
Shape and Dynamics of Tip-
Current Biology 19, 2102–2107, December 29, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.10.075
Report
Growing Cells
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Summary

Walled cells have the ability to remodel their shape while
sustaining an internal turgor pressure that can reach values

up to 10 atmospheres [1–7]. Although it is undisputed that
this requires a tight and simultaneous regulation of cell

wall assembly and mechanics, previous theoretical studies
on tip growth focused either on the mechanical behavior of

the cell wall or on its assembly [8–14]. To study the interplay
between growth and mechanics in shaping a walled cell, we

examine the particularly simple geometry of tip-growing
cells [1, 3, 15, 16], which elongate via the assembly and

expansion of cell wall in the apical region of the cell. We
describe the observed irreversible expansion of the cell

wall during growth as the extension of an inhomogeneous
viscous fluid shell under the action of turgor pressure, fed

by a material source in the neighborhood of the growing
tip. This allows us to determine theoretically the radius of

the cell and its growth velocity in terms of the turgor pres-

sure and the secretion rate and rheology of the cell wall
material. We derive simple scaling laws for the geometry of

the cell and find that a single dimensionless parameter,
which characterizes the relative roles of cell wall assembly

and expansion, is sufficient to explain the observed vari-
ability in shapes of tip-growing cells. More generally, our

description provides a framework to understand cell growth
and remodeling in plants (pollen tubes [17], root hairs, etc.

[18]), fungi (hyphal growth [19, 20] and fission and budding
yeast [3]), and some bacteria [21], in the context of both tip

growth and diffuse growth.
Theoretical Description and Results

The shape of a walled cell is specified by its cell wall. From
a geometrical viewpoint, cell walls are shell-like structures
[1, 6] of thickness 0.1–1 mm [6], always much thinner than the
observed radii of curvature of the shell, which is of the order
of 10 mm (Figure 1). Therefore, a steadily elongating tip-
growing cell can be described as an axisymmetric thin shell
of radius r(s) and thickness h(s), with s being the contour length
from the apex (Figure 1C). The geometry of the shell is charac-
terized by its principal curvatures, ks along the tangential
direction, s, and kf along the azimuthal direction, f. Defining
q as the angle between the local normal and the direction
of growth (Figure 1C), the curvatures read ks = dq/ds and
*Correspondence: lm@seas.harvard.edu
kf = sin q/r. The stress resultants (tensions) sss and sff in a shell
subject to a pressure P (the turgor) are given by

kssss + kfsff = P ;

kfsss =
P

2
; (1)

and follow from a consideration of the balance of forces in the
longitudinaland azimuthal directions, regardlessof the mechan-
ical properties of the cell wall (see Supplemental Data, available
online, for details). The tensions in the cell wall must be related to
the deformation rates (i.e., the expansion) of the tubular shell via
the rheology of the cell wall. In order to account for the observed
irreversible expansion of the cell wall in the apical region, we
describe it as an inhomogeneous but locally isotropic viscous
shell, with a viscosity that varies with location following the
distribution of enzymes that regulate the local crosslinking state
of the wall (cell wall loosening enzymes [6, 16, 22]; Pectin methyl-
esterases (PMEs) and PME inhibitors (PMEIs) in the case of
pollen tubes [17, 23, 24]). For the sake of simplicity, we assume
the cell wall to be incompressible, with a constant cell wall
density rw. A minimal description of the viscous cell wall is
then embodied in a linear relation between stress resultants
and strain rates, which, in the steady state, reads

sss = 4mh
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;

sff = 4mh
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du
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r

�
; (2)

where u(s) is the local tangential velocity of the shell, h(s) is the
local cell wall thickness, and m(s) is its local viscosity (see
Supplemental Data for details). In terms of the defined vari-
ables, the strain rates read du/ds and u cos q/r.

In order to maintain the growth of the cell, new cell wall
material must be supplied to the expanding apical region
(Figure 1B). We account for the addition of new cell wall mate-
rial to the pre-existing wall through an inhomogeneous secre-
tion rate that describes the localized, cytoskeletally guided
fusion of secretory vesicles with the plasma membrane
[3, 15, 16, 25, 26] (Figure 1B). If g(s) is the local rate of cell
wall material addition per unit surface to the pre-existing
wall, local mass conservation of the cell wall material dictates
that (see Supplemental Data for details)

dðurhÞ
ds

=
r g

rw

: (3)

Equations 1–3 form a complete set of differential equations
for the variables u(s), r(s), and h(s), once the viscosity m(s),
the material secretion rate g(s), and some boundary conditions
are specified.

Wall Secretion Rate: g(s)
Despite the complexity of the intracellular phenomena associ-
ated with the organization of cytoskeletal filaments, cyto-
plasmic streaming, and several other processes in the
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Figure 2. Secretion of Cell Wall Material and Differential Viscosity

Sketch of the apical region of the cell describing the spatial dependence of

the two functions that characterize transport and secretion of cell wall mate-

rial, J(s) and g(s), respectively, and also of the wall viscosity m. The net total

flux of cell wall material going through a cross-section of the cell, J(s), is rep-

resented by an arrow in the center of the sketched cross-section, and it is

constant (J0) in the cylindrical region. The secretion of material into the

wall is represented by internal arrows in the normal direction. Secretion is

maximal at the apex (longer arrows), where the secretion rate per unit

surface is constant (g0) and decreases considerably at the characteristic

length scale a. Examples of the functions J(s) and g(s), with the required

asymptotic behaviors and the crossover at the length scale a, are plotted

(down). In this example J(s)/J0 = s2/(s2 + a2). An example of the variation

of the viscosity with q, m(q)/m0 = (1 + q6)/ cos q, also with the required asymp-

totic behavior, is plotted (right; inverse viscosity is plotted for clarity).
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Figure 1. System Geometry and Definitions, Example of Tip-Growing Cell:

Pollen Tubes

(A) Lily pollen tube growing from a hydrated pollen grain in vitro and

observed with bright-field microscopy (left). The image on the right is

a close-up of the apical region and its vicinity (dashed red box). Image

courtesy of Enrique Rojas (Dumais Lab, Harvard University).

(B) Sketch of the apical region of a growing pollen tube showing how secre-

tory vesicles (circles) move along actin filaments (red) toward the apex,

transporting the cell wall material (gray) and secreting it by fusing to the

plasma membrane (yellow) [17, 18]. The motion of secretory vesicles along

actin filaments induces a cytoplasmic flow (cytoplasmic streaming; blue

arrows) with a characteristic ‘‘reverse fountain pattern’’ that creates an

accumulation of secretory vesicles close to the apex.

(C) Parameterization of the cell shape in the apical region. The left panel

shows the tridimensional geometry of the growing cell. A section at constant

azimuthal angle f (transparent plane) is shown on the right, together with

the coordinate system used to describe a point on the surface (in the moving

frame located at the apex of the cell), where n represents the normal vector

to the surface and s the tangential direction.
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neighborhood of the apical region [3, 16, 17, 25, 26], some
general properties can be established for the spatial depen-
dence of the secretion rate in a steadily tip-growing cell. In
the reference frame attached to tip of the growing cell, the
net axial flux of cell wall material through a cross-section of
the tube, J(s), is related to the local secretion rate via the
expression

2prgðsÞ= dJðsÞ
ds

; (4)

where we have assumed that there is no degradation or
synthesis of cell wall material in the cytoplasm, as shown to
be valid in the near apical region [3, 18] (see Supplemental
Data for details).

Far away from the apex, in the cylindrical part of the cell,
there is no material addition (g = 0) [3, 17, 18], so that the net
flux of cell wall material is a constant J0 (Equation 4; Figure 2).
At the apex, the secretion rate per unit surface is a constant g0
because it can neither vanish nor diverge in the steady state.
Consequently, following Equation 4, the asymptotic behavior
of the flux close to the apex (s / 0 and q / 0) is J(s) ws2.
Between these two limiting cases the spatial profile of the
flux (or the secretion rate) may depend on many details [25,
26], but continuity alone implies the existence of a length scale,
a, characterizing the crossover from one limiting regime to the
other (Figure 2). Over this secretion length scale, a, the secre-
tion rate g changes significantly compared to its value g0 at the
apex. This is consistent with the observations in pollen tubes,
among other tip-growing cells [3, 19], which show a distinct
region in the neighborhood of the apex with a sharp gradient
in the density of both secretory and endocytic vesicles [26]
(Figure 1B). Although an infinite family of functional forms
may be constructed with these minimal constraints, we show
below that our qualitative results are unchanged as long as
we respect the asymptotic behaviors discussed above.

Wall Viscosity: m(s)

The mechanical properties of the cell wall at a given position
depend on the local concentration of crosslinks between the
constituent polymers. In vitro experiments with pectin poly-
mers (the primary constituent of the cell wall in the apical
region of pollen tubes [1, 17, 18]) have shown that for crosslink
concentrations below a critical value r* the pectin network
flows, with a viscosity that depends on the crosslink concen-
tration [27]. At a critical crosslink concentration r* (gelation
transition [27, 28]), the pectin network ceases to flow (charac-
terized by a diverging viscosity at the critical point [27]), and
when r > r* the network behaves as an elastic gel. In pollen
tubes, both the concentration of methylesterified pectin
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To obtain scaling relations involving only the

radius of curvature at the apex, R0, and the radius

of the cell, R, from the general scaling laws (Equa-

tion 7), we need to specify the dependence of

a on R (or on R0). We discuss some cases.

(A) If the secretion rate at the apex, g0, is a fixed

quantity (independent of R or V), which could

happen, for instance, by the crowding of secretory vesicles at the apex, then R0 is constant, independent of R (Equation 5) and a w(R3/R0)1/2, i.e., the larger

the radius of the cell, the more pointy it would be.

(B) On the other hand, if the length a scales with the cell radius (a wR), as can be envisioned by considering that the intracellular processes that determine

a vary with the radius of the cell, then R wR0, i.e., cells would have the same shape independent of their size.

(C) If a was constant, independent of the cell radius, then R3 wa2 R0, i.e., the larger the cell, the flatter its apex would be.
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(noncrosslinked pectin) and the concentration of PMEIs
decrease monotonically from the apex [23, 24]. Assuming the
extracellular calcium concentration to be homogeneous, the
concentration of crosslinks in the cell wall of pollen tubes
increases monotonically from the apex, and so does then the
wall viscosity. Therefore, far away from the expanding apical
region, the cell wall of pollen tubes does not flow anymore
and adopts a cylindrical, tubular shape compatible with a pres-
surized elastic cylinder. We interpret the transition from a fluid-
like to a solid-like behavior as occurring when the crosslink
concentration exceeds the critical crosslink concentration r*
at the gelation transition, consistent with experimental obser-
vations [27]. The effect of PMEIs in pollen tubes, and most
likely of other cell wall loosening enzymes in different organ-
isms, is therefore not to soften the cell wall, but to fluidize it,
which involves a sol-gel-like phase transition rather than just
a mere change of material stiffness.

Close to the apex, the fluid cell wall is characterized by a finite
viscosity m0. In agreement with the fact that the cell wall
behaves as a pressurized elastic shell far away from the
growing apical region, the dynamics of cell wall expansion
described by Equations 1, 2, and 3 require the viscosity to
diverge (gelation of the cell wall) as the cell shape approaches
the characteristic tubular geometry away from the apex. Math-
ematically, this translates into a viscosity m that diverges as m(q)
w 1/(p/2 2 q) when approaching the tubular geometry (q / p/2
and ks / 0). For the sake of simplicity, we assume that the
tubular geometry is attained asymptotically far away from the
apex (s / N). We note that the dependence of m on space is
implicit through other fields, such as the concentration of the
enzymes that control the local crosslinking state of the cell
wall, and therefore its functional form may depend on s, q,
and/or r, or a combination of them. Assuming that the kinetics
of crosslinking in the cell wall are much faster than all other time
scales in the problem allows us to write m = m(q) without explic-
itly introducing any additional parameters.
Scales and Scaling Laws

Tip Geometry
Close to the apex of the cell, the local geometry is that of
a sphere with radius of curvature R0 and curvature k0 = 1/R0.
The steady apical expansion of a cell wall with density rw

and viscosity m0 driven by the turgor pressure P is maintained
by a constant supply of cell wall material per unit surface g0.
Comparing the velocity at which cell wall material is assem-
bled, g0/rw, to the expansion rate of the wall, P/m0, yields
a length scale R0 wm0g0/Prw, the tip radius of curvature.
Indeed, using Equations 1, 2, and 3, we may verify this because
the asymptotic solutions close to the apex are q(r) = k0 r, u(r) =
u00 r and h(r) = h0, with
k0 =
Prw

6m0g0

and u00 =
g0

2h0rw

; (5)

where u00 characterizes the spatial velocity gradient of
tangential cell wall expansion near the tip and h0 is the cell
wall thickness at the apex. The curvature k0 and u00 set the
velocity scale u0 in the shell, which reads u0 = u00/k0 =
3m0g0

2/Prw
2h0. We note that the absolute scale of cell wall

thickness, h0, cannot be fixed in our framework because we
do not discuss the microscopic mechanism of cell wall forma-
tion and turnover in the through-the-thickness direction.
However, the spatial variations in cell wall thickness are
accounted for in our theory through mass conservation.
Tubular Geometry
Far away from the apical region, the cell wall does not flow and
becomes a cylindrical, tubular, elastic shell with radius R and
thickness H. In the reference frame attached to the apex, the
velocity V of the tubular region corresponds to the growth
velocity of the cell. Comparing the wall expansion rate, P/m0,
to the total available cell wall volume per unit time, J0/rw,
sets a tubal length scale ðJ0m0=rwPÞ1=3. Indeed, rewriting
Equations 1, 2, and 3 for a cylindrical shape and taking into
account the asymptotic behavior of the viscosity in this region
yields

R3 =
2

p

m0J0

Prw

: (6)

Although the quantities P, m0, and rw are intrinsic constants
and do not depend on the geometry, size, or velocity of the
cell, the total net flux J0 (and similarly g0) does, in general,
depend on them. Therefore, in order to separately specify
the radius R and velocity V of the cell only in terms of intrinsic
quantities, it is necessary to establish the dependence of J0 on
R and V, which we discuss below.
Scaling Laws

Using Equations 5 and 6, and relating g0 to J0 through pa2g0 =
J0 (Equation 4), we obtain the scaling laws

R

R0

w

�
a

R0

�2=3

and
V

u0

H

h0

w

�
a

R0

�4=3

: (7)

These hold for any form of the flux J0(R, V) and measure the
pointedness of the cell and the cell wall material flow rate,
respectively, as a function of the ratio a/R0, which compares
the secretion length scale a to the wall expansion length scale
R0. Because they follow from simple considerations of mass
and force balance in the apical and tubular regions, they are
broadly applicable. In Figure 3 we discuss some cases of
particular interest.
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Cell Radius and Velocity
As an example of the relation between flux and cell growth
velocity and size, we consider the case of cortical transport
characteristic of pollen tubes [1, 17, 18, 29], in which secretory
vesicles are transported toward the apex along the actin fila-
ments forming a shell underneath the plasma membrane (Fig-
ure 1B). In such a case, the net flux of material transported
toward the apex reads J0 = 2pRr0ðV0 2 VÞ, where r0 is the
surface density of cell wall material being transported (propor-
tional to the surface density of secretory vesicles) and V0 is the
velocity of the secretory vesicles, which is mainly determined
by the velocity of the myosin motors carrying them [17]. For
the case of cortical transport, the radius and velocity of the
tip-growing cell are related by

R2 = 4
m0V0

P

r0

rw

�
1 2

V

V0

�
; (8)

which follows from Equation 6. If the typical growth velocity
V of the cell is much smaller than V0 (V « V0), as commonly
observed experimentally for pollen tubes, we see that the
radius of the cell becomes essentially independent of its
growth velocity. Explicit expressions for the radius and
velocity can be obtained by combining Equations 1, 2, and 3
and the function J0(R, V).
Apical cell shapes obtained numerically for different values of the parameter

a h a/R0 (top right): a = 0.5 (black), a = 1 (red), a = 2 (green), and a = 4 (blue).

The shapes are also shown in 3D for clarity (left). Small values of a corre-

spond to flatter apices, whereas large values of a are associated with pointy

cells. The curvature ks(s), the tangential expansion velocity of the cell wall,

u(s), and the cell wall thickness, h(s), are shown for the different shapes.

The viscosity m(s) is plotted as a function of the arclength (inset in the plot

showing ks; inverse viscosity is plotted for clarity), showing a monotonic

increase from the apex even when the curvature is nonmonotonic. The func-

tions J(s) and m(q) used to obtain the numerical solutions are those in Figure 2

and explained in the main text.
Cell Shape

To go beyond our scaling analysis and determine the shapes
of the growing apical region, it is necessary to specify the func-
tions m(s) and g(s) (or J(s) equivalently). We use the functional
forms J(s) = J0s2/(s2 + a2) and m(q) = m0(1 + q6)/cosq for the
numerical calculations (Figure 2). Although the particular cell
shape will depend on the choice of these functions, we find
that the same qualitative results are obtained for any reason-
able functional forms consistent with the asymptotic behav-
iors described above for the wall secretion rate and viscosity
(see Supplemental Data).

The ratio of the length scale, a, that characterizes the spatial
variation of secretion of new cell wall material and the charac-
teristic radius of curvature R0, which arises from the
mechanics of cell wall expansion, defines the dimensionless
parameter a h a/R0. Once we have scaled the curvatures
with the tip curvature k0, h with the microscopically deter-
mined wall thickness h0, and u with the cell wall expansion
velocity at the tip u0, a is the only dimensionless parameter
left in the problem. Figure 4A shows the dependence of the
numerical solutions of Equations 1, 2, and 3 on a. For a ( 1
the shapes show a characteristically flatter region in the
vicinity of the apex, which translates into a nonmonotonic
curvature ks. This is consistent with observations in pollen
tubes and root hairs [30] (see Supplemental Data) and may
be interpreted in terms of the competition between local cell
wall assembly and expansion. The nonmonotonicity of the
curvature leads to nonmonotonous strain rates (see Supple-
mental Data) and cell wall thickness (Figure 4), even though
the viscosity increases monotonically away from the apex
(Figure 4) and the material secretion rate decreases monoton-
ically (Figure 2). As a is increased, the shapes become increas-
ingly pointed, with a monotonically decreasing curvature ks

from its maximal value k0 at the apex (Figure 4A). In this
case, the velocity profile shows two distinct regimes, with
a fast linear increase at the apex and a slow convergence to
its maximal velocity V. Both flat and pointed apices are
observed in the tip growth of different organisms [19, 20, 30],
suggesting that our minimal theoretical considerations are
sufficient to explain these morphologies.

Discussion

A molecular approach to cellular morphogenesis requires
knowledge of the dynamics of cytoskeletal structures and their
control via signaling molecules that would allow us to build up
toward a description of cell shape and its evolution. Unfortu-
nately, many of the putative intracellular processes that control
wall material production, transport, and assembly are not yet
well understood. However, it may be argued that even if they
were understood, it is extremely improbable that all this
detailed information is required to address global questions
such as the cell size, shape, and dynamics, which require
global constraints ([3]; Figure 5). Mesoscopic approaches,
while ignoring some of the molecular details, provide a possible
route that allows us to identify the biophysical parameters that
control the scales and the diversity of shapes in tip growth.

Our description of tip growth avoids the molecular approach
in favor of a mesoscopic view by assuming that the effect of
intracellular processes can be described effectively by two
functions, which account for the local secretion rate and the
rheology of the cell wall (Figure 5). The shape of the cell may
depend on many details through the functional forms of the
viscosity m and the secretion rate g. However, the scaling laws
(Equation 7), the dependence of the cell radius and velocity
on the physical parameters (Equation 8), and the variation of



Figure 5. Schematic Representation of the

Different Description Levels of Tip Growth

This sketch only contains the most straightfor-

ward relations between the molecules and

processes that control cell morphogenesis.

There are some relations (arrows in the sketch)

between these elements that have been omitted

for the sake of simplicity or because they are

not yet established. Similarly, it is possible that

other processes that are likely to play a role in

shaping the cell have not been considered in

the sketch, either because they are not known

or because their role is thought to be minor

compared to those sketched here. As important

as the extensively studied molecular and micro-

scopic levels, at the mesoscopic scale the

assembly and extension of the cell wall are gov-

erned by the laws of physics. No matter how

complex intracellular processes and signaling

pathways may be, the morphogenesis of the

cell must obey essential incontrovertible laws at

the mesoscopic scale, such as force balance

and mass conservation. Whereas these generic

laws set the possible shapes for the cell, molec-

ular cues establish the actual shape of the cell from the possible, physically meaningful shapes. The molecular control of cellular morphogenesis occurs

through the modification of the effective mesoscopic parameters, namely, the turgor pressure P, the cell wall rheology (characterized by the local wall

viscosity m), and the local secretion rate g. Turgor pressure is essentially regulated by ion fluxes (Ca2+, H+, etc.), which change the osmotic balance between

the cell interior and its external environment [3, 17, 18]. The local rheological properties of the cell wall depend on (extracellular) ionic concentrations, and the

activity of enzymes that affect the local crosslink concentration in the cell wall (e.g., PMEs and their associated inhibitors in pollen tubes [23, 24]). The cell

wall secretion rate is mainly affected by polysaccharide synthesis, the transport of secretory vesicles toward the apex, and the fusion of vesicles with the

plasma membrane. Intracellular transport relies on cytoskeletal filaments (regulated at the molecular scale by PIP2 and IP3, as well as by small GTPases of

the Ras superfamily [17, 31]) and molecular motors (whose activity is known to depend on Ca2+ concentration), which carry secretory vesicles to the apical

region. Vesicle fusion at the plasma membrane is required for cell wall secretion and is thought to be controlled by GTPases (Rab) and (intracellular) ionic

concentrations [17, 31].
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the shape with the parameter a/R0 (Figure 4) are independent of
those details, providing robust predictions that can be tested
experimentally. Furthermore, the obtained apical geometry
(Equation 5) establishes the dependence of two commonly
measured quantities [30]—namely, the radius of curvature at
the apex, R0, and the slope of the cell wall expansion velocity
u(s), u00—on measurable physical parameters, such as turgor
pressure P or the secretion rate per unit surface g0. These
behaviors for both the shape and the expansion velocity in
the vicinity of the apex have indeed been observed experimen-
tally [30] (see Supplemental Data). Finally, we show that a single
dimensionless parameter, which characterizes the interplay of
cell wall mechanics and assembly, may be sufficient to explain
much of the diversity of shapes in tip-growing cells.

Our theory sharpens the quest for the molecular underpin-
nings of morphogenesis by identifying the physical mecha-
nisms in shaping the cell and thus focusing further attention
on those molecular pathways involved in the control of the
relevant physical magnitudes, such as the local secretion
rate and cell wall rheology. Moreover, it provides a framework
that can be generalized to other questions of the morphogen-
esis of walled cells such as diffuse growth, budding, and
branching.

Supplemental Data

Supplemental Data include supplemental theory and nine figures and can

be found with this article online at http://www.cell.com/current-biology/

supplemental/S0960-9822(09)01983-6.

Acknowledgments

We thank Jacques Dumais and Enrique Rojas for discussions and for the

images of pollen tubes in Figure 1, as well as the Human Frontiers Science

Program and the Harvard NSF-MRSEC for partial financial support.
Received: March 31, 2009

Revised: October 14, 2009

Accepted: October 20, 2009

Published online: December 17, 2009

References

1. Taiz, L., and Zeiger, E. (2006). Plant Physiology, Fourth Edition (Sunder-

land, MA: Sinauer Associates, Inc).

2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D.

(2004). Molecular Biology of the Cell, Third Edition (New York: Garland).

3. Harold, F.M. (2005). Molecules into cells: Specifying spatial architec-

ture. Microbiol. Mol. Biol. Rev. 69, 544–564.

4. Fowler, J.E., and Quatrano, R.S. (1997). Plant cell morphogenesis:

Plasma membrane interactions with the cytoskeleton and cell wall.

Annu. Rev. Cell Dev. Biol. 13, 697–743.

5. Baskin, T.I. (2005). Anisotropic expansion of the plant cell wall. Annu.

Rev. Cell Dev. Biol. 21, 203–222.

6. Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell

Biol. 6, 850–861.

7. Mathur, J. (2004). Cell shape development in plants. Trends Plant Sci. 9,

583–590.

8. Thompson, D.W. (2002). On Growth and Form (New York: Dover Publi-

cations), reprint of 1942 2nd ed. (1st ed., 1917).

9. Bernal, R., Rojas, E.R., and Dumais, J. (2007). The mechanics of tip

growth morphogenesis: What we have learned from rubber balloons.

Journal of Mechanics of Materials and Structures 2, 1157–1168.

10. Goriely, A., and Tabor, M. (2003). Self-similar tip growth in filamentary

organisms. Phys. Rev. Lett. 90, 108101.

11. Lockhart, J.A. (1965). An analysis of irreversible plant cell elongation.

J. Theor. Biol. 8, 264–275.

12. Tindemans, S.H., Kern, N., and Mulder, B.M. (2006). The diffusive vesicle

supply center model for tip growth in fungal hyphae. J. Theor. Biol. 238,

937–948.

13. Gierz, G., and Bartnicki-Garcia, S. (2001). A three-dimensional model

of fungal morphogenesis based on the vesicle supply center concept.

J. Theor. Biol. 208, 151–164.

14. Pelce, P., and Pocheau, A. (1992). Geometrical approach to the morpho-

genesis of unicellular algae. J. Theor. Biol. 156, 197–214.

http://www.cell.com/current-biology/supplemental/S0960-9822(09)01983-6
http://www.cell.com/current-biology/supplemental/S0960-9822(09)01983-6


Shape and Dynamics of Tip-Growing Cells
2107
15. Mathur, J., and Hülskamp, M. (2002). Microtubules and microfilaments

in cