erlze '_[he
loading conditions under which these bimodal curves might arise

adhesive in an unconfined geoméiand in a confined geometry. nd show that th re consistent with experimental condition
We see that typical tack curves are approximately linear at smal| @nd showthatinese are consiste experimental co ons.
Although our simple model neglects many effects that are

strains (because adhesives respond approximately linearly to - ; - .
small deformations), but at larger strains, the nominal stress undoubtedly ofimportance, it sheds some light on the underlying

peaks (as the adhesive becomes damaged and is less able hysics and suggests experiments that might further elucidate

resist deformation) and falls to zero as the adhesive fails. As the oth the understanding and tailoring of adhesive toughness.
parameters associated with the tack test, such as the rate of loading, 2. A Microscopic Model
the degree of confinement (i.e., the aspect ratio of the adhesive),
or the type of adhesive are varied, a qualitative change inthe tack The idea of bond rupture enhanced by the presence of an
curves shown in Figure 1 may be observed in the appearance ofPplied load was first used in the polymer literature to explain
a plateau or even a second peak. Because the area under a tadRe frictional properties of elastomers by Schallanfdatipwing
curve is ameasure of the toughness of the adhesive, understandingle classical work of Eyrinand Kramer%on reaction rate theory.
the processes involved in determining the qualitative transitions Similar ideas have also been used in more recent work on
in the stressstrain curve, such as the maximum stress and the adhesioR® to investigate the rate dependence of adhesive
presence or absence of a second peak or plateau, is c|ear|)properties, such as the work of adhesion, and also to understand
efficacious in designing systems with a prescribed toughness.the molecular and cellular aspects of biological adhe$iohA

Some previous work has focused on explaining the appearancd®duced model based on such ideas does not attempt to include
of a plateau in the tack curves (Figure 1b) as being due to the the intricacies of the experimental geometry but allows us to
appearance of cavitation bubbles within the bulk of a confined focus on the physical processes that might lead to bimodal tack
adhesive layer (see, for example, ref 3). However, this picture CUrves. o _ o
does not account for the subsequent rise in force that is observed, OUr starting point is to consider two rigid plates connected by
even in the absence of cavitation. An alternative view focuses No(t) nonlinear springs of natural length (see Figure 2).
on the implications of nonlinear elasticity on the shape of tack Chaudhur§and Ghatak et ahave considered a similar model
curves. For example, Sizaire and Legatsed numerical N which the springs represent the adhesive bonds that join the

computations based on the FENE-CR constitutive relation to
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Figure 1. Some typical tack curves showing both bimodal and unimodal behaviors. In both figures, the change from unimodal to bimodal
is induced by changing the velocity of loading. (a) Loading fofeg,siie as a function of imposed displacemedit,sie in the case of an
unconfined adhesive (aspect ratio of order 1), taken from Crosby and§bulNominal stressy, as a function of strair, for a confined
adhesive (a very thin layer of adhesive), taken from ChidReprinted with permission from Crosby and Shull (1999). Copyright 1999 John
Wiley & Sons, Inc. Reprinted with permission from ref 2.

vt chains at the interface or in the bulk of the adhesive. We choose
aformthatis simple for the purposes of analysis, butincorporates
the two features that we desire here: linear behavior at small
displacements and a simple divergence in the force required to
stretch the polymer as its length approaches the natural length,
L. One possibility is the choice of a constitutive relation similar
to the freely jointed chain model for stretching of a polymer
chain given by the inverse Langevin function (see, for example,

