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Equilibrium of an elastically confined liquid drop
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When a liquid drop is confined between an elastic plate and a rigid substrate, it spreads
spontaneously due to the effects of interfacial forces, eventually reaching an equilibrium shape
determined by the balance between elastic and capillary effects. We provide an analytical theory for
the static shape of the sheet and the extent of liquid spreading and show that our experiments are
quantitatively consistent with the theory. The theory is relevant for the first step of painting when a
brush is brought down on to canvas. More mundanely, it allows us to understand the stiction of
microcantilevers to wafer substrates occurring in microelectromechanical fabrication processes.
© 2008 American Institute of Physics. [DOI: 10.1063/1.2913512]

I. INTRODUCTION

The first and often crucial step in Chinese calligraphy
and certain forms of painting such as pointillism is the bring-
ing of a wet brush or other soft paint-bearing element to the
canvas. This leads to a spontaneous spreading of a drop of
paint due to the effects of interfacial forces. Here we analyze
this simple process to determine the shape of the brush and
the drop as a function of the various parameters that charac-
terize the problem. This study complements our previous
work on the capillary rise of a liquid between two elastic
plates, a problem motivated by the uptake of paint by a soft
elastic brush.'? However, there is a qualitative difference
between the elastocapillary rise problem treated in Ref. 2 and
that considered here since volume conservation rather than
gravity determines the final equilibrium shape of the drop
and plate. This type of problem also arises in some techno-
logical situations associated with microelectromechanical
systems where a common process involves thin microstruc-
tures such as cantilever beams or bridges that can be fabri-
cated by a surface micromachining process called wet release
etch. In this process, a sacrificial layer deposited on a sub-
strate, over which a structural material is deposited and pat-
terned, is removed by wet etching to leave an overhanging
structure. Upon post-etch rinsing, surface tension pulls in the
compliant beams as the rinsing solution dries. If the bending
stiffness of the beam is small (in a way that we shall quan-
tify), it is brought into contact with the substrate and they
may adhere firmly together, a phenomenon generally called
stiction.” Indeed, this process is a simple instance that shows
how the combination of interfacial forces and nonequilib-
rium kinetics such as that induced by drying can lead to the
self-assembly of soft simple elements into complex struc-
tures.

Here we focus on a minimal system consisting of a drop
that lies between two plates of length, L, and width, w, sepa-
rated by a distance, H, which is much smaller than L and w.
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If the drop volume Q> H?, then volume conservation im-
plies that it spreads into an elliptical drop having the length

of approximately Q)/Hw with deviations from the shape aris-
ing due to the capillary effects along the edge of the drop. If
one or both plates are flexible and hydrophilic, capillary
forces associated with the meniscus curvature lead to a nega-
tive pressure in the liquid causing the gap between the sheets
to be modulated. For a relatively short and stiff sheet, the
liquid spreads slightly more due to this effect and is accom-
panied by a slight decrease in the gap between the sheets.
However, when the sheets are long and flexible, they can
deform substantially and even stick to each other leading to a
qualitatively different behavior. To understand these at a
simple level, we start with the relatively stiff regime. When a
sheet of length, L, thickness, ¢, density, p,, and bending stiff-
ness, B, is deflected through a distance, &, due to surface
tension, o, balancing the torque exerted on the sheet, B&/ L2,
with the capillary torque, oQL/(H-6)% yields &
~ o QL3/ BH?, where the two-dimensional volume, Q=0Q/w.
Denoting the extent of spreading by /,,, volume conservation
gives Q~(H-96)l,, so that [, is modified to [,=I(1
—k/n)7", where [,=Q/H. Here 5=(1,/L)*(H/L)*>(HL/) is a
parameter that characterizes the ratio of elastic and capillary
forces up to geometric factors, and [,=(B/ o)"? is the adhe-
sion or bending 1ength.4 The constant k is of order unity,
showing how the effects of plate stiffness appear perturba-
tively to modify the extent of drop spreading. We note that as
n— o, we recover [~1,.. As 7 decreases, on the other hand,
the effects of capillary adhesion become important so that
the sheet deforms more, leading to a higher degree of spread-
ing. When 7<<1, the sheet eventually sticks to the rigid plate
starting from its free end, so that the quantity of interest is
the dry length /;. Minimizing the sum of the elastic energy of
the deformed sheet BH2/ZZ and the interfacial energy of(L
—1,) yields I,~ (B/o)"*H"?>~(1,H)"?. In the following, we
formulate and solve a free boundary problem to understand
the quantitative dependence of liquid spreading and sheet
shape on the various problem parameters to complement
these simple scaling estimates.
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Il. THE FREE BOUNDARY PROBLEM: FORMULATION,
SOLUTION, AND EXPERIMENTAL CORROBORATION

We consider a liquid drop in equilibrium between a rigid
horizontal flat plate and a flexible sheet clamped at an angle
oy, as shown in Fig. 1. When the clamping distance H<<L,
we may use linear plate theory to describe its deformation
h(x) (Ref. 5)

BR"(x) = g(x), (1)

where B is the bending stiffness per unit width of the sheet,
h'=dh/dx, and g(x) is the force per unit area on the sheet.

A. Spreading under a stiff plate with a separated
end

For 7= 0(1), i.e., in the relatively stiff regime, the sheet
is in contact with liquid over an unknown length, /,,=L-x,,,
while its free end is still some distance from the bottom plate
as shown in Fig. 1(a). We neglect the effect of gravity on
both the drop and the elastic plate. The conditions for this are
(i) the Bond number of the drop Bo=pgH?/ o<1 and (ii) the
torque due to weight M, ~ p,gtL?* is small compared with the
torque due to surface tension M,~oQL/H? ie. L
<0/ p,gtH?. When a water drop and the glass sheets used
for the computation in Fig. 2 are considered, Bo is below
0.09 and the ratio M,/ M is of the order of 1072. In micro-
machining processes to fabricate 1 um-thick silicon nitride
beams overhanging 100 wm from the substrate, the numbers
are even smaller, Bo and M,/ M, being of the order of 1073
and 1075, respectively.

Then the relative pressure in the liquid is —o/R,, where
Ry is the radius of curvature of the menisci. Then the pres-
sure distribution over the entire range of x can be simply
written as g=—(o/Ry)H(x—x,,), where H(.) is the Heaviside
function. Substituting into Eq. (1) yields

BI" = - —H(x-x,), @)
R

To complete the formulation of the problem, we need some
boundary conditions. As the plate is clamped at x=0, it fol-
lows that h(0)=H and h'(0)=tan a;. At the other end, the
sheet is free of torques but is subject to a transverse shear
force due to surface tension so that 4”(L)=0 and Bh"(L)
=0 sin 6;, where 6; is the contact angle of the liquid with

Q. Liquid
X =Xc X=L>x
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FIG. 1. (Color online) Schematics and
experimental images of the sheet and
liquid drop. (a) The glass sheet, 36.2
mm long and 1.85 mm apart from the
substrate at the clamped end, is rela-
tively stiff so that the free end is sepa-
rated. (b) The same glass sheet 0.28
mm apart from the substrate at the
clamped end, is relatively soft so that
the end is in contact with the substrate.
In both the experimental images, the
same volume of the ethylene glycol
drop is used and the substrate is
parafilm.

the end of the sheet. These four boundary conditions must be
supplemented by matching conditions at the meniscus, x
=Xx,,, given by the continuity of the deflection, the slope, and
the curvature of the sheet, i.e., [h]=[h']=[h"]=0, where
[A]=lim_ ({A(x,+€)—A(x,,—€)}. However, there is a jump
in the transverse shear force across x=ux,, due to surface ten-
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FIG. 2. Effects of dimensionless parameters on the scaled sheet shape and
the location of the meniscus x,, (circles) obtained by solving Eq. (5) with
Eq. (6). The squares denote the locations of menisci assuming rigid sheets.
For purposes of comparison, the uppermost curve in each case corresponds
to the following parameter values: /,/L=19.3, H/L=0.0293, O/HL=0.141,
and 6,=87°. The contact angle 6,=0° for all the cases. These are consistent
with the parameter values for water spreading under the thin hydrophilic
sheet of length L=27.3 mm and B=0.022 Nm separated by a height H
=0.8 mm from a rigid substrate having the contact angle 6,=87° with wa-
ter. (a) [,/ L decreases in the direction of the arrow taking the values 19.3,
17.6, 16.9, 16.7, and 16.5. (b) H/L decreases in the direction of the arrow
taking the values 0.0293, 0.0256, 0.0234, 0.0220, and 0.0201. (c) Q/HL
decreases in the direction of the arrow taking the values 0.778, 0.275, 0.229,
0.183, and 0.141. (d) 6, decreases in the direction of the arrow taking the
values 87°, 60°, 40°, 30°, and 0°.
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sion so that [Bh"]=o sin 6,, where 6, is the contact angle of
the meniscus with the sheet. To determine the unknown me-
niscus location, x,,, and the radius of curvature, R, as well as
the eight constants of integration resulting from Eq. (2), we
need two more conditions in addition to the earlier eight
boundary and matching conditions. One is provided by the
conservation of the liquid volume, (), which for the two-
dimensional geometry considered here reads

f dxdy = ). (3)
1%

The last condition comes from the description of the left-
hand meniscus whose top and bottom contact angles are pre-
scribed. Since gravitational effects are neglected, the left-
hand meniscus is a part of circle with the radius R,. Then
h,,=h(x,,) can be related to R, by simple geometrical consid-
eration as

h,, = Ry(cos 8, + cos ¢), (4)

where 6, is the contact angle of the liquid with the substrate
and ¢ is the angle between the horizontal and the tangent to
the top of the left-hand meniscus thus given by ¢=6,—«,,.
Here «,, is the slope of the sheet at x=x,, thus tan «,,
=h'(x,,). The right-hand meniscus is directly deduced from
the shape of the left-hand one as the pressure in the drop is a
constant when gravitational effects are neglected. The con-
tact angle of the right-hand meniscus with the sheet is free as
the drop is assumed to be pinned to the edge of the sheet.

To make the equations and boundary conditions dimen-
sionless, we use the scaled variables x=Lx, y=Hy, and h
=Hﬁ, so that the complete boundary value problem reads,
upon dropping the hats, as

L4

h///l =
>HR,

H(x~x,) (5)

subject to the conditions

h(0)=1,
h’(O) =L tan CY()/H,
h"(1)=0,

R"(1) = L3 sin 6,/HL,

[h]=0,

(6)
[A']=0,
[n"]=0,

[A"]=L? sin 6,/HI,

QO/HL = f dxdy,
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Hy,,/Ro=cos 8, +cos(6,— a,,).

We see that the shapes of the sheet and menisci depend on
three dimensionless parameters, namely [,/L, H/L, and
Q)/HL in addition to the contact angles 6, and 6,. Here we
note that x,, and R are not parameters but unknown quanti-
ties to be obtained by the boundary value problem. Integrat-
ing Eq. (5) yields a polynomial shape of the sheet with eight
integration constants. These constants, the unknown menis-
cus location x,, and its shape R, are obtained by using ten
conditions (6) to yield closed-form expressions for A(x), us-
ing MATLAB.

In Fig. 2 we show the dimensionless shape of the sheet
y(x) as a function of the dimensionless parameters: [,/L,
H/L, Q/HL, and 6,. On comparing the location of the left
meniscus with that for a rigid plate, we see that a higher
degree of spreading occurs when the liquid has a large inter-
facial tension and the sheet is soft and long (low [,/L), while
the separation at the clamped end is small (low H/L). Not
surprisingly, a large amount of liquid (high /HL) with
small contact angles spreads more. Lowering /,/L and H/L
and increasing )/ HL correspond to decreasing the dimen-
sionless stiffness 7. As # decreases further, the sheet be-
comes relatively more flexible leading to contact with the
bottom plate. This changes the problem qualitatively due to a
change in the boundary conditions, a case treated in next
section.

To compare these results with experiments, we start with
a glass cover slip cleaned with piranha solution to make
them almost perfectly wettable by water and ethylene glycol
(EG). The sheet width w=4 mm and the thickness ¢
=150 wm, respectively, and its length LE[19.1 38.7] mm.
The drop volume Q E€[0.858 13.74] mm?. For the bottom
plates, we used Parafilm M laboratory sealing film (PF:
American National Can, Chicago, IL) having an equilibrium
contact angle 6,=89° with EG and polycarbonate having the
contact angle 6,=87° with water. Figure 3(a) shows that the
scaled spreading length, /,,/ L, increases as the scaled height,
H/L, decreases, revealing good agreement between the
theory and the experiments. For small gaps, i.e., low values
of H/L, liquid spreading is greatly enhanced for soft elastic
plates, i.e., small 7, as compared with that under rigid plates.
In Fig. 3(b), we compare the experimental measurements
with the scaling introduced earlier, 1,,~[,(1-k/ 7])", which
is also reasonably good for small values of 1/ 7.

B. Spreading under a soft sheet with a contacting
end

If we increase the sheet length, or decrease its flexural
rigidity or gap height to make 7<€1, surface tension causes
the sheet to touch the bottom plate at the free end. Figure 4
shows the change of sheet shapes on increasing the sheet
length L while maintaining the gap height H and the liquid
volume (). When the sheet length increases to, say, L;, the
sheet touches the bottom, and the formulation of the result-
ing free boundary problem changes slightly since the bound-
ary condition corresponding to the force due to surface ten-
sion on the right side of the sheet #”(1)=L3 sin 0L/Hli is
replaced by the kinematic condition #(1)=0. As 7 becomes
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FIG. 3. (a) Comparison of experimen-
tal results and theoretically predicted
spreading length /,, obtained by solv-
ing Egs. (5) and (6). The broken lines
are the spreading length under rigid
plates. (b) Replotting the experimental
results and the scaling law 1[,/1,
~1/(1-k/m) with an adjustable pa-
rameter k also shows reasonable
agreement. Line I and filled circles are
for 1,/L=27.6 and 6,=89°, and the
rightmost filled circle in (a) corre-
sponds to )/HL=0.129. Line II and
open circles are for /,/L=20.8 and 6,
=89°, and the rightmost open circle in
(a) corresponds to )/ HL=0.066.

even smaller, the angle between the plates at their contacting such a mechanism has been proposed qualitatively to explain
ends, still at x=L, decreases until eventually it vanishes when  the release etch processing for microfabrication that is re-
the sheet length is, say, L=L,, leading to smooth tangential sponsible for the stiction behavior of a microcantilever under
contact between the plates along a line (line III in Fig. 4). which a drying liquid drop exerts a surface tension force
Still further increase in the sheet length, with L>L,, then = toward the substrate.’ Adding the surface tension force acting
causes the contact line between the sheets to move to an  at both sides of the sheet (—2¢) divided by its width to g(x)
unknown location x=x.. In this new regime, there are two  in Eq. (1), the right-hand side of Eq. (2) becomes —o(1/R,
unknown locations: the wet-dry meniscus x,, and the location +2/w)H(x—-x,,). Here we have approximated the surface
of the contact line x,. beyond which the sheet and the bottom tension at the sides as acting vertically. This yields the wet-
plate are effectively in contact [see Fig. 1(b)]. When L> L,, ted length as a function of H/L as shown by the dotted line
the quantity of interest is the size of the dry and wet regions, in Fig. 5(a). The shear force acting at the free end of the
and the sheet shape for 0<x<x. is independent of the sheet calculated using this modified model vanishes at the
length of the entire sheet. The governing Eq. (5) still holds point denoted as a cross. This agrees well with the experi-
for 0<x<x, and the boundary conditions at x=0 and the mentally found transition point indicated by the path B. For
matching conditions at x=x,, are identical to the foregoing other ranges, including the surface tension acting at the sides
formulations. At x=x,, h(x,)=h'(x.)=0 consistent with tan-  of the sheet changed values of /,,/L little (Iess than 5%). We
gentially smooth contact. Furthermore, assuming a thin inter- note that the spreading length [, increases with the height
calating layer of liquid even in the region x.<x <L, where decrease much more sensitively in the contacting-end regime
the solid sheets are in nominal contact, yields h”()cc):O.2 than in the separated-end regime.

Solving the differential Eq. (5) with the additional conditions

Figure 5(b) shows reasonable agreement between experi-

earlier gives the sheet shape and the two unknown locations ment and theory for the transition between the end-contact

X,, and x,. regime and tangentially smooth-contact regime. The figure
Figure 5(a) shows the experimental and theoretical re- also shows the aforementioned scaling law [,,/L=1-1,/L
sults for the transition between the separated-end regime and =1 —k(laH)”z/ L, with the adjustable constant k=1.7, which

the contacting-end regime. As the sheet height decreases, the agrees well with the experiments.

separated-end solution ceases to be valid when the sheet con-

tacts the substrate, entering the contacting-end regime (path IIl. DISCUSSION

A in the figure). On the other hand, when raising the sheet
from the end-contact configuration, we experimentally find

that the sheet does not detach from the substrate following
the path A. Instead the end-contacting regime persists until
the path B. This is because the shear force acting at the free
end of the sheet continues to be upward (negative y") until
the sheet is separated from the substrate. If we consider the
additional contribution of surface tension acting along the
width of the drop, this accounts for the persistence of the
end-contacting configuration between paths A and B. Indeed

Our quantitative theory and experiments for the spread-

ing of an elastically confined drop has probed the simplest
elements of the configuration of the sheet and drop as a func-
tion of the fluid volume, the length of the sheet, and its
distance from the substrate as well as the stiffness of the
sheet and surface tension of the liquid. We have shown that
there are three distinct configurations of the sheet depending
on the value of the scaled stiffness of the sheet which com-
bines geometric and physical parameters. Our focus has been

I

FIG. 4. Theoretically predicted beam shapes and me-
niscus locations when L<L; (line I), L; <L<L, (line
1), and L> L, (line III).
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FIG. 5. Theoretical and experimental results for three regimes. (a) Transition between the separated-end regime and the contacting-end regime. The solid and
broken lines are theoretical solutions of the separated and contacting end regimes, respectively, obtained by varying H while /,/L is maintained at 14.1. The
dotted line is from the modified model that considers the surface tension acting at the sides of the sheet. Open circles and squares are the experimental results
measured while decreasing and increasing H, respectively. The parameter )/ HL=0.044 for the rightmost symbol, which changes as H varies although () and
L are constants. (b) Transition between the contacting-end regime and the tangentially smooth-contact regime. The broken and solid lines are theoretical
solutions of the contacting-end and tangentially smooth-contact regimes, respectively, obtained by varying H while /,/L is maintained at 14.1. Filled circles
and squares are the experimental results measured while decreasing and increasing H, respectively. The parameter £}/ HL=0.028 for the rightmost symbol,
which changes as H varies although () and L are constants. The dotted line is from the scaling law. In all the cases of (a) and (b), 6,=89°.

on two-dimensional configurations; much remains to be done
for more complex geometries associated with, say, the mul-
tiple hairs of a paint brush. This problem may serve as a
precursor toward a qualitative theory of how more complex
structures might arise from these simple interactions when
modified by kinetic processes such as drying.

We now conclude by adding some discussions on how
this problem can be extended to more complex but relevant
situations. When the drop does not touch the free end ini-
tially but rather located between the clamped and the free
ends, the drop will eventually move to the free end to reach
the equilibrium. This is because the pressure in the liquid
around the meniscus near the clamped end (having a smaller
interface curvature) is higher than the pressure near the free
end (having a larger interface curvature) thus propels the
drop toward the free end. Hence, the current formulation can
still be used for the situation considered. When the sheet
width is reduced to a comparable size to the gap height (w
—R,), the three-dimensional effect comes into play. A mere
inclusion of the surface tension force acting at both sides of
the sheet as discussed earlier to explain the dotted line in Fig.
5(a) can result in good estimates for the shapes of the sheet
and the drop provided that the interface curvature along the
side is neglected. Since the contact angle at the side is not
simply defined due to the fact that the angle is now formed at
the solid edge, considering the interface profile along the

side involves a much more complex study. In general, for
narrow sheets, additional effects of the surface tension forces
that pull the sheet downward tend to enhance both the sheet
deformation and the drop spreading. Similar three-
dimensional effects are to be considered for circular fila-
ments, a geometry of most real brushes, for which our
present study can provide qualitative estimates for the two-
dimensional filament deformation and the degree of liquid
spreading.
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