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A generalized theory of viscous and
inviscid flutter

By SHREYAS MANDRE AND L. MAHADEVAN®

School of Engineering and Applied Sciences, Harvard University, Pierce Hall,
29 Oxford Street, Cambridge, MA 02138, USA

We present a unified theory of flutter in inviscid and viscous flows interacting with flexible
structures based on the phenomenon of 1:1 resonance. We show this by treating four
extreme cases corresponding to viscous and inviscid flows in confined and unconfined
flows. To see the common mechanism clearly, we consider the limit when the frequencies
of the first few elastic modes are closely clustered and small relative to the convective
fluid time scale. This separation of time scales slaves the hydrodynamic force to the
instantaneous elastic displacement and allows us to calculate explicitly the dependence
of the critical flow speed for flutter on the various problem parameters. We show that
the origin of the instability lies in the coincidence of the real frequencies of the first
two modes at a critical flow speed beyond which the frequencies become complex,
thus making the system unstable to oscillations. This critical flow speed depends on
the difference between the frequencies of the first few modes and the nature of the
hydrodynamic coupling between them. Our generalized framework applies to a range
of elastohydrodynamic systems and further extends the Benjamin—Landahl classification
of fluid—elastic instabilities.

Keywords: fluid—structure interaction; flutter; 1:1 resonance

1. Introduction

Steadily forced flows interacting with elastic structures can spontaneously induce
time-periodic oscillations. A commonly observed instance of such oscillations is
evident in the fluttering of a flag (Zhang et al. 2000; Watanabe et al. 2002b). The
phenomenon is not only limited to flags but manifests itself in a variety of systems
such as the aeroelasticity of wings (Bisplinghoff et al. 1955; Bisplinghoff & Ashley
1962; Fung 2002; Dowell 2004), water- or wind-loaded buildings and structures
(Billah & Scanlan 1991; Miyata 2003; Lemaitre & de Langre Hémon 2007),
water hoses (Paidoussis 1998), thin-film coating and paper production processes
(Chang & Moretti 2002; Watanabe et al. 2002a,b), physiology of blood and air
flow (Korotkoff 1905; Bertram & Pedley 1982; Titze 1988; Pedley 1990; Huang
1998; Grotberg & Jensen 2004), musical instruments (Fletcher 1993; Tarnopolsky
et al. 2000) and geophysical systems (Chouet 1985; Julian 1994; Balmforth et al.
2005; Miiller et al. 2005; Rust et al. 2007). The origin of such flutter is usually
attributed to an oscillatory instability of a steady state when the fluid flow exceeds
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a threshold, and is referred to as an instance of a Poincare-Andronov-Hopf (PAH)
bifurcation. Moreover, fluid inertia is the dominant destabilizing mechanism for
most of these cases. Here, we use a systematic reduction of the continuum
equations and show that the common underlying mechanism for flutter in a broad
class of examples including the systems listed is not the usual PAH scenario
but instead involves the concept of a 1:1 resonance, as used to explain vortex-
induced vibrations (Paidoussis 1998) and the onset of flag flutter (Argentina &
Mahadevan 2005), for example. This systematic reduction, when performed for
viscous flows, reveals new instabilities, where viscosity and not inertia is the
dominant destabilizing agency.

To see this, we first review the 1:1 resonance mechanism, so called because
it involves a coincidence of two frequencies in a dynamical system, which was
first described by Kelvin & Tait (1912). In its simplest form, it requires the
consideration of two asymmetrically coupled undamped linear oscillators whose
amplitudes A and B satisfy

Al _[-22 o ][4 0 1][4

- — 1

dtz[B}_[ o —2||B|TE|-1 of|B| (1.1)
The coupling is assumed to have gyroscopic form, i.e. it is skew symmetric,
with the coupling constant F', although this condition of skew symmetry is not
necessary, and indeed is not always respected in the systems we consider. When
F =0, the uncoupled system has two distinct natural frequencies £2; and £25,

respectively. When F' #0, solving the characteristic equation associated with
equation (1.1) yields the modified frequencies of the system as

L, @+ 2ix (@) - @ -ar
@2, = 5 . (1.2)

We see that when the discriminant in equation (1.2) becomes negative, £2; » takes
on complex conjugate values, so that the frequency acquires an imaginary part
and the system exhibits exponential growth.