Figure 2. Schematic of the model used in this discussion (adapted ref13), although this has no close_d form. Therefore, forS|mpI|C|ty,
from Seifert?). Two rigid plates are pulled apart at constant velocity We assume that the force required to stretch each spring by a
v so that the loading of the springs connecting them is under distancexis F = ksTx/b(L — X), whereL is some natural length,
displacement_ control. The bonds dissociate at a rate dependent osuch as the contour length of the polymer chain between cross-
the load applied to them but are not allowed to reform. links, b is a molecular length associated with the bond/polymer
chain, such as the monomer or blob sizandksT is the thermal

polymer adhesive to the plates. This model of adhesive failure EN€T9Y scale. The typical stiffness here has been chosen to
(failure at the interface between the adhesive and apparatusf€Produce that of a Gaussian cidiat small strains. In fact, the
could, however, be applied more generally to cohesive failure 220ve force-displacement relation is similar to a simple Pade
(failure within the bulk of the adhesive) when the cohesive failure i€ interpolation of the linear behavior for small displacements
occurs via the rupture of polymer chains within the bulk rather @nd the divergence implicit in the inverse Langevin funcfibn.
than the appearance of cavities. We shall not, however, distinguish By assuming that the loading of bonds/polymer chains takes
between these two modes of failure because both can beplace at the same constant velocity as the plates are separated,
represented by the schematic picture of Figure 2. v, the constitutive law described above, allows the force on each
Once the plates begin to be separated, the springs extend angemaining bond to be written as a function of tinte,
so are stressed, causing them to dissociate at a rate that is

dependent on the load to which they are subjected. The ksT ot
dissociation rate is enhanced due to the effective lowering of the F() “bL ot 2)
bond-potential barrier brought about by the application of a 1-—=

force. By assuming a simple Arrhenius-type dependence, which L

is often referred to as the Bell modélve write the dissociation

rate as: There are three natural time scales in this problem. The first of

the time scales is the mean lifetime of an unforced spring, namely
o F(t)y 1/k-%. The second characterizes the rate at which energy is stored
k_(t) = k_"ex —T) 2) in a spring compared to thermal enetoly/yv and provides us
Ks with a useful nondimensionalisation of time:= yut/bL. The

. . . . third is simply the time taken to stretch a constituent spring to
wherey is a lengthscale gssomated W'Fh the pond pote 'MI’. its natural length., given byL/v. From the ratios of these time
sets the energy scalk(t) is the force with which each bond is : - .

. . scales, we find two dimensionless parameters that govern the
loaded (assuming that they are all equally stressed)kahis . ) . 0
i A . 2 evolution of the system. The first of thesecis= yu/k_%bL, the
the dissociation rate in the absence of a force, which itself can
be estimated in terms of the Eyrihgr Kramer§ theory of

chemical reactions. Given a particular constitutive relation for (133 lebiz'éségi”' M.; Colby, RPolymer PhysicsOxford University Press:
ew York, .

the nonlinear springs, it is a simple matter to write the  (14) We notethisis nota true Paaieproximant, which would be antisymmetric
corresponding evolution equation for the number of intact springs, under the transformation — —x and thus have the forfi = keTX/(L* — X?);

. . . however, for our purposes here, the simplest form suffices. Changing the form
Np, remaining at time. However, before doing so, we need a of the divergence to accommodate other microscopic theories such as the wormlike-

model for the response of the individual springs or polymer chain model is possible, but does not change any of the results qualitatively.
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ratio of the intrinsic off rate to the loading rate, which is readily v
varied by varying the rate at which loading takes placéhe 0.02;
second dimensionless parameter is the time at which the natural ’
length is reached;, = y/b, and is the ratio of the width of the t increasing
bond-potential barrier and the monomer length. As this is 0.01! loading rate
dependent solely on the chemical properties of the adhesive, it 1

is more difficult to vary experimentally, though this may, in
principle, be achieved by altering the typical monomer bond
length b, and the strength of the monomenonomer interaction; 0’0 001 0.02 0.03 0.02 0.05
large values of , correspond to very soft (long range) interactions T

between small monomers, such as Coulomb-type interactionsgjgyre 3. Typical dimensionless foreedisplacement graphs for
between nanoparticles, while small valuesgfcorrespond to  the model shown in Figure 2. As the rate of loading is increased (in
short-range interactions between large monomers, such as vanhe sense indicated by the arrow), the tack curves change from
der Waals interactions between macromolecular globules. By unimodal to bimodal and then back to unimodal. Hefes= 0.05,

makinguseof qs 1and2 the govering equaion o the number i 1 14 O D2CS S BOPorione 0 e penbele
Of mtac_t bonds, i.e., y/dt = — k-(f)Na, may be written in failure), 0.01 (bimodal), and 0.013 (unimodal with a very sharp
dimensionless form as

force drop preceding failure).

% __1 X T 3) times,t*, at which 7(7) has a turning point. By differentiating
dt e 1—1lt,) ® the expression for7(z) in eq 5 and using eq 3 to eliminate
dNy/dzr, we see that the* satisfy
Here, we have assumed that the rate of reforming of bonds .
is relatively small, which is certainly true if the pulling force is e=1(1—1,) ex;(T—) =G, ) (6)
moderate or large, the case of most interest here. 1-77, "
The change of variable = 7/(1 — 7/t allows us to write
the solution of eq 3 in the form Although this equation does not admit an analytic solution,
the general properties of the functi®@(zm, 7) are enough for
1 @ expiv) our purposes. Clearl§(tm, 0) = 0 and ag — 7, the value of
cJo (1+—vv/r)2 dw (4) G(zm, 7) diverges exponentially. However, in the intervalig),
m G may have, depending on the valuewgf either zero or two
turning points. Assuming that there are two turning points, they
occur whenr = 4 where

Ny(7) = Ny(0) eXF(—

which can then be expressed in terms of the exponential integral
Ei(2), although this representation of the solution is of little interest

in what follows. HereNy(0) = No, the initial number of intact ) >
bonds; however, we takid, = 1 so thatNy(z) represents the Bty T Ty £, — 67,1
fraction of the original bonds remaining at timeThen we may = 4 7
write the total dimensionless force on the platéér) required
to maintain the constant velocity displacement (scaleg/kyT) For the values of. to be real and distinct, we require that
as the product of the force per bond and the number of intact ¢, 2 — 67, + 1> 0, i.e.,7m < 3 — 272 ortm > 3+ 272, For
bonds so that values ofry, satisfying the latter condition, it is easy to see that
7+ < 0, which is not physically meaningful, so that we consider
T(1) = ;Nb(f) (5) only the first possibility. In this region, & 7. < 7, so that we
1-1r, really do see both of the turning points in the funct®ry, )

in the interval [0,7,). From the geometrical constraints @)

As a function of time (or equivalently of displacement) the we see immediately that corresponds to a local maximum and
force (eq 5) is not monotonic, but instead rises slowly and then 7. a local minimum inG(zy,, 7). Thus we see that the applied
decays down to zero. An explanation for an intermediate force, 7 is bimodal only ife € (e—, €4), wheree. = G(tm, 7).
maximum follows from the simple fact that, initially, the force This result is most easily summarized by means of a phase
per bond increases with the displacement so that the total forcediagram in ¢, €) phase space, showing where we expect the
also increases. However, as individual bonds start to break intwo types of force curves (unimodal and bimodal) to occur. The
response to the applied load, the force eventually starts to decreasehorders of these regions can be calculated analytically from the
What is more interesting is that, for certain values of the preceding analysis and are shown in Figure 4, which shows that
parameters andzy, it is possible for there to be two maxima there is only a very small range of the parametgrsinde for
in this curve. Examples in which there are one or two maxima which the bimodal behavior can be observed.
in the force are given in Figure 3. Comparison with experiments requires estimates for the typical

Having observed that it is possible to obtain bimodal tack values of the parameteesandzy,. By assuming that the failure
curves that bear some qualitative resemblance to those showrbccurs as a result of the rupture of individual polymer chains
in Figure 1a, we now focus on understanding such curves in within the bulk rather than adhesive bond rupture at the interface,
more detail. we use the result for a Gaussian chiwhich has the constitutive
response given by eq 2 with = Nb, whereN ~ 1® is the
number of monomers in an individual chain amd- 107° m is
the typical monomer (or Kuhn) length. Along with~ 10710

Next, we quantify the regions of §, €) space inwhich bimodal ~ m, this givesry, ~ 0.1. It is difficult to estimate a typical value
tack curves occur and then explain the physical origin of this of ¢ because of the ambiguity k.°. However, it is enough to
behavior. We first obtain an expression for the (nondimensional) note that, whatever the value kf°, the typical value of, is

3. Phase Space for Bimodal Tack Curves
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Figure 4. Phase diagram showing the values of the parametgrs
the scaled bond-potential width, aadthe scaled loading rate for
which the scaled applied force7(r), is unimodal or bimodal. As
expected, for very large or very small loading rates, the tack curve
is unimodal, but for a narrow range of loading rates, bimodal tack
curves can exist.

1 0.125 0.15

m

consistent with our model’s prediction that the appearance of

bimodal tack curves can be controlled by varying the velocity
of pulling, as is observed experimentally.

To understand the behavior exhibited in Figure 4, we first
consider the existence of an upper bound on the valug,of
(= y/b) for which bimodal force-displacement curves may occur.
For larger values afy, the nonlinearity in the force law becomes

important only once most of the bonds have already been broken,

and so no second peak is observed. For a given valug, of
(sufficiently small to avoid the previous pitfall), very fast loading
(largee = yv/k-%bL) will cause most of the bond breakage to

Vella and Mahade

can integrate eq 3 so that, up to a constant of integration, the
number of bondN, satisfies

2
Ty eXpTy) e
log N, = - [ By dw (8)
which can then be integrated by parts to give
2
T, expl—t,) & U
logN, = — M% + 6’(%) )
€ u u

Keeping only the leading order terms, recalling that 1,
yields an expression for the force, which to leading order is

exprt
- —D(E i) a- t/tm)2

Tm
ex;{—( 1, /Tm)) (20)

It is immediately clear from this expression that, wher
m, the pulling force decays superexponentially and that the initial
conditions are irrelevant because their influence is exponentially
small. In fact, the decay given in eq 10 is impossible to observe
in the numerical solutions of eq 3 because it is important only
very close to the singularity, where the errors in the numerical
integration scheme overwhelm the effect that we wish to observe.

This result shows that the behavior of the forclsplacement
curve ag — 1y, is qualitatively similar to that observed in some
experiments (e.g., in ref 1), but not others (e.g., in ref 2), which
differ from each other mainly in the nature of the experimental

) ~ —F
F(7) T ex

occur only as the strain-stiffening starts to become important, geometry highlighting the role of confinement. In an unconfined
and again, only one force peak is observed. We thus expect thagnesive, the failure is initiated by a fingering instability that

bimodal tack curves can only occur below some critical loading
rate €. Notice that the bimodal curves presented in the

occurs around the edge of the adhesiveronfined adhesive
will fail via cavitation within the bulk of the adhesiveln the

experimental data Figure 1 are not observed for a large loadingformer case, the constitutive response ofthe elastomer that remains
rate, just as predicted by our analysis and simple physical js ynchanged, butin the latter case, the properties of the adhesive
mechanism. On the otherhand,n‘weload the springs too slowly, change because of its ability to accommodate the imposed
then very few of them will be broken by being stressed and geformation via bubble growth. Thus our microscopic model
instead break over their natural time scalle-/ so that few  gppjies only to adhesive loading in the unconfined case. In this
remain by the time they are extended to the point at which strain scenario, damage is accumulated by the adhesive as a whole
hardening is appreciable. This leads us to expect that, for a givengyen though the individual constituents remain largely un-

value ofzp, there should be a minimum loading ratebelow
which the force curve is again unimodal.

Aswe have just seen, bimodal curves occur when the individual
bond springs are extended toward their natural length (when

= 1) and stiffen as a result. We observe that the decay of the

damaged. This notion of damage to the adhesive as a whole can
be used to recast the microscopic model of Section 2 in terms
of a continuum theory, to which we turn next.

5. A Continuum Model

applied force after this peak is much more rapid than the decay adapt the notion of adhesive failure in terms of the

after the first peak. Informal comparison with the experimental
results of Crosby and Shiijpresented in Figure 1a confirms that

this is also observed experimentally. However, the results of

Chichée show that, in a confined geometry where cavitation

occurs, such a rapid decay is not experienced after the secon
peak. A natural question that arises is whether the rapid decay

is a result of a particular choice of parameters or is an intrinsic

characteristic of such a model. In the next section, we show that

our model predicts that this decay in the forceesessarilyery
rapid.

4. Late Time Asymptotics

To study the behavior of the applied force after the second
peak, we study the behavior of(r) ast — 7, i.€., fort such
thattym — 7 << 1. In terms of the parameter= 7,/(1 — t/7y),
this is equivalent to the limiti > 1. With this substitution, we

microscopic spring model of Section 2 to the case of a continuous
adhesive of constant volume, we introduce a damage parameter,
1 — «, which increases from 0 to 1 as damage is accumulated

y the adhesive. Hereis defined as the ratio of the actual stress,

, required to impose a given displacement and the stress
experienced by an undamaged adhesive subject to the same
displacementgy, i.e., 0 = aoy.

By analogy with the parallel spring model of Section 2, we
postulate an Arrhenius type evolution f@ras a function of the
imposed stretch], namely

doo _ o 0¥
di ) ke T

whose basis is the correspondence betweamd the number
of unbroken springd\p, in the microscopic model. Here, =

(11)
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unimodal

Figure 5. The scaled nominal stress'as a function of the applied stretétobtained from the continuum model (eqs-1113). (a) Increasing
the loading rate, parametrized by changes the behavior from unimodal to bimodal and back again.Herel, v = 0.05, andw takes
the values 0.1, 0.2, 0.23, and 0.26. (b) Numerically computed phase diagram showing the values of the scaled loadingl tate value
of the first invariant at failureJy,, for which bimodal and unimodal behaviors are observed. Here the scaled bond-potentiabbaryiég

= 0.05.

AIK_0is the ratio of the stretch rate to the unforced dissociation
frequency, the continuum analogueefandV ~ yl2 is some
characteristic volume (wheyds again a typical length associated
with the bond potential anld is the typical entanglement length

Section 2. With this caveat, we see that our results are qualitatively
very similar to those obtained by using the microscopic model
in Section 2; in particular, there is a range of loading rates for
which the nominal stress is bimodal, and for very large loading

or distance between cross-links of the polymer network, so that rates, the nominal stress decays very rapidly after the second

stressis distributed over an atgd. To complete the formulation

of the continuum model, we need a constitutive equation for the
stress in terms of the stretch or equivalently a free enek@),
such that

u= ﬁ (12)

0

To account for the finite length effects of the constituent chains
inthe adhesive, we use the form of the free enedgysuggested

by Gent (1996
J
‘]m

whereV' ~ |3 is the typical microscopic volume characteristic
of the polymer networkJ(x, 4y, 1) = 4,2 + 42 + 12— 3
(subjectto the constraiigiyl, = 1imposed by incompressibility),
is the first invariant of the deformation gradient, alyd= J(Arm),
for somein, is the maximum value of this invariant corresponding
to the maximal possible stretch of the adhesiyeWe note that,
whenJ < Jy, the above free energy reducedto= (ksT/V')J,
the classical expression for a neo-Hookean solid. For an
incompressible elastomeric adhesive loaded axially, as we will
assume herel, = 1y, so that) = J(A) = A2 + 2471 — 3.

In this formalism, it is a simple matter to solve eqs-1B,
subject to the initial condition that(A = 1) = 1 via numerical

ke T

Uf = va |09(1 - (13)

peak. It is also possible to characterize the regionlgf ¢, v)
space that leads to bimodal tack curves, although this must be
done numerically here. In Figure 5b, we characterize this region
and see results that are, again, qualitatively similar to those in
Section 2.

6. Conclusions

The existence of a second peak in tack curves obtained in
adhesive testing and failure is a common feature of many recent
experiments. When combined with the observed reduction of the
nominal cross-sectional area of the adhesive at the point where
the second peak occurs, this indicates that the modulus of the
adhesive as a whole must have increased by this point. In this
paper, we have investigated the possibility that this might be
produced by the effects of finite bond/chain length and shown
that such finite length effects, in the absence of cavitation, produce
tack curves in qualitative agreement with those obtained
experimentally with unconfined adhesives (e.g., Crosby and
Shull). Our model allows us to also determine the region in
phase space where this bimodal behavior may be seen and further
explains the rapid failure of the adhesive following the second
peak in the force. We predict that these bimodal features should
disappear at high pulling velocity, as is observed in such
experiments.

One deficiency in the model considered here is its exclusion
of the flow-induced viscoelastic nature of the adhesive itself; for

methods. Such a solution can then be used to infer the nominalSimplicity, we have considered purely elastic effects, with the

stress, |7 given by

RF)

N =

(14)

Experimentally, this is the quantity most commonly measured

rate dependence coming in via a simple kinetic mechanism. This
might simply be remedied by incorporating the viscous and elastic
response of the polymer chain with a bond joining this chain to
the substrate. Another improvement to the model presented here
would be to take into account the spatially varying nature of the
problem. There are several levels of sophistication at which such

and thus allows us to make some simple qualitative comparisons 21 approach could be introduced. Perhaps the simplest modifica-

In Figure 5a, we show representative solutions of egsliifor
parameter valueg,, = 1 andv = VIV' ~ yl/lc = 0.05 as the

tion would be to consider an axially symmetric problem but to
account for the variations in chain length within the adhesive

loading rate is increased. We note that the macroscopic analoguéhat occur because of the necking phenomenon that is a result

of the bond potential barrier is characterized as a fraction of

ofincompressibility of the adhesive and the pinning of the contact

the entanglement length rather than the monomer length as inf€gion to the plate. Ultimately, with the full spatial dependence

(15) Gent, A. N.Rubber Chem. Techndl996 69, 59-61.

accounted for, it would be possible to investigate the interplay
between the onset of the fingering instability and finite chain
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length effects. Additionally, animportant aspect of any continuum discussion of semisoftness) alters the constitutive response of
theory of failure that we have not accounted for is the role of the material and would allow for a relaxation of nominal stress
stress concentrations in the vicinity of the crack that demarcatesvia domain rotation. Once the maximal rotation has occurred,
the failure region. This effect is important in brittle materials, the domains must once again deform, allowing them to be
butits relative role in elastomers is debatable because the locallystretched as springs before they eventually break, thence giving
high stresses lead to crack blunting and even slow flow in soft rise to a second peak. Indeed, this suggests that experiments that
materials. In the absence of experimental studies of the relativeprobe the structural rearrangements of the adhesive (e.g., using
importance of crack blunting, we defer this important theoretical birefringence measurements) simultaneously during mechanical
question to the future. testing might help unravel the relative contributions of domain
Our work has focused on one possible mechanism for the rotation and simple stretching mechanisms.
appearance of bimodal tack curves. Other effects that might
enhance this could arise from the realignment of polymer domains  acknowledgment. We are grateful for many helpful sug-
within the adhesive: at intermediate displacements, it is gestions made by M. K. Chaudhury, A. J. Crosby, and M. L.
energetically cheaper to accommodate the imposed deformationRoper. We also thank A. J. Crosby, K. R. Shull, and A. Chiche
by rotation of polymer domains than to stretch them. This semisoft for the use of their data depicted in the tack curves shown in
response (see, for example Warner and Terelttjera thorough Figure 1. D.V. was supported by the Choate Fellowship at
Harvard.
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