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I give a brief, biased survey of some recent problems in molecular and cell biology

from the perspective of physical science, with a few answers, but a great many

questions, challenges and opportunities.
1 Introduction

A quantitative physicochemical analysis of biological systems is the natural desider-
atum of our increased knowledge of living organisms at the molecular and cellular
level. Broadly, this raises questions about the mechanisms associated with intercon-
version of matter into different structured forms, the transduction of energy into
various forms as well as interplay with matter, and the processing of information
at multiple scales, from the genome to the organism itself. Of course, these three
domains are closely intertwined with each other; indeed it is the natural richness
of phenomena that arises at these interfaces that draws so many of us into thinking
about biology. I will review some of the recent advances in this field, from a personal
and, therefore, somewhat narrow perspective.
A natural starting place in thinking about biological systems starts with the obser-

vation, at the molecular and cellular scale, of a preponderance of filamentous and
membranous structures. These low dimensional objects have a large surface to
volume ratio and thus serve as substrates for chemical reactions associated with the
dynamical processes underlying life while having the ability to encode function in
complex dynamic structures. In Section 2 I will, therefore, discuss some of the simpler
aspects of the morphology and dynamics of filamentous andmembranous structures.
In Section 3 I will discuss how one might build on our understanding of the filamen-
tous and membraneous structures to quantify some simple aspects of cell dynamics.
Finally, in Section 4 I will close with some remarks on the challenges ahead.

2 Physics of filamentous aggregates

Long polymeric molecules can aggregate into either ordered bundles or disordered
networks and indeed can switch from one form to another. A partial list of examples
include actin bundles and cytoskeletal networks, axonemal structures and other
microtubular organelles, misfolded proteins that form amyloid fibrils and networks,
beneficial aggregates such as blood clots and a variety of extracellular structural
arrangements made of keratin, collagen, elastin etc. associated with tissues such as
skin and hair. The slender geometry of these molecules allows them to bend and twist
much more easily than they can stretch, independent of their chemical composition.1

When a number of these single molecules aggregate into an ordered bundle of
filaments, they can also shear or slide relative to each other, either passively (in
School of Engineering and Applied Sciences, Harvard University, Department of Systems
Biology, Harvard Medical School, 29 Oxford St, Cambridge, MA, 02138, USA. E-mail: lm@
seas.harvard.edu

This journal is ª The Royal Society of Chemistry 2008 Faraday Discuss., 2008, 139, 9–19 | 9

http://www.rsc.org/faraday_d


examples such as actin hair bundles in the inner ear) or actively (in motor-driven
microtubule flagellar axonemes). In disordered aggregates, one has in addition to
account for the variable connectivity of the filaments that often form a heterogeneous
network and can lead to collective behaviors that one cannot deduce from the
mechanics of individual filaments. Although the specific interactions that form these
bundles or networks are clearly important at the molecular level, at the mesoscopic
nanometer range or larger, these interactions can be coarse-grained into a few simple
concepts that help us to classify and quantify the morphology and mechanochem-
istry of supramolecular structures. In the following, I review some minimal models
that sharpen the questions that these systems pose.
2.1 Morphology of ordered bundles

Unlike single polymer molecules that are constantly buffeted by the thermal sea they
inhabit, bundles are usually very stiff by virtue of their thicker radius, so that the
persistence length of these objects is large enough that thermal effects may be
neglected at the cellular level. In an ordered bundle of filaments, there are a number
of interactions associated with filament bending and twisting, inter-filament
adhesion, and finally bundle bending and twisting. For filaments of diameter
d made of a material of Young’s modulus E with bending stiffness B � Ed4, and
inter-filament adhesion energy per unit length g, a natural length scale is the char-
acteristic adhesion length La � (B/g)1/2.2 A simple explanation for how this length
arises can be seen by considering the geometry of a curved two-filament planar
bundle shown in Fig. 1a. As the filament on the outside has to traverse a longer
length it must stretch relative to the inner filament to prevent the filament crosslinks
from becoming deregistered (for strongly adherent filaments), or slip relative to the
inner filament (when adhesion is very weak). For a bundle that starts out from
a straight nucleus, there is no reason to form bends or kinks. However, if the bundle
nucleus enforces a natural curvature to the bundle, then the previous argument
suggests that if the curvature is very large, the bundle will favor the formation of
a series of periodic kinks wherein an extra monomer is inserted after a characteristic
spacing proportional to the adhesion length La. The spatial extent of the kink
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This characteristic scale may explain why bundles of actin, sickle cell haemoglobin
fibres and even amyloid fibrils form kinks. In three-dimensional bundles, we also
need to account for the role of three-dimensional curvature and twist of the bundles
which arises in tertiary structures of biological polymers such as coiled coils and
other helical motifs. Since this twist is uniform for a filament with a circular
cross-section, we may ignore it for free bundles since this twist can always ‘‘escape’’
from the free boundaries. To understand the role of the third dimension qualita-
tively, we will restrict ourselves to the simple case of two filaments wound around
each other along a helix of pitch p and radius r. Then the energy per unit length
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, where P ¼ p/2pr. The first

