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When a viscoelastic fluid blob is stretched out into a thin horizontal filament, it
sags and falls gradually under its own weight, forming a catenary-like structure that
evolves dynamically. If the ends are brought together rapidly after stretching, the
falling filament tends to straighten by rising. These two effects are strongly influenced
by the elasticity of the fluid and yield qualitatively different behaviours from the case
of a purely viscous filament analysed previously (Teichman & Mahadevan, J. Fluid
Mech. vol. 478, 2003, p. 71). Starting from the bulk equations for the motion of a
viscoelastic fluid, we derive a simplified equation for the dynamics of a viscoelastic
filament and analyse this equation in some simple settings to explain our observations.

1. Introduction
Fluid sheets and filaments, which are ubiquitous in science and technology, are

marked by a slender aspect ratio. This geometric separation of length scales leads to
a separation of time scales that is at the heart of a range of unusual behaviour arising
from the confluence of geometry and physics in these objects. While this interplay
has been the subject of much research in the context of simple Newtonian fluids,
only recently have analogous questions been asked for complex fluids, such as those
encountered commonly in the kitchen when an egg is broken, in the bathroom when
shampoo is squirted from a bottle, and in a host of applications such as rheometry
and fibre processing of polymer melts and solutions (McKinley & Sridhar 2002;
Denn 2004). However, much of this work has been focused on the one-dimensional
dynamics of stretching and the accompanying thinning (Keiller 1992; Entov & Hinch
1997; Olagunju 1999). To understand the behaviour of viscoelastic filaments free to
deform in space, we focus here on a thin filament of viscoelastic fluid that can sag
under its own weight – the viscoelastic catenary – motivated by recent studies of a
viscous catenary of a Newtonian fluid (Teichman & Mahadevan 2003).

To make the filament, we used a ‘Boger’ fluid (see Larson 1999) composed of
0.025 % w/w Polystyrene of molecular weight 1.877 × 106 dissolved in styrene oil.
The relaxation time of this fluid, λ, is ∼ 4 s and its zero-shear viscosity, η0, is ∼ 50 Pa s
(50 000 times that of water).

Figure 1 shows a filament of such a fluid, made by stretching a blob horizontally
between two supporting rods and allowing it to evolve under the influence of gravity.
The initial stretching of the blob leads to the stretching of polymer molecules inside the
fluid, which then imparts an elastic stress to the filament. As this stress relaxes,
the filament initially demonstrates a similar range of motions to the purely viscous
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Figure 1. Snapshots of a falling viscoelastic filament at different instants of time (t) in s (a) t =
0+, (b) t = 4, (c) t =8, and of the rising filament in a separate experiment where the ends of
the filament are rapidly brought closer together after initial stretching, (d) t = 0+, (e) t = 0.75,
(f ) t = 1.75. The notation that follows in the derivation is shown in (b). The solid anchors on
the sides have a cylindrical cross-section of diameter 1.2 cm. In this case, the fluid is a mixture
of Polystyrene (MW 1.877 × 106) in styrene oil – a Boger fluid. The zero shear viscosity is
approximately 50 Pa s and there is no shear thinning for the shear rates under consideration.

filament (Teichman & Mahadevan 2003) – bending at short times scales and stretching
at long time scales (figure 1a–c). However, as the filament stretches even more, the
elastic stress imparted by the polymer molecules leads to a slowing down of the
sagging at long time scales, an effect that is not present in the purely viscous case. If,
after the initial stretching, the supporting ends of the filament are brought together
quickly, the filament rises. Although the elastic stresses in the filament favour rapid
axial contraction, the combined effects of viscosity and the slender geometry of
the filament prevent this from happening; instead the excess length of the filament
between the supporting ends is accommodated by rapid sagging (figure 1d). Then
the unbalanced elastic stresses acting along the curved filament cause the viscoelastic
filament to rise and straighten, all the while opposing gravity (figure 1e, f ). As the
elastic stresses relax, this process eventually slows down over a time scale comparable
to the relaxation time of the fluid, ∼ 4 s.

To understand this behaviour and compare and contrast it with that of the viscous
catenary (Teichman & Mahadevan 2003), we use a perturbation approach to derive
the equation governing the motion of the centreline of the fluid filament following
Buckmaster, Nachman & Ting (1975), Entov & Yarin (1984), Howell (1996) and Ribe
(2001) for the viscous case, and use the resulting dynamical equation to provide a
simple quantitative theory for the two phenomena described above.
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2. Equations of motion and asymptotic analysis
For simplicity, we start with a consideration of the dynamics of a thin viscoelastic

sheet, and then generalize the results appropriately to arrive at a dynamical equation
of motion for a viscoelastic filament. We assume that the sheet is made of an
incompressible viscoelastic fluid, and is supported between two walls at a distance
length L apart. We further assume that the motion of the sheet is confined to the
(x, y)-plane and that the initial thickness of the sheet is h = d . The governing equations
of mass and momentum conservation are then

∇ · u = 0, (2.1)

ρ(ut + u · ∇u) = −∇p + µ∇2u + ∇ · T − ρg, (2.2)

where (·)t = ∂(·)/∂t , u is the fluid velocity, T is the polymer stress tensor, ρ the fluid
density, p its pressure, µ its zero-shear viscosity, and g the gravity vector acting in the
negative y-direction. For simplicity, we use a minimal correctly invariant constitutive
equation for a viscoelastic fluid that generalizes the Maxwell model valid for small
deformations, the Oldroyd-B model (see Oldroyd 1950; Larson 1988),

Tt + u · ∇T − (∇u)T · T − T · (∇u) = − 1

λ
(T − ḠI), (2.3)

where Ḡ is the equilibrium polymer stress. This equation describes the evolution of
the stress as it is advected and stretched by the flow while it simultaneously tries to
relax. The left-hand side of (2.3) is the so-called Oldroyd (upper-convected) derivative
of T, while the right-hand side characterizes the tendency of the stress to relax to its
equilibrium state T = ḠI at a rate 1/λ, where λ is the longest relaxation time of the
polymers.

To complete the formulation of the problem, we need to specify some boundary
conditions. In addition to the usual kinematic boundary conditions, for large values
of the capillary number µU/γ , with γ the interfacial tension, the lateral surfaces
y = H ± h/2 are traction-free, so that

v =
(
H ± 1

2
h
)

t
+ u

(
H ± 1

2
h
)

x
, σ · n̂ = 0, (2.4a, b)

where, σ = − pI+ µ(∇u + ∇uT) + T, is the total stress tensor and n̂ is the unit vector
in the direction of the outward normal to the surface of the fluid sheet.

We make the above equations dimensionless by scaling all velocities with a
characteristic velocity U (determined say by the balance between gravity and viscosity),
all lengths with the length of the sheet L, time with L/U , and stress as well as pressure
with µU/L. We also define the Reynolds number Re = ρUL/µ characterizing the ratio
of inertial to viscous forces, the Weissenberg number Wi = λU/L characterizing the
ratio of the internal relaxation time to the externally imposed time, the dimensionless
equilibrium stress G = Ḡ/(µU/L), and the dimensionless weight % = ρgL2/µU .

The slenderness of the sheet allows us to define a small parameter ε= h/L & 1,
in terms of which we write down an asymptotic expansion for the variables
u, v, H, h, p, T. Substituting this expansion into (2.1) and (2.2), solving the equations
order by order and using the Fredholm-alternative theorem (see e.g. Hinch 1991),
yields an equation of motion for the centreline H (x, t) of the sheet,

Re Htt + 1
3
d2 Hxxxxt = [4T Hxx + ΨHxx] + σx −%, (2.5)

where σ = Txy
0 is the viscoelastic shear stress, T is the tension in the filament, and

Ψ = Txx − Tyy is the viscoelastic first normal stress difference. The various terms in
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(2.5) have simple physical interpretations: the first term on the left is the inertial term
present in the equation for the motion of a string, while the second is the viscous
bending term that arises from the effects of the solvent, as in the viscous catenary
(Teichman & Mahadevan 2003). The first term on the right is the product of the
sheet’s curvature and tangential stress, which itself has two components – a viscous
component that is the same as for the fluid catenary (Teichman & Mahadevan 2003),
and a new elastic component. The second term on the right is the spatial derivative
of the elastic shear resultant, while the last term is the weight per unit length per unit
width of the sheet.

We now consider a sheet of unit initial length (scaled by L) at t = 0, symmetric
about x = 0, and anchored at its two ends to solid walls at x = ±1/2, subject to
homogeneous extensional flow. Horizontal force balance implies that the tension
satisfies Tx = 0, so that (see the Appendix)

T (x, t) = T (t) =

∫ 1/2

0

(
H 2

x

)
t
dx. (2.6)

Furthermore, for weak homogeneous extensional flows the normal and shear stresses
relax exponentially, with a characteristic decay time set by the Weissenberg number;
this is indeed the case even for the case considered here, as the leading-order stress
balance shows (see Appendix for details), yielding

Ψ = Ψ0 e−t/Wi , σ = Ψ0 Hxe
−t/Wi . (2.7)

Equations (2.5)–(2.7) are the governing equations for the shape and stress in the
viscoelastic sheet.

The foregoing derivation was for a sheet of infinite extent in the z-direction. For an
axisymmetric viscoelastic filament, the equations are almost identical, except that the
bending stiffness of a filament is 3µπd4/64 (see Teichman & Mahadevan 2003), and
all other prefactors have to be re-interpreted as being per unit cross-sectional area
of the filament. When inertia is unimportant (Re & 1), as here, we can integrate (2.5)
once to obtain

ε3

32
θxxt = ε θ

(
1

2

∫ 1/2

0

(θ2)t dx +Λ0 e−t/Wi

)
− x, (2.8)

where Λ0 = ΛΨ0 and θ = Hx . Here we have rescaled time using the intrinsic time
6µ/ρgd , the stresses σ = Txy and Ψ using the equilibrium polymer stress Ḡ, and
define Λ0 =Ψ0Ḡ/ρgd . Equation (2.8), when complemented with initial and boundary
conditions, is identical to that for the weakly nonlinear dynamics of a viscous catenary
described and analysed in Teichman & Mahadevan (2003), except for the second term
on the right which reflects the effect of a decaying elastic stress.

For the filament shown in figure 1, the diameter d = 0.001 m, length L =0.023m,
weight w =0.125 Nm−1, density ρ=1026 kg m−3 and relaxation time λ= 4 s, which
results in ε= 0.045 and Wi = 0.13. In the analysis that follows, we use Wi ∈
[0.001, 0.1], Λ0 = 25 and ε=0.02 in (2.8) to describe the dynamics of a viscoelastic
filament. The value of Λ0 we pick is arbitrary, since we do not have an accurate
estimate of its value for the experiments shown in figure 1. We emphasize that here
we have limited ourselves to the simplest consistent constitutive model that leads to
an embedded stress in the filament due to initial stretching, even though the initial
stretching may be fast enough to invalidate the Oldroyd-B model which does not
account for the finite extensibility of the polymer.
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3. Analysis of filament behaviour
We now use our slender body theory to investigate the falling and rising of a

filament and uncover the role of elastic stresses in each case.

3.1. Fall

An initially horizontal fluid filament must bend as it sags under its own weight.
With the assumption of symmetry about x = 0, the initial condition is θ(x, 0) = 0, and
boundary conditions are

θ(±1/2, t) = 0, H (±1/2, t) = 0. (3.1)

Physically, these boundary conditions mean that the ends of the filament are clamped
at the points of support, and are the same as used by Teichman & Mahadevan
(2003). We solve the integro-differential equation (2.8) with these conditions using a
pseudospectral scheme based on Chebyshev polynomials (Trefethen 2000; Teichman
& Mahadevan 2003). Figure 2(a) shows the results of the evolution of the shape of the
viscoelastic catenary at early, intermediate and late times; different curves correspond
to snapshots separated by equal intervals of time. We see two characteristic behaviours
of the filament: at early times, the filament falls at roughly constant velocity and its
shape has two inflection points where the curvature changes sign, while at late times
the filament slows down considerably and the inflection points become imperceptible.
To understand this behaviour, we note that in the limit ε& 1 corresponding to a
slender filament (2.8) is singular, and thus exhibits different asymptotic regimes. At
early times, when the filament is nearly horizontal, θ is nearly zero and the dominant
balance is between the viscous bending term on the left side of (2.8) and the filament
weight. During this time, the evolution of the viscoelastic filament is practically
identical to that of a purely viscous filament, with

ε3

32
θxxt ≈ −x, (3.2)

so that the analysis is identical to that in Teichman & Mahadevan (2003), yielding

H (x, t) =

∫ x

−1/2

θ(x ′, t) dx ′ ≈ − 4
3
ε−3 t

(
1
4

− x2
)2

. (3.3)

Although the viscous bending–gravity balance is reasonable at early times, it fails
at intermediate times when the filament slows down as it starts to stretch. Then
stretching and elastic terms become important in the bulk of the filament, where they
approximately balance gravity. If θ (o) refers to the solution in this region,

ε θ (o)

(
1

2

∫ 1/2

0

(
θ (o)

)2

t
dx +Λ0 e−t/Wi

)
≈ x, x ∈

[
0, 1

2 − δ
]
. (3.4)

Here δ is the width of the dynamic boundary layer over which there is a transition from
the stretching-dominated region to the bending-dominated region to accommodate
the clamped boundary condition θ(0, t) = 0. Letting θ (o) = a(t)x in the interior so that
H (x, t) = 1

2
a(t)(x2 − 1

4
), and substituting into (3.4), we obtain

a2 da

dt
=

24

ε

(
1 − εΛ0 e−t/Wia

)
. (3.5)

In figure 2(a), we see that the full numerical solution of (2.8) and (3.1) compares well
with the approximate equations (3.2) and (3.5) in the two asymptotic regimes of (2.8)
that arise naturally at early and intermediate times.

To understand the evolution of the dynamic boundary layers in the viscoelastic
filament, we first note that the size of this layer is determined by the balance
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Figure 2. (a) Early time bending-dominated regime of a viscoelastic filament, and the late
time stretching-dominated regime for ε= 0.02, Λ0 = 25, Wi = 0.1. The numerical solution to
the complete equation describing the shape of the filament, (2.8), is plotted with solid lines,
and the analytical solution to the approximate equation for the bending regime, (3.2), is
in long-dashed lines. The numerical solution to the approximate equation, (3.4), is plotted
in short-dashed lines. The vertical downward arrow shows the direction of increasing time.
(b) Maximum displacement of catenary, |H (0, t)|, as a function of the scaled time t for ε= 0.02
and (i) purely viscous case, (ii) Λ0 = 25, Wi = 0.01, (iii) Λ0 = 25, Wi = 0.1. The points and the
dashed lines are numerical solutions to (2.8) and (3.4), respectively. (c) Width of the viscous
boundary layer δ near the supporting walls as a function of time, for values of parameters
shown in the legend. For the purely viscous case (Wi = 0, diamonds) δ∼ ε4/3t−1/3, while for
the purely elastic case (Wi = ∞, circles) δ∼ εΛ

−1/2
0 t−1/2 (see text). For a viscoelastic filament

(dashed line), the boundary layer width is dominated by elastic effects at short times and
viscous effects at long times.

between the effects of filament bending and filament weight. Equation (2.8) thus
yields ε3θ (o)/δ2t ∼ x. In the viscous limit, when the Weissenberg number Wi → 0,
(3.4) gives the interior solution θ (o) ∼ xt1/3ε−1/3, so that boundary layer size scales
as δ∼ ε4/3t−1/3 (see Teichman & Mahadevan 2003). In the elastic limit, Wi → ∞ and
(3.4) yields the stationary solution θ (o) ≈ x/εΛ0. The size of the boundary layer is
then δ∼ εΛ

−1/2
0 t−1/2. In figure 2(c), we show the numerically evaluated evolution of

the size of the boundary layer for varying Wi; at short times the boundary layer is
similar to that in the elastic limit (Wi → ∞), while at long times it is similar to that
in the viscous limit (Wi → 0), as expected.

In the intermediate time regime, outside the two dynamic boundary layers near
the supports the shape of the filament is very nearly parabolic and determined by a
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balance of viscoelastic stretching and gravity. Indeed choosing H (x, t) = 1
2
a(t)(x2 − 1

4
)

and substituing this ansatz into (2.8) we find that the centre of the filament follows
the law H (0, t) ≡ Hc(t) = a(t)/8. In figure 2(b) we show |Hc(t)| for Λ0 = 25 and
different values of Wi. The embedded elastic stress within the filament, i.e. Λ0 > 0,
slows down its sagging. For Wi → ∞, (3.5) predicts that the filament stops falling when
Hc(t → ∞) = 1/(8Λ0ε), while for Wi → 0 we recover the case of a purely viscous
filament (Teichman & Mahadevan 2003). The figure also shows the slowdown of the
filament with increasing Wi due to the additional resistance offered by the elastic
stresses. Smaller values of Wi result in faster relaxation of the elastic stresses and at
long times the behaviour is similar to that of the viscous catenary with a ∼ ε−1/3t1/3.

3.2. Rise

When a filament is stretched out rapidly from a blob, the stretching of the polymers
leads to an embedded elastic stress. If the supporting ends are brought together
quickly the resulting geometrically induced sagging can be reversed by this elastic
stress, leading to the rising of the filament.

To quantify this, we first consider the extreme case of a filament that is curved,
say parabolically at time t = 0 with Λ0 > 0, Wi → ∞, and a(0) - 1/(Λ0ε). Then from
(3.5), da/dt < 0 and the filament rises against its own weight until da/dt = 0, i.e. when
a =1/(Λ0ε). For a fluid with a finite relaxation time, and therefore a finite Wi, the
embedded viscoelastic stress decays with time and the filament slows down as it rises.
More generally, the rising criterion at t = 0, is defined by the condition

ε Λ0Hc > 1/8 (3.6)

where Hc = a/8. As the filament straightens, it re-enters the viscous bending-
dominated regime. Since both the elastic and viscous resistance to stretching and
contraction are proportional to θ , it is clear that in the absence of inertia the filament
can never rise to a perfectly horizontal state starting from a sagged state. On the
other hand, inertial effects can cause the filament to rebound past the horizontal, an
effect that can sometimes be seen with a stretched piece of chewing gum, but that we
do not consider here. In figure 3(a) we show the rising of an initially curved filament
and see that there is excellent agreement between the numerical solutions to the full
equation (2.8) and the approximate equation (3.4).

We confirm the rising criterion by solving (2.8) with an initial condition correspond-
ing to a falling filament, H (x, 0) = Hc(1 − x2/4). In figure 3(b), we plot the maximum
rising displacement H (0, t) − H (0, 0) = H (0, t) − Hc of the filament, and look at the
effect of varying Wi for given initial stress Λ0. For Wi = 0.1, the filament rises fast
initially and attains a nearly constant shape, while for Wi = 0.001, the elastic stress
decays too rapidly (by 1/e of its initial value in t ∼ Wi for this case), so that it falls
further instead of rising. The rising criterion (3.6) is met in each of the cases at t = 0,
since for ε= 0.02, Λ0 = 25 and Hc = 0.35, εΛ0Hc =7/40 > 1/8.

4. Discussion
Our asymptotic analysis of the flow of a viscoelastic fluid in slender geometry

yielded a pair of simple evolution equations for the shape of and the stress in a
filament. These equations have a transparent physical interpretation that builds on
and complements earlier work on the purely viscous case (Teichman & Mahadevan
2003). In particular, we see that the effect of elastic normal stresses suffices to explain
both the falling and rising behaviour of a viscoelastic filament in the limit of moderate
deviations from the horizontal. Although the physical values in the experiment are not
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Figure 3. (a) Rising of an initially curved filament obtained by solving (2.8) with boundary
conditions θ (±1/2, t) = 0; the lowermost curve shows the position of the filament at t = 0−, i.e.
with the initial condition set numerically by allowing the filament to fall so that Hc =0.355.
This shape is very well approximated by H (x, 0) ∼ 1.42(x2 − 1

4 ). The vertical upward arrow
shows the direction of increasing time. The catenary rises due to the embedded elastic stress,
and is opposed by the viscous stretching term which now acts in the direction of gravity
(ε= 0.02, Λ0 = 25, Wi = 0.1). The barely visible dashed line is the solution to the approximate
equation (3.4), showing excellent agreement with the complete solution. (b) Maximum rising
displacement of catenary, |H (0, t) − Hc|, against scaled time t for ε= 0.02 and Λ0 = 25,
(i) Wi = 0.001, (ii) Wi = 0.01, (iii) Wi = 0.1. The circles corresponds to the numerical solution
to (2.8), while the dashed line shows the numerical solution to the approximate equation (3.4).

fully compatible with the scalings assumed in the derivation of (2.5), the qualitative
behaviour of the filament agrees well with the conclusions derived from it. This is
perhaps not surprising since the basic force balance embodied in (2.5) is valid far
beyond its asymptotic regime of applicability.

Our study raises many questions. From an experimental perspective, our analysis
suggests ways to probe the rheology of complex fluids since the bending, stretching,
falling, and rising responses probe different regimes of fluid behaviour and are
translated directly into different shape evolutions. We have ignored the effects of
inertia and surface tension, and although they are not important in the phenomena
that we consider, much remains to be done on both the theoretical and experimental
front to account for their effect in other situations.

We acknowledge the 2003 Summer Program in Geophysical Fluid Dynamics at the
Woods Hole Oceanographic Institution, where much of this work was carried out. We
thank Jeremy Teichman for the spectral code used herein, Keith Bradley, Jose Bico,
Yoel Forterre and Kyung-Ho Roh for help with experiments, and Ronald Larson for
useful discussions.

Appendix. Derivation of the equation for the centreline of the filament
In this Appendix we derive (2.5) using standard methods from weakly nonlinear

asymptotics (see e.g. Hinch 1991). For small departures from an initial straight line, we
scale y ∼ O(ε), t ∼ O(ε2), Wi ∼ O(ε2), and Re ∼ O(ε4). Next we expand the velocity,
stress, pressure fields, location of the centreline of the sheet H , and its thickness h as
series in ε, writing

u = u0 + ε2u2 + O(ε4), εv = v0 + ε2v2 + O(ε4),

H = εH0 + ε3H2 + O(ε5), h = εh0 + ε3h2 + O(ε5),
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p = p0 + ε2p2 + O(ε4), Txx = Txx
0 + ε2Txx

2 + O(ε4),

Txy = εTxy
0 + ε3Txy

2 + O(ε5), Tyy = Tyy
0 + ε2Tyy

2 + O(ε4).

Substituting the expansions into (2.1) and (2.2) yields the scaled equation for mass
conservation

ε2ux + vy = 0, (A 1)

and the equations for conservation of momentum (2.2) in the x- and y-directions are

ε4Re(ut + ε2uux + vuy) = −ε2px + ε2uxx + uyy + ε2Txx
x + ε2Txy

y , (A 2a)

ε4Re(vt + ε2uvx + vvy) = −ε2py + ε2vxx + vyy + ε4Txy
x + ε2Tyy

y − ε4%. (A 2b)

Finally, the constitutive equations (2.3) for the stress components become

Txx
t + ε2uTxx

x + vTxx
y − 2ε2(Txxux + Txyuy) = − 1

Wi
(Txx − G), (A 3a)

Tyy
t + ε2uTyy

x + vTyy
y − (2ε2Txyvx + Tyyvy) = − 1

Wi
(Tyy − G), (A 3b)

Txy
t + ε2uTxy

x + vTxy
y − (Txxvx + Tyyuy) = − 1

Wi
Txy. (A 3c)

The kinematic boundary condition in (2.4) reads

v =
(
H ± 1

2
h
)

t
+ ε2u

(
H ± 1

2
h
)

x
, (A 4)

and the stress-free condition (2.4b),

−ε2(−p + 2ux + Txx)
(
Hx ± 1

2
hx

)
+ (uy + vx + ε2Txy) = 0, (A 5a)

(ε2(uy + vx) + ε4Txy)
(
Hx ± 1

2
hx

)
− ε2p + 2vy + ε2Tyy = 0. (A 5b)

At leading order, O(ε0), the continuity equation (A 1) and the kinematic boundary
condition (A 4) are v0 = H0t and h0t =0, while (A 2a) and the stress-free boundary
condition (A 5a) give

u0 = H0xt (H0 − y) + u0(x), (A 6)

with u0(x) the velocity of the centreline of the sheet, i.e. y =H0. Differentiating.
(A 6) once with x gives the rate of extensional strain of the centreline, which is the
tension, T ,

T = u0x + H0xH0xt . (A 7)

For a sheet that is pinned at its ends, horizontal stress balance requires that Tx = 0, so
that the tension T = T (t). Integrating (A 7) with x ∈ [−1/2, 1/2], imposing u0(0, t) = 0
(from symmetry) and u0(±1/2, t) = 0 (no-slip) as boundary conditions, we find that
the average tension in the filament is as in (2.6).

Assuming that the flow is purely extensional and homogeneous throughout the
sheet, we find Txx

0y = Tyy
0y = Txy

0y =Ψx =0, where Ψ = Txx − Tyy is the first normal
stress difference. At leading order, the Oldroyd-B equations (A 3) are then

Txx
0t = − 1

Wi

(
Txx

0 − G
)
, Tyy

0t = − 1

Wi

(
Tyy

0 − G
)
, (A 8a, b)

Txy
0t = Txx

0 v0x + Tyy
0 u0y − 1

Wi
Txy

0 . (A 8c)
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Combining (A 8a, b) yields an equation for the evolution of the first normal stress
difference Ψ = Txx − Tyy , which when integrated in time is

Ψ = Ψ0 e−t/Wi , (A 9c)

where Ψ (t = 0) =Ψ0. Thus, at leading order, the first normal stress difference Ψ relaxes
to zero, consistent with a relatively small Weissenberg number Wi ∼ O(ε2), whence
the strain in the flow is not powerful enough to maintain a non-zero Ψ . Finally, using
the continuity equation and the kinematic boundary condition, along with (A 6) and
(A 9), in (A 8c) gives us an evolution equation for the elastic shear stress, σ = Txy

0 , as

σt = Ψ0 e−t/WiHxt − 1

Wi
σ (A 10c)

where Wi = λρgd/6µ is the appropriate Weissenberg number, with λ the longest
relaxation time of the fluid. Integrating (A 10c) with the initial condition σ (x, 0) = 0
for the case of pure (initial) extension of the sheet, we find σ =Ψ0 Hxe−t/Wi . If
the initial thickness of the sheet at leading order is uniform, i.e. h0x =0, then the
kinematic boundary condition implies that h0 = const. = d . With this assumption,
Tx = 0 at O(ε2) from the stress-free boundary condition (A 5a), and the leading-order
pressure and elastic stress are related by p0 − Tyy

0 = −2u0x , with u0x obtained by
differentiating (A 6).

Moving now to O(ε4), we integrate (A 2b) to obtain the equation for pressure at
O(ε2). We use this expression, along with the stress-free boundary condition (A 5a)
and (A 5b) at this order, and impose orthogonality of the solution at O(ε4) to that of
the leading-order homogeneous solution. The Fredholm-alternative theorem (Hinch
1991) gives a solvability condition for H0(x, t), and thus an equation of motion for
the centreline of the sheet, (2.5).
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