We will show that in hydroelastic or aeroelastic systems, the normal modes of
the elastic body constitute the oscillators while the fluid forcing on the elastic
structure is proportional to the coupling constant F. Then, as can be inferred
from equation (1.2), the critical F'=F, = |[212 — .(222|/2 is proportional to the
difference of the natural frequencies of the two modes. Throughout, we will limit
our analysis to the linearized problem where we can see the mechanism of onset
of the instability clearly; although nonlinearity eventually limits this growth, it
will not concern us in this paper.

One inspiration for this work comes from Rocard (1957), who first presented
the mechanism of 1:1 resonance in the context of wing and bridge flutter and
derived a system of equations similar to equation (1.1). We delineate the three
assumptions that are inherent in his derivation, as we will use these as well:

(i) The fluid dynamic forces are weak compared with both the elastic forces
and structural inertia, so that the dynamics of the system are dominated
by the normal mode oscillations of the elastic structure. This allows us to
then compute the fluid forcing perturbatively.
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Figure 1. Schematic of the representative systems modelled for flow in external and confined
geometries. (a) the model system for fluid flow in an unconfined geometry. The system consists
of a rigid flat plate supported by two springs, as a result of which the structure has two degrees
of freedom. The far-field fluid flow is parallel to the plate and could be viscous (small Reynolds
number) or inviscid (large Reynolds number). () schematic model for flow in a confined geometry.
The system consists of a channel with a flexible wall. The wall is supported by a distributed set of
springs and can have a bending stiffness and a tension. If the flow through the channel is viscous
(low Reynolds number) then the channel connects two reservoirs at constant pressure. (This case is
treated analytically.) For inviscid flow (high Reynolds number), a completely analytical treatment
is not possible and we consider a numerical solution for the fluid flow. For this case, we consider a
converging—diverging channel as shown in (¢). (¢) the inset shows a magnified view of the flexible
part of the channel wall.

(ii) The natural frequencies of the first few modes of oscillations are closely
clustered. This allows even a relatively weak fluid forcing to couple
the dominant modes and thus provides the conditions for the onset of
1:1 resonance.

(iii) The hydrodynamic time scale is much smaller than the natural time scale
of oscillation of the elastic system. This means that the hydrodynamic force
is enslaved to the instantaneous shape of the structure and is independent
of the rate of change of this shape to leading order.

We show that these assumptions apply to a range of systems and allow us to
quantify the conditions for the spontaneous appearance of oscillations in a variety
of situations involving viscous and inviscid flows in confined and unconfined
geometries. To probe the geometric and hydrodynamic extremes of aeroelastic
and hydroelastic flutter, we consider four different cases: inviscid flutter in
unconfined and confined geometries and viscous flutter in unconfined and confined
geometries, shown schematically in figure 1. In §2, we analyse inviscid and viscous
flows in unconfined geometries, while in §3, we analyse inviscid and viscous flows
in confined geometries. Finally, in §4, we conclude with a discussion that places
our work in the broader context of fluid elastic interaction.
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2. Flutter in unconfined geometries

On large scales, flutter in unconfined flows arises in such examples as the
aeroelasticity of wings and bridges, when subject to a fluid loading. On small
scales, examples include the flutter of elastic plates and membranes in very viscous
flows that arise in microfluidic applications, for example. These elastic bodies
are typically slender, i.e. their length is typically much larger than their widths,
which in turn is much larger than their thickness. As a result, to leading order, a
long wavelength description of their behaviour implies that their deformation is
dominated by bending and twisting, which give rise to a translation and rotation
of individual cross sections. If these deformations are sufficiently small, then a
physically and geometrically linear theory suffices to describe the elastic response,
which amounts to a restoring force and torque for the translational and rotational
degrees of freedom.

As a representative example of this simple model, we consider a rigid object
(either a plate or a rod) supported by two springs as shown in figure 1, with
two degrees of freedom, vertical translation and rotation about the centre. For
aircraft wings and bridges, the translational mode is analogous to bending of the
wing along the spanwise direction, moving a cross section of the wing up and
down, while the rotational mode represents wing twist. For a suspension bridge,
the tension in the suspending cables is also a contributor along with bending and
torsion, as elucidated by Rocard (1957), among others. In the inviscid flow case,
we let the object be a rigid flat plate. For external viscous flow, we replace the
aerofoil with a thin rod aligned in the direction of flow. The undisturbed position
of the centre of the object is taken as the origin O with the plane of the plate (or
the axis of the rod) aligned with the z-axis. Two springs of stiffness K located
asymmetrically at a distance l; and } from the plate centre provide support. This
asymmetry causes the centre of lift to differ from the centre of rotation for the
plate; this will eventually be linked to the possibility of flutter. The dynamic
variables h(t) and 6(t) characterize the instantaneous configuration of the plate,
so that the location of the plate is given in terms of these variables by

y=h®) +0)x (2.1)
and the governing equations for the dynamics of the structure are
Mhy =—-2Kh+2KO0Al+ Fy (2.2)
and
Mi%6, =2K Alh — 2K€%0 + T, (2.3)

where (-); =d/dt, M is the mass per unit length of the plate (or the rod), « is its
radius of gyration, 2Al=1 — b, 2 =1? + I3, F} is the hydrodynamic lift force
and Ty is the hydrodynamic torque. The natural frequencies of oscillations for
this system in the absence of any fluid coupling are given by

2 _pP2)2 2
Qﬂ:g(,c +¢ \/(K ) Al). 2.0

M

To understand how fluid loading changes these frequencies, we now consider the
case of inviscid and viscous flows separately.
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(a) Inviscid case

When the Reynolds number based on the length L of the elastic plate Re=
UL/v>1, where U is the free stream velocity, and v=pu/p is the kinematic
viscosity, inertial effects dominate viscous forces, so that we may approximate
the effects of the flow using potential flow theory, with a velocity potential ¢
characterizing the velocity field u = V¢. Furthermore, the pressure in the fluid
is then given by the unsteady Bernoulli equation p + p¢; + p(u? 4+ v> 4+ w?)/2 =
constant, which relation allows us to calculate the forces on the elastically
supported plate, modelled here as a thin aerofoil.

When the far-field flow is oriented with the stationary orientation of the plate,
both h=6 =0, and in the absence of vorticity, the hydrodynamic force is also
zero by symmetry. Assuming that the aerofoil oscillates with a small amplitude
and a frequency 2, the hydrodynamic force can be computed by determining
the perturbed velocity components (u,v) in terms of a disturbance potential ¢,
which satisfies

(u,v) =V, V2¢=0 withh, + Uh, = ¢, on the aerofoil, (2.5)

subject to the Kutta condition that V¢ is finite at the trailing edge (Batchelor
1967). Then the linearized Bernoulli equation yields the disturbance pressure
p=—p(p; + U¢,) due to the motion and orientation of the plate. To understand
the contributions to the pressure from the flow, we first decompose the solution to
equation (2.5) by writing ¢ = ¢; + ¢2, where V2¢, = V3¢ =0, ¢, = Uh, arising
from the instantaneous conformation and ¢,, = h; arising from the instantaneous
rate of change of the plate. Then we write the pressure difference between the two
sides of the plate as p=p; + ps + p3, where py = —p U1, po = —p(¢1; + Ud2,)
and p3 = —p¢y;. Since 9, x 2 and Ud, x U/L, p1/ps~ pa/p3~ 2L/ U =¢.

We now consider the three assumptions outlined in the introduction.
Assumption (i) implies that F,, < Kh and T), < Kh¢. Assumption (ii) implies
that £, ~ £, which in turn implies that £~k and Al<k. We restrict
ourselves to £ =k. Assumption (iii) implies that the hydrodynamic time scale
is much smaller than the elastic time scale, i.e. 2L <K U so that p; < ps < ps.
Quantitatively, assumptions (i) and (iii) can be summarized as M2?%=2K >
pU?/L> pRU > p2°L.

Translational invariance implies that the quasi-steady lift force or the torque
on the aerofoil cannot depend on h. Thus, the hydrodynamic coupling between
h and 6 for an arbitrary aerofoil in a flow satisfying the quasi-steady linearized
Navier—Stokes equations will be asymmetric. For analytical simplicity we restrict
ourselves to thin aerofoil theory which gives (Theodorsen 1935; Argentina &
Mahadevan 2005)

Ap(z,t)~ —p UC(e)f (%) (hy + 26, + UO), (2.6)

where Ap is the difference in pressure on the two sides of the plate and the
Theodorsen (1935) function C'(s), and f(s) are given by

H? (s) 1-2s
d =2 /= 2.7
H? () + iH”(s) and - f(s) 27)

C =
(5) 1+2s’
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Figure 2. The real and imaginary parts of the natural frequency of oscillations for unconfined flows
external to the elastic structure (see schematic in figure 1). A negative imaginary part implies
growth of oscillatory perturbation leading to spontaneously generated flutter. The spectrum for
(a) the inviscid flow approximation following equation (2.9) and () the spectrum for the viscous
approximation following equation (2.14). The parameters used are Al =0.01, L =+/12, € =0 (solid
line) and € =10"% (squares). The aspect ratio ¢ of the rod was set to 10 for the solution of
equation (2.14).

Hj@) being the Hankel functions of order j. Then, we may evaluate the
hydrodynamic force and torque
L/2 L/2
thj Apdz and Th:J r Apdz. (2.8)
—L/2 —L/2
Using the scaling (h,Al,L) — k(h,Al, L), t— t/$2 in equations (2.2) and
(2.3), letting F* =mp U?L/Kk (where the subscript i stands for inviscid and the
superscript e stands for external flow) and performing the integrals involving p
in equation (2.8) to O(e) yield

Tl =1 ARl ey, e\ [0 L01n
S -rep) A0

1 tmé ot
y+Ins——
o 2 4 hy
—€F. I ) . |:(9t:| , (2.9)
(= —y-mE
4 8 2

where y is the Euler-Mascheroni constant.

These coupled linear second-order ordinary differential equations are similar
to the canonical form (1.1) and can be solved by substituting (h, ) ocel®? to yield
an eigenvalue problem for w. In figure 2a, we plot the real and imaginary parts of
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the frequency w using the parameter values L = /12 and Al =0.01. For € =0 the
spectrum is similar to that associated with equation (1.2), with the frequencies
given by

~FPLd [ FPI2 4 64ALAL— FY)

Wi, =1+ 2 : (2.10)
The frequencies split into complex conjugate pairs in an interval Y= ZglAl <
FY <4Al=F} , corresponding to the window of parameters where the system is
susceptible to flutter. The presence of a finite window is associated with the fact
that the hydrodynamic coupling is not skew symmetric, i.e. it is not of gyroscopic
form. Since Al measures the difference in the natural frequency of oscillations of
the two modes, the critical values of FY scale with this difference in frequency.
When € > 0, although the frequencies are complex for all F® due to the O(e)
term in equation (2.9), they are well approximated by the case corresponding
to € =0. This unfolding of the 1:1 resonance mode can then lead to a scenario
that is superficially similar to a PAH bifurcation, although both the underlying
mechanisms and the mathematical description as encoded in the normal forms
for the two scenarios are quite different.

(b) Viscous case

When the Reynolds number of the flow is small, inertia is overwhelmed by
viscous forces. Then, we may use the Stokes approximation to approximate the
flow around a body. Pressure gradients are balanced by viscous forces, so that
Vp = uV?u, while the condition of incompressibility reads V - u=0. A general
consequence of the linearity of Stokes equations is that in the absence of free
boundaries, the lift force and the torque on a rigid body immersed in a fluid
are proportional to the velocity of the body multiplied by a resistance matrix
(Happel & Brenner 1983). Decomposing the viscous forces and torques into
components because of the change in orientation of the rod, and the resistance
to translation (h;) and rotation (6;) allows us to write

Fy=-9-(uLQ" Ry-Q-(UZ+ hi) +upLl’Q" - CO) (2.11)
and

Tv=—pLl’C- Q- (UZ+ i) — nL’Reb,. (2.12)

Here Ry is the resistance matrix to translation, Rg is the resistance to
rotation, C is the coupling matrix and Q = (& + y¥) cosO + (zy — Yx)sin 6 is
the two-dimensional rotation matrix corresponding to rotation by an angle 6. The
two resistance matrices Ry and Rg and the coupling matrix C depend only on
the shape of the body but not on its size.

We now consider the three assumptions outlined in the introduction.
Assumption (i) requires that F,, < Kh and T, < Kht. Since the hydrodynamic
force scales like u UL, where u is the dynamic viscosity of the fluid, assumption
(i) implies that U < K, i.e. the elastic structure is stiff. Assumption (ii) implies
that £21 & §25, which in turn implies that £ ~ x and Al < x. And once again from
assumption (iii) we see that the forces and torques proportional to h; and 6; are
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a factor of € =2 L/U smaller than the corresponding terms proportional to h
and 6. While this argument is valid for an arbitrary body, we present the specific
example of a slender rod as a representative case for which the resistance matrices
only depend on the aspect ratio of the rod (¢) and are given by
i 8 b4

=—2x+——9y, C=0 and Ro=——"—.

dn2g+ 17" 2map 1YY = g — 3
Substituting equations (2.11) and (2.12) in equations (2.2) and (2.3) and using the
dimensionless variables (h, Al) — «(h, Al), t — t/§2 yield the dynamical system

i lo]=[ai S ]fa] -5 3]]

Ry (2.13)

8
_ope | 2In29+1 0 hy (2.14)
v L2 01‘, ) .
61n2¢ — 3

where we introduce the dimensionless parameter F¢ (subscript v for viscous and
superscript e for external flow) and the function g(¢) as

P TulU and  g(¢) = 41n2¢ — 6 '
K 4(In2¢)2 — 1
The origin of the lift that couples the rotation of the rod to a normal force
comes from the fact that for an anisotropic body, the viscous resistance to motion
is not necessarily in the direction of motion because the resistance matrix is
itself anisotropic, i.e. the drag coefficients in different directions are different. The
natural frequencies w of oscillation can be obtained by solving the characteristic
equation associated with equation (2.14). This can be done analytically for € =0
to get

(2.15)

Wiy =1+ /AIAL— Fig(9)). (2.16)

The frequencies of the modes split into complex conjugate pairs when Fyg(¢) >
Al, as shown in figure 2b. We see that the critical value of FY is proportional to
the difference in natural frequencies of the two modes just as in the inviscid case.
For € > 0, the complex conjugate frequencies of equation (2.14) must be obtained
numerically; however once again, for small € they are well approximated by the
solutions corresponding to the € =0 case as seen in figure 20.

3. Flutter in confined flows

Flutter in confined flows arises in a number of biological applications such as
controlled vocal phonation, snoring and wheezing, as well as Korotkoff sounds in
blood vessels, in engineering applications such as flutter in thin-film coating and
paper production processes and in geological systems associated with subvolcanic
tremors and the singing of glaciers. The main effect of confinement is the
separation of scales in the hydrodynamic problem that leads to a qualitative
difference in the flow profiles and the associated forces. A concrete realization
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of this shown in figure 1 considers a channel of length L and width H with
flexible walls. The wall is assumed to have an elastic plate as a skin, supported
by a compressible elastic foundation. With biological applications to phonation
in mind, we assume that the foundation thickness is much thinner than its
longitudinal extent, and further, that the elastic plate is assumed to be even
thinner than the foundation, but much stiffer.

Then we may write the governing equation for the displacement of the channel
wall h(z,t) as

Mhy + Xhy=—K(h — H) + Thyy — Bhyyyw + p(, 1), (3.1)

where M is the lumped linear density of the elastic composite, X is the damping
constant, K is the equivalent spring stiffness originating from the deformation of
the elastic foundation, 7' is the tension in the plate in the z-direction and B is
its bending rigidity and p(z,t) denotes the fluid pressure in the channel. Using
the scaling

t—>t/2, x—> Lx, h— Hh and p—> Pp, (3.2)

where 2 =+/K/M and P depends on the fluid model then converts equation
(3.1) to
B p

T
h h=1—h+—hy — —
i+ ohy +712 - K

where 0 = X 2/K is the dimensionless damping constant, T = Tw?/KL? the
dimensionless tension and B = Bn*/KL* the dimensionless bending stiffness.
For this spatially extended elastic system, we need to specify some boundary
conditions. While the procedure we use is applicable to any boundary conditions
that render the problem self-adjoint in the absence of the fluid, we restrict
ourselves here to h=h,, =0 at x =0, L. Then the natural modes of oscillations
of the elastic wall are

h, =sin(nmrz), n=1,2,3,.... (3.4)

Expanding the solution & as a time-dependent linear combination of these modes,
we write

h=14 Ay(Hhy(2), (3.5)

n=1

where A,(t) denote the mode amplitude. Substituting this expansion in
equation (3.1), multiplying by h,(z) and integrating over the domain 0 < z < L,
i.e. projecting back on the mode shapes, we obtain a set of equations for the mode
amplitudes

d4, d4,

2P (!
, 2 4
e +o i =—(1+1n +ﬁn)An+ﬁL ph, dx. (3.6)

To wunderstand how fluid loading changes these frequencies via the
hydrodynamic coupling induced by pressure, we now consider the case of inviscid
and viscous flows separately.
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(a) Viscous flow

For viscous flow through long narrow channels (H/L<«1) and the
Reynolds number based on the gap UH/v <1, the dimensional form of
z-momentum balance in the two-dimensional Navier—Stokes equations simplifies
to the well-known lubrication approximation (Batchelor 1967) p, = wu,,, p, =0
coupled with the incompressibility condition wu, + v, =0. Integrating the two
momentum balance equations with the no-slip boundary condition at y =0
and h yields the horizontal velocity v = —p,y(h — y)/2n. Conservation of mass

he + fg udy =0 then yields an equation relating pressure and the motion of the
boundary as

1.
by = ——(h*py)a. 3.7
t 12“( D)o ( )

We assume that the channel opens on both sides into infinite reservoirs, which
maintains the fluid pressure constant, and results in a steady-state flux UH.
Scaling h, z and t according to equation (3.2) and choosing P =12u UL/ H?
simplifies equation (3.7) to

Eh't = (h3p1)17 (38)

where € = 2L/ U as before and the boundary conditions on p are p(x=0)=1
and p(z=1)=0.

We now consider the three assumptions outlined in the introduction.
Assumption (i) requires that the hydrodynamic pressure is small compared with
the elastic forces, i.e. P < KH. As a result, the equilibrium shape of the membrane
to leading order is h=14 O(P/KH) and the dominant dynamics are oscillations
of each mode with its natural frequency 22 =1+ tn? 4+ Bn’. In particular, this
now implies 2P/n KH =24 UL/ KH? = F¢ < 1, where the subscript v stands
for viscous flow and the superscript ¢ stands for confined flow. As a consequence,
in steady state h=14 O(F¢) and p=1— z + O(F¢). Assumption (ii) requires
that the modes are clustered together. If =8 =0, the system is infinitely
degenerate with unit frequency, but when t,8<«1 the non-dimensional
frequencies of the first few modes are close to unity. Finally, assumption
(iii) that the hydrodynamic time scale be smaller than the elastic time scale
implies € < 1.

By substituting the modal expansion (3.5) in equation (3.8), with the
assumption that the amplitudes A,’s are small leads to an expression for the
fluid pressure

> e d4,
p=l-at) - dt

34,
) sin nmx + —[1 — cos nwz — x(1 — cos nw)]+ O(FY),
nimw nw

n=

(3.9)

which is the dominant contribution to the response of the fluid flow to wall motion.
Substituting equation (3.9) in equation (3.6) leads to the following linearized
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system for the evolution of the modal amplitudes:

424 aA 2FC  €F° dA
n n — _ 1 2 4 An v o_ v n
ae Toq - T A de o =
3F¢ & 1 — (=1)mtn
S D (%) (3.10)
T, n nz—m

Truncating this system by keeping just the first two modes yields

d_2A1+ iAl_—l—T—lB 0 Al +§2
a1 4| " %ar 4.7 0 —1—4r—168||4:| T 7 |1
Fi 1o —4][4, eF T4 0)[An
el [l [R] e
Substituting A;, Ay ~e'®! in equation (3.11) yields a characteristic equation for
the eigenvalues, which in general has complex solutions owing to the terms
proportional to A,; coming from the damping o and the non-quasi-steadiness €.

However, when € =0 and o =0, the coefficients in the characteristic polynomial
are real and have as their solutions the natural frequencies

c2

2 1 , AP
iy =145 | 57 +17p %/ G +156)2 = (3.12)

plotted in figure 3b. We see that the frequencies are real for F{ <m(37 +
158)/2 and split into complex conjugate pairs for Fy > m (3t + 158)/2. As before
the critical value of FY o< (3t 4+ 158), i.e. it is proportional to the difference
between the frequencies of the first two elastic modes. When € > 0, the results
resemble those for which € =0 is the case as can be seen from figure 3. Indeed,
equation (3.11) shows that the effect of a small € is equivalent to adding a small
but mode-dependent amount of damping in the equation for the mode amplitude.

We also compare the frequencies obtained in equation (3.12) with the linear
stability of the steady state of equations (3.3) and (3.8) without any further
approximations. To do that, we define the steady state h(z,t) = Hy(z) and
p(zx, t) = Py(x) by the solution of

B n F¢

T ;
HOSPOI:O» 1_H0+?H0:m_ ;HOIIII-F 2\P0z:()a (3 13)

Hy=Hy,;, =0atz=0,1 and PFPy=0atz=1.

To study the evolution of perturbations about this steady state, we substitute
h(z, t) = Hy(w) + " Hi(2), p(x,t) = Py(z) + € Py(2) (3.14)

in equations (3.3) and (3.8) and linearize the resulting equations for small H; and
P;. We thus get a differential eigenvalue problem for Hy, P, and w as

ewly = (H}Py,), + 3(H?H, Py,).,

Fe (3.15)
and (wQ—l)H1+%Hm——ﬂ4H1mz+n Y P =0
T b4 2
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Figure 3. The real and imaginary part of the natural frequency of oscillations for confined flows
internal to the elastic structure (see schematic in figure 1). A negative imaginary part implies
growth of oscillatory perturbation leading to spontaneously generated flutter. (a) The spectrum
for (a) the inviscid case following equation (3.19) and (b) the viscous case following equation (3.11).
The parameters used are T =0.01, =0, € =0 (solid line) and € =10~* (squares). In (b), we also
shows the spectrum resulting from a linear stability analysis of (3.3) and (3.8) without any further
approximations for € =107 (dashed line).

with Hy = Hy,, = P1 =0 at z=0,1. The functions Hy, Py, H; and P; and the
frequency w are determined numerically using a shooting method. The results
are compared in figure 3b and agree well with the results of the two-mode
truncation (3.12).

(b) Inviscid flow

If the Reynolds number of the flow is based on the channel width Uh/v > 1,
we may again revert to the potential flow approximation for fluid flow. In this
case, in the absence of analytic approximations we had to resort to numerical
solutions for part of our analysis. To simulate the entrance and exit boundary
conditions in the neighbourhood of the confined compliant section of interest, we
assume that the channel diverges at an angle of 45° upstream and downstream,
over a distance of 10 channel widths widening to 10 times the channel height as
shown in figure 1. The steady-flow (U) profile is given by the solution of

U=V® and V?® =0,

N (3.16)
U=Uzxasz—> o0 and U.n=0on the wall,

where n is the unit outward normal to the wall. The steady pressure on the wall is
then given in terms of the Bernoulli equation P = —p| U|?/2; however, we assume
that this deflection is negligible in consonance with assumption (i), since the fluid
forcing is assumed to be small relative to the elastic forces. When the compliant
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section starts to flutter, the perturbed flow potential is given by the solution of
the boundary value problem

u=V¢ and VZ¢=0, (3.17)
and
¢=0aszr—> ftoo and hi+ @,h, =¢,on the wall (3.18)

and the perturbed hydrodynamic pressure is then given by p + p(¢: + D¢, +
®,¢,) =0. This pressure then couples the mode amplitudes via its projection on
the mode shapes given by equation (3.6). We employ the finite element method
using the software FreeFem++ by Pironneau et al. (2009) for @ and ¢ and thence
determine the pressure-induced mode coupling. Using an analysis similar to that
performed in §2a reveals the dimensionless flow parameter to be Ff =2p U?/KH
(subscript i for inviscid flow and superscript ¢ for confinement).

We now consider the three assumptions outlined in the introduction.
Assumption (i) requires that the hydrodynamic pressure is small compared
with the elastic forces, i.e. P << KH. As a result, the equilibrium shape of the
membrane to leading order is h=1+ O(P/KH) and the dominant dynamics
are oscillations of each mode with its natural frequency %=1+ tn’+ Bn’.
Assumption (ii) requires that the modes are clustered together. If 7 =p8=0,
the system is infinitely degenerate with unit frequency, but when t,8 <« 1 the
non-dimensional frequencies of the first few modes are close to unity. Finally,
assumption (iii) that the hydrodynamic time scale be smaller than the elastic
time scale implies € < 1. In this case, we truncate our modal expansion after
four terms since the odd (even) modes are strongly coupled to only the odd
(even) modes. The resulting four-mode truncation of the motion of the compliant
boundary given by equation (3.5) leads to the matrix equation

, Ay Ay
d? | 4, d | 4,
a2 | As | Tt | As
Ay Ay
1 0 0 07T4, 100 074, 1 0 0 0
|01 o0 0f[A]| |04 0 O0f[A]| |0 16 0 0
=7lo 01 0||4]| Floo0o9 o0 A3/300810
00 0 1]|]|A, 0 0 0 16| A, 0 0 0 256
Ay 3.6534 2.9x107* —0.25787 3.9x 10747 4,
| A2 e —0.50103  7.5060  —0.23247 —0.0765 A
As 1] 0.88307 33x107° 11.9040 1.4x 1076 | A3
Ay —0.62126  0.92497 —0.28904  16.378 Ay
0.09397 —1.86224 —0.03797 —0.793037 [Ay,
bR —1.44584 0.10882 —2.38681 0.05625 Aoy (3.19)

0.28813  1.04022  0.07224 —1.63587 | | A3 |’
—3.12191 0.13495  0.11886  0.06977 Ay

where the matrices proportional to F° and eF{ are computed numerically.
The normal mode frequencies resulting from the analysis of the characteristic
equation (3.19) are shown in figure 3a. Once again for €e =0 =0, we see that
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when the F°> F™*, i.e. when the fluid velocity crosses a critical threshold, the
real frequencies split into complex conjugate pairs with the consequence that
the modal amplitudes grow exponentially, leading to a linear instability. We see
two such windows of instability in figure 3a, one corresponding to the interaction
of modes 1 and 3, and the other corresponding to the interaction of modes 2
and 4. The figure also shows that the cases € <« 1 and o <« 1 closely resemble the
€ =0 =0 case.

4. Discussion

We have presented a unified mechanism for the onset of spontaneous oscillations
for a class of systems where slender elastic structures are loaded by fluid flow.
In particular, by using four extreme cases of geometry and fluid loading on
slender elastic structures, corresponding to the cases of viscous and inviscid
flows in confined and unconfined geometries, we have demonstrated how the
central concept of 1:1 resonance borrowed from dynamical system theory arises
naturally. In each case, the natural modes of the elastic structure in free space
serve as the oscillators and asymmetrical coupling brought about by the fluid
loading leads to a coincidence of frequencies and thence, to an oscillatory
instability. These cases are representative of a larger family of problems where
all the basic ingredients for 1:1 resonance exist, including the onset of flutter of
a flag (a clamped-free elastic beam subject to an external flow), consistent with
the results of Argentina & Mahadevan (2005) and recently corroborated by Alben
(2008); indeed the essential components of the mechanism are most clearly seen
in our analysis of the flat plate in §2a.

We find that the critical hydrodynamic forcing for the onset of the instability
is proportional to the difference in the natural frequency of free oscillations of
the elastic structure. While this is well known to aeronautical engineers, who
have known this mechanism of unconfined flutter at least since Rocard (1957)
and Pines (1958) (see also Dowell 2004 for a review), here we have extended that
conclusion to other systems as well. Similarly, while instabilities in purely viscous
flows interacting with compliant walls have been reported before, e.g. Kumaran &
Muralikrishnan (2000) and Eggert & Kumar (2004), our generic mechanism
provides a unified view of these instabilities for purely viscous flows interacting
with soft but massive boundaries.

Since oscillatory instabilities also arise in high Reynolds number flows through
collapsible channels and tubes, it is useful to clarify and distinguish the different
mechanisms that can lead to these instabilities. To do this, we turn to the classical
work of Benjamin (1960) and Landahl (1962) that set the stage for a three-fold
classification of instabilities in fluid—structure interaction. Originally intended to
apply for boundary layer flows, class A instabilities correspond to the case when
the instability is weakly modified by a compliant structure, class B instabilities
correspond to the case when elastic modes are weakly modified by fluid flow
while class C instabilities are similar to the Kelvin—Helmholtz instability with a
signature of a coincidence of frequencies.

Asymptotic and numerical analyses for flutter in other systems such as confined
shear flows (see Luo & Pedley 1998; Huang 1998; Huang 2001; Jensen & Heil
2003) have demonstrated that while fluid inertia is the dominant destabilizing
effect, viscous effects in the Stokes boundary layer play a stabilizing role in these
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systems. Thus in the context of the Benjamin—Landahl scheme, these systems fall
into class B where elastic modes are weakly modified by fluid flows. In contrast,
by allowing for mode coupling and thus providing a mechanism for frequency
coincidence, we have generalized and extended the case of class C instabilities
to a broader class of fluid—structure interactions. While the extension of classes
A and B instabilities to viscous and inviscid flows beyond boundary layer flows
remains an open question, when € > 1, i.e. when the fluid time scale is slow
relative to the time for elastic oscillations suggests how class A instabilities also
might arise in a broader class of flows.

We conclude by emphasizing that we have restricted ourselves to a region of the
parameter space limited by our three assumptions and it is of interest to examine
the consequences when these assumptions are relaxed. In particular, our analysis
suggests that by letting the elastic forces also be as weak as the fluid forces, it
is possible to excite static deformations of the structure known as ‘divergence’.
In the presence of nonlinearities or other effects, this static deformation may
acquire a slow time dependence. This may be a possible explanation for volcanic
tremor, where the observed time scale is too slow to be explained by normal mode
oscillations (Rust et al. 2007). Clearly there are many avenues to pursue at this
interface between elasticity and hydrodynamics.

We thank Michael Weidman for his contributions to the early work that preceded this study.
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