term arises from bending a filament into a helix,3 and the second characterizes the
adhesion of the two filaments. Minimizing U leads to an expression for the pitch

written in a general dimensionless form as P � f
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wind around each other helically, energy minimization leads to braided rope-like
structures.8 However, when four filaments adhere to each other, another new
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Fig. 1 Morphology of ordered fibrils. (a) A physical model and a schematic of a two-fibril
adherent bundle. Any inherent curvature in the bundle leads to a mismatch in the strains expe-
rienced by the two filaments which have different path lengths. This leads to a set of periodic
kinks, such as that highlighted in red. The schematic shows that the kink size depends on a char-
acteristic ratio of the length of a subunit and its diameter, L/D. In bundles that are non-planar,
the filaments can twist relative to each other and this allows them to further increase their adhe-
sion. (b) In a bundle with 4 filaments which can twist relative to each other, the symmetry of
packing leads to three possible states, so that the bundle can switch from one to another even
if its central axis is straight. This can lead to a periodic pattern of defects as the filaments switch
their relative positions at a cross-section. (c) In a bundle withmany filaments, so that n[ 1, one
may be able to use a continuum theory that accounts for the shear, stretch, twist and bending.
characteristic in the bundle arises naturally, since the individual filaments are no
longer equivalent. Indeed, looking at a bundle of circular filaments in cross section
as shown in Fig. 1b shows that there are three possible packings: a square array or
two symmetry-related triangular arrays between which the bundle may switch giving
rise to a structure with periodic defects. This geometric feature might explain the
amyloid structures of different morphologies that arise as a function of the number
n of fibres in a bundle. When n[ 1, we may use a continuum theory similar to that
used in describing liquid crystals, but including penalties associated with both
stretching and shearing filaments.4–7 These bundles can exhibit dynamical transi-
tions; for example, prokaryotic flagella are well known to undergo polymorphic
transitions when subject to flow or pH changes,9 in Vorticella there is an order-
disorder transition in a polyelectrolyte gel mediated by binding to calcium ions,10

while in the Limulus polyphemus sperm, a dynamic actin bundle can be extruded
when an order–order transition changes a twisted kinked super-helical actin bundle
into a straight one.11 These transitions propagate through the bundles at rates that
are dependent both on the underlying mechanochemistry as well as the macroscopic
constraints associated with moving organelles through the ambient liquid.
There remain a number of questions associated with the morphology of these

bundles, of which I will highlight just two. (i) A theory for the maximum diameter
of these bundles. A simple physical picture associated with the fact that the outer
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filaments of the bundle must be stretched to register with the filaments on the inside,
immediately leads to a thermodynamic limit on the radius: when the energy of
binding becomes comparable to the enthalpic energy required to stretch bonds, it
is no longer preferable for the bundle to grow radially, and therefore it only grows
axially. (ii) A theory for the dynamical transitions between different morphological
states of a bundle. While experiments are suggestive of simple transition dynamics,
a complete quantitative understanding remains elusive, and requires many concepts
from polymer physics. From an evolutionary perspective, these designs are examples
of convergence dictated by geometry, chemistry and physics. From the perspective
of a polymer scientist, since these transitions occur in fairly simple systems, perhaps
this is a case of biomimetic opportunism waiting to be exploited.
2.2 Mechanics of disordered filamentous aggregates

Cross-linked networks arise inside a cell as the cytoskeleton, but also are a crucial
part of the extracellular matrix in organs, in collagenous networks that are common
in skin, in blood clots, etc. As material systems, these networks are characterized by
topologically complex connectivity and are often made of polymers with very
different chemical and mechanical properties. The effects of thermal fluctuations
are not always negligible in these polymeric systems, which have in addition an
inherent structural disorder. When combined with enthalpic effects these determine
the mechanics of the networks. In addition, the cross links themselves may be active
(as in the case of motors that consume energy) and/or have their own kinetics.
Recent theories and experiments have shown that a characteristic of biopolymeric
networks is their strain stiffening ability as a function of the applied pre-stress, so
that the material resists deformations strongly.12,13 The underlying mechanisms for
the strain stiffening behaviour fall into two categories: (i) those that rely only on
microscopic nonlinearities associated with the deformation of the filaments and/or
cross linkers that arise, say, from ironing out shorter and shorter wavelength thermal
wrinkles as the applied deformations become larger (ii) those that arise from the
collective non-affine deformations associated with the inability of mesoscopic
regions to follow the macroscopically imposed deformations. However, despite
much theoretical and experimental effort, it is still not clear which of the above
mechanisms is relevant even in passive in vitro networks.
Here, I will highlight the role of connectivity in determining how non-affine defor-

mations in heterogeneous networks of harmonic springs can lead to strongly
nonlinear force-displacement characteristics. It was Clerk-Maxwell who first consid-
ered the conditions for rigidity of a network of bars with hinged joints; for a system
with N nodes in d dimensions, with Nc constraints (springs) connecting them, the
number of internal degrees of freedom of the system is given by Nd � Nc. When
the number of internal degrees of freedom just vanishes on average, so that Nd ¼
Nc and the average coordination number z ¼ 2Nc/N ¼ 2d ¼ zc (here the factor of
2 arises because each spring is shared between 2 nodes), we have a marginal state
known as a marginal or isostatic state. In a network where z < zc, applied boundary
displacements lead to heterogeneous strains without stresses. Understanding this
requires knowledge of the zero-energy modes of the system (see Fig. 2). These modes
are associated with rotational degrees of freedom that allow the network to deform
on multiple scales and are directly controlled by the average coordination number of
the cross links. As z � zc sweeps through zero, the critical strain at which the spring
network becomes stiff vanishes.14 Shown in Fig. 2 are simulations of a filamentous
network that is gradually strained.15 We see that below a critical strain, the system
deforms without offering any resistance, and then rather suddenly starts to stiffen
under the influence of an externally imposed strain. This simple example suffices
to emphasize that multiple microscopic mechanisms can lead to macroscopic strain
stiffening behaviour, including (i) microscopic nonlinearity associated with the
competition between entropy and enthalpy, (ii) quenched disorder and variable
12 | Faraday Discuss., 2008, 139, 9–19 This journal is ª The Royal Society of Chemistry 2008



Fig. 2 Mechanics of disordered networks. (a) A two-dimensional network of fibres, with the
average coordination number (see text) z < zc, so that the network is floppy, is subject to a strain
at the boundaries. As seen, this leads to the shrinking of the network in one direction and an
extension in the direction of the applied strain, coupled to an orientational ordering of the fila-
ments. (b) A plot of the nominal stress (using arbitrary units) as a function of the nominal strain
shows that the collective response of the network leads to no stress until the strain reaches a crit-
ical value g*. This is because of the presence of floppy modes that allow for the rotation of parts
of the network to accommodate the boundary strains up to a critical threshold. Only beyond
this critical threshold does the network deform with a finite resistance. The springs are all
assumed to be harmonic, i.e. they are linear, with a spring constant inversely proportional to
their rest length. The simulations were carried out using a damped molecular dynamics method.
connectivity, and (iii) soft modes associated with rotational motions, as briefly
discussed here.
Deciphering the relative importance of these effects will set the stage to uncover

how biological networks respond to mechanical stimuli. Interestingly, the study of
amorphous systems such as the cytoskeleton links aspects at the frontiers of physics
to those at the frontiers of biology. Indeed just as the origins of life are shrouded in
mystery,16 so is the difference between the living and the non-living. For example,
dessicated and frozen cells seem to be nearly ametabolic and in suspended animation
while nevertheless remaining structurally intact.17 Just as glasses strike at a number
of questions at the heart of polymer physics, so too do dessicated and frozen cells
that form living glasses, structured out-of-equilibrium systems that are nearly, but
perhaps not completely ametabolic.

3 Simple aspects of cell dynamics

A cell is the minimal self sustaining unit in biology and consists of a heterogenous,
yet structured assembly of filamentous and membranous polymers bathed in water.
It can replicate, repair itself, move, respond to stimuli, and communicate with its
This journal is ª The Royal Society of Chemistry 2008 Faraday Discuss., 2008, 139, 9–19 | 13



neighbors in a multicellular organism. Here I consider three questions. How can one
describe the microstructured water-laden cytoplasm? How can one model the funda-
mental process by which a cell adheres to a substrate or to another cell? How might
one study the physics of a molecular disease?

3.1 A micro-structural model for the cytoplasm

The cytoplasm of the typical animal cell shown in Fig. 3a shows that the heteroge-
neities in its structure range from a scale of between lp � 5–50 nm corresponding to
the pore or network size that varies from the cell lamellopodium to the nucleus, all
the way to the system size which ranges from between L � 10–30 mm. A natural
question at this scale is: what is the appropriate mechanical description of the cyto-
plasm? Recent experiments18 on understanding the flow of water through the cyto-
plasm suggests a new description that is in stark contrast with classical theories that
treat the cell as a visco-elastic or visco-plastic material. The cytoplasm is inherently
a complex material as it is made up of water, ions, metabolites, soluble proteins,
large protein aggregates and organelles, such as the cytoskeletal and membrane
network, all of which are changing. Thus, even at the simplest level, one must
account for the fact that the cytoplasm has two distinct phases, a solid phase consist-
ing of a network, membranes and particulates, and a fluid phase consisting of water,
ions, metabolites and soluble proteins, that interpenetrate each other. Poroelasticity,
the theory that describes the mechanics of a fluid infiltrated solid such as water-laden
soil, crosslinked gels in a solvent, colloidal networks, etc. provides a natural frame-
work for this multiphase material that allows for the relative dilatational movement
between the fluid and solid phases.
To understand this in a minimal setting, we consider the thought experiment in

which a load is applied to laterally confined, hydrated, soft, porous gel via a porous
membrane (Fig. 3b). In a cellular situation, the porous membrane might, for
example, represent the plasma membrane which is driven by a contractile force.
When the membrane is depressed rapidly, the network dilates locally to accommo-
date the incompressible fluid but barely moves further away. Eventually, as water
exits the system through the porous membrane and progressively more of the load
is borne by the gel, the network dilatation at all positions reaches the same value,
and the gel relaxes until it reaches an equilibrium where the applied load is every-
where balanced by the elastic stresses in the network.21 This experiment and its vari-
ants have been well studied in simple physical gels,19 as well as in biogels such as
Fig. 3 (a) A plan view of an animal cell (Wikipedia) stained to show some of the cytoskeletal
proteins such as microtubules (green), and actin (red). The characteristic size of the cell is about
10 mm, and clearly shows that it is made of a heterogeneous network similar to that shown in
Fig. 2. Water makes up as much as 70–80% of a cell’s volume. (b) A minimal model of the cell
that accounts for the fluid and solid phases of the cytoplasm is that of a soft, fluid-infiltrated
sponge. Here, to understand the response of such a system, we assume that the cytoplasmic
gel is confined to a rigid chamber and compressed by a porous piston, with u(x, t) the displace-
ment of a cross-section at a location x at time t.
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cartilage and collagen networks.20 They demonstrate that in certain circumstances,
the local dilatational strain and the stress in the network, as well as the pressure,
are all functions of space and time in a fluid-infiltrated soft network. A brief descrip-
tion of the underlying theory and scaling ideas are outlined below.
If the displacement field of the gel (assumed to be made of incompressible constit-

uent materials) is given by u(x, t), the stress in it at a given cross-section is Kvxu,
where K is the drained bulk (compressibility) modulus that characterizes the resis-
tance of the porous network to volume changes in the absence of a fluid. Balancing
the change in stress from one cross-section to another with the fluid pressure gradi-
ents yields Kvxxu¼ vxp. The relative swelling or shrinkage of the gel is driven by fluid
flow, which in a porous medium has a velocity v proportional to the local pressure
gradient, i.e. v¼�kvxp where k is the hydraulic permeability of the network (k� lp

2/
h, where h is the viscosity of the infiltrating fluid and lp is the mesh size of the gel).
Since the fluid can flow only because the gel network moves relative to it (given that
the fluid and the solid of which the network is made are effectively incompressible),
we also have the relation vtu ¼ � v. Combining the above equations, we find that
Kvxxu ¼ � v/k ¼ vtu/k, so that the displacement satisfies the diffusion equation
Dvxxu ¼ ut with diffusion constant D ¼ Kk. For a suddenly applied load that is
held constant, at a boundary of a gel of finite length L, we find that the largest char-
acteristic time scale for relaxation is L2/D, i.e. the larger the system, the longer it
takes for the displacements and pressure to equilibrate. Similarly, the smaller the
diffusion constant (corresponding to a small, very stiff mesh infiltrated by a very
viscous fluid), the longer it takes for the pressure to equilibrate. This suggests that
just as different parts of the cell are chemically unequilibrated, they may also be me-
chanically unequilibrated and lead to random uncoordinated blebbing in a cell in the
absence of any external stimulus.18 However, when a cell gets polarized in the pres-
ence of an external stimulus, it preferentially blebs along the axis of polarization. A
simple mechanism by which this happens might just reflect the physical synchroni-
zation of different blebbing domains that have approximately equal frequencies
(reflecting the cortical myosin driven contractions) but random phases that gradu-
ally align themselves temporally in response to the diffusive pressure or volumetric
strain signal that naturally couples different cortical regions.
The movement of water in and through the cytoplasm must be eventually coordi-

nated with the movement of water into and out of the cell through various membra-
neous routes. Given the importance of water as a solvent at the molecular level, this
leads to a natural set of questions at the mesoscale: how does water content vary
from one cell to another? How is water homeostasis achieved in cells? What is the
role of water in cell motility and cell division?
3.2 A model of cell adhesion

Multicellular organisms consist of many cells that are adherent, at least most of the
time. The mechanisms by which cells adhere to form cohesive tissues, organs and
organisms are complex and involve a delicate dance that combines chemical signal-
ling cascades, geometrical contact and mechanical interactions through focal adhe-
sions, desmosomes, etc. The dynamic interface that the cell presents to the
environment is a bilayer embedded with a number of channels, receptors and other
proteins that exchange matter, information and energy with the exterior. Avoiding
all but the simplest questions, one might ask how a cell responds when it starts to
spread on a substrate. Since there are a variety of cell types, substrates and proteins
that mediate these interactions, one might expect to see a variety of responses.
Ignoring these differences for a moment, if we assume that during the early stages

of adhesion there is no actively directed mechanism that enhances/reduces adhesion,
we may use a physical argument to characterize the dynamics of this process. On the
time scale of the experiments ranging from a few seconds to a few minutes, the cell
and its actin cortex are similar to a viscous shell that encloses a liquid cytoplasm
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(Fig. 3). During spreading, the increase in cell contact with the surface is driven by
the adhesion associated with the formation of both specific bonds and non-specific
interactions, leading to cell deformation and flattening, which is accompanied by the
dissipation of energy. The dynamical balance between these processes determines the
temporal evolution of adhesive contact. Then, for a rate of change of the contact
area RdR/dt (assuming a disk-like shape for the contact zone), the adhesive power
is JRdR/dt, where J, the adhesion energy per unit area is the product of the areal
density of adhesive bonds and the energy per bond. To accommodate adhesion,
the viscous cortical shell has to flatten and flow during spreading with a characteristic
strain rate of order dR/wdt, where w is the thickness of the cortical shell. Since flow
in the thin dense cortex dominates that in the rest of the cytoplasm, the characteristic
volume over which dissipation occurs is of order R2w. If h is the cortical shell
viscosity, the energy dissipation rate due to the viscous flow in the cortical shell
scales as h(dR/wdt)2R2w. Balancing this with the adhesive power leads to a simple
scaling law for the contact radius at short times R � (Jwt/h)1/2. Recent experiments22

show that the initial dynamics of cell spreading are consistent with the simple picture
outlined above. In particular, the area of contact is seen to grow linearly with time,
independent of cell and substrate type. Furthermore, the theory also predicts its own
demise: if the cortex is destroyed (using actin depolymerizing drugs), the dynamics of
cell spreading should change qualitatively. This is seen in the experiments consistent
with a modified theory.22

On the one hand, this is hardly surprising, since all the molecular details are not
necessary to answer the relatively rough macroscopic question: how does a cell
spread? On the other hand, this raises more questions than it answers: for example,
what controls the adhesion energy J and the rheology/viscosity h of the cortex–
membrane composite at the microscopic scale? Why does the active nature of the
cell never play a role in determining its adhesive dynamics? Perhaps it is useful to
emphasize the role of theory in biology in this context: it is not as important
to answer a question in a nascent field in biology via this example which is primarily
to sharpen questions. The success of our theory of cell spreading is only temporary;
eventually the detailed facts will get the better of it, and the theory will be
proven wrong, but out of the ashes will be born a new one that is still sharper.
And so on.
3.3 Cellular flows and jamming

As the last example, I would like to consider the physics of a disease. Sickle cell
anemia, the first molecular disease identified more than a half century ago by Linus
Pauling and his colleagues, has been studied extensively at the molecular, cellular,
and organismal level. Much is known separately about the molecular details of sickle
haemoglobin polymerization,23 sickle cell deformability and its effects on flow, and
the clinical heterogeneity of sickle cell disease.24 At the molecular level, the polymer-
ization of haemoglobin S (HbS) occurs via a double-stranded nucleation mechanism
and leads to explosive cooperative growth23 that is critically dependent on the
ambient partial pressure of oxygen. Polymerization leads to the formation of HbS
fibers that change the morphology and stiffness of the red blood cell (Fig. 4) and
this leads to an inability of the cells to flow through the narrowest vessels. In vascular
tissue that absorbs oxygen, polymerization thus causes the cells to slow down and
deliver more oxygen, so that the local oxygen concentration falls even more, leading
to further sickling through a positive feedback mechanism, and eventually jamming
of the capillary. The symptoms of the disease arise due to this jamming which leads
to hypoxia, inflammation, thrombosis, strokes, etc.
The above phenomena involve two collective processes at different length and

time scales: that of sub-second polymerization and morphological and rheological
change at the level of an individual cell; and that of collective hydrodynamic flow
of a soft suspension of cells which change their stiffness in a confining vessel and
16 | Faraday Discuss., 2008, 139, 9–19 This journal is ª The Royal Society of Chemistry 2008



Fig. 4 (a) A view of normal (disc-shaped) and sickled (elongated) red blood cells (Wikipedia).
The diameter of normal red blood cells is 8 mm, while the length of the sickled cells can be more
than twice as large. As a consequence, sickled cells cannot flow through narrow capillaries. This
vaso-occlusive process leads to hypoxia in downstream tissues, triggering the main symptoms
of the disease. (b) A simple view of the jamming process can be characterized in terms of rela-
tion between the flow velocity of the red blood suspension U as a function of the cell volume
fraction f. At low volume fractions the velocity is a constant that is determined by the balance
between the driving pressure gradient and the viscous resistance, while as the volume fraction
approaches an effective close-packing fraction fm, the suspension viscosity increases dramati-
cally and its velocity vanishes. This leads to a jam not unlike those observed in traffic flows.
slow down over the course of minutes. Our recent work25 has shown that it is
possible to evoke, revoke, control and inhibit the collective vaso-occlusive or
jamming event in sickle cell disease using a microfluidic device that serves as an arti-
ficial vasculature with an ambiently controlled oxygen concentration. This allows us
to use a combination of geometric, physical, chemical and biological means to quan-
tify the phase space for the onset of a jamming event as well as its dissolution, thus
opening the way to a quantitative integrative description of the processes that lead to
vaso-occlusion. Here I will focus on just one aspect of the problem, namely the
jamming process itself. For a population of sickled cells moving through a confined
capillary, conservation of mass implies that vtf + vx(Uf) ¼ 0, where f is the volume
fraction of cells in the blood, and U their mean velocity. This equation is incomplete
until we specify the relation between the velocity U and parameters such as the pres-
sure gradient vxp, the suspension viscosity h(f), the radius of the capillary R, the
oxygen concentration CO and the local volume fraction f, so that U ¼ U(vxp, h,
R, CO, f). At a simple level, since the suspension viscosity h(f) diverges as the
volume fraction of the cells reaches some critical fraction fm (akin to the close-
packing limit), we model this relation by specifying U ¼ U(f), represented schemat-
ically in Fig. 4(b). On approximating the dependence of the velocity on the volume
fraction close to the critical fraction via the linear law U ¼ U0(1 – f/fm), and switch-
ing to a moving frame traveling at speed U0, we obtain the well-known Burgers
equation vtf � (U0/fm)fvxf ¼ 0, whose solutions include shock waves that corre-
spond to jammed states. Of course, reality is more complex, and an important aspect
that remains to be addressed is a systematic derivation of a mesoscopic law that
replaces the crude approximation used above.
Sickle cell disease provides one of the simplest examples of how a physicochem-

ical process at the molecular level leads to a diseased state at the organismal level.
Integrating these processes presents a challenge at the intersection of medicine,
biology, chemistry and physics. Here, we are even able to see a potential path
towards amelioration of the symptoms. Reducing the potential for sickling requires
that we decrease the effective concentration of hemoglobin in the cells, or decrease
the relative time that the cells spend in the low concentration environments associ-
ated with the narrowest capillaries in the body. Two possibilities suggest them-
selves: partial swelling of the cells so that the haemoglobin concentration drops
sufficiently to prevent the cooperative polymerization even when the oxygen vapour
pressure falls, but still allowing the cells to squeeze through the narrowest capil-
laries rapidly enough, or the use of dynamical drugs that bind to HbS transiently
This journal is ª The Royal Society of Chemistry 2008 Faraday Discuss., 2008, 139, 9–19 | 17



with much the same effect: microfluidic mimics of the vasculature allow us to search
for potential ways to achieve this.
The jamming of moving particles in a confined environment is also important in

other pathophysiological situations that involve a hyperviscosity syndrome seen in
leukaemia, thrombocytosis and multiple myeloma. It is also seen in a number of
physical processes such as the flow of grains, colloids, and traffic in confined envi-
ronments.26 Once again, we see the similarity between a problem in the physics of
amorphous materials and that of organized biopolymers that involves a range of
spatial and temporal scales.
4 Prospects

In the study of problems that range from the origins of life to the pathophysiology of
disease, polymer science naturally complements biology, since both ultimately
involve the study of soft, warm, wet systems that are out of equilibrium. The exam-
ples that I have discussed have in common the connections across scales, in space
and time. Looking more broadly at the intersection between these fields, one obvious
nexus concerns the origins of life itself. A practical definition of life includes systems
that can autonomously replicate, repair themselves and evolve via natural selection.
This process requires both molecular templates (polymers) and complex organelles
such as vesicles (also polymers) that are flexible enough to enable these processes,16

but the main obstacle seems to be the difficulty of packaging and unpackaging
macromolecular assemblies, a question in polymer science. A second obvious ques-
tion is that of the limits to life. We know that extremophiles, organisms that live on
the edges of what is now considered an ideal environment for life, are an excellent
testbed to study this question. A particular example of relevance is that of anhydro-
biosis, i.e. life in the near absence of water that has repeatedly evolved in a variety of
single-celled and multi-cellular organisms.17 A third example at this nexus of poly-
mers and biology is that of infection mechanisms. Ultimately, any infection requires
the physical crossing of an organismal or cellular barrier by another organism or
macromolecular assembly. How this happens in the variety of life might shed light
on evolution from a physical perspective and again may have implications for
disease prevention.
I have focused on the simplest systems at the boundary between polymer science

and biology, at the risk of studying ‘‘minced meat’’ rather than living forms. There is
now a growing interest, and some understanding of how to generalize statistical and
continuum field theories to look at phenomena that are far from equilibrium, as life
is. This leads to a theme that has arisen repeatedly in biology: how are structures
organized or self-organized in space and time in an organism, from simple macro-
molecules to complex architectures, and how do collections of organisms evolve
over many generational times? The challenges are as great as the opportunities in
these problems. The intellectual ideas go both ways; biology throws up new ques-
tions that traditional polymer science has not seen, while polymer science brings
new tools that serve as useful starting points to look at problems in biology.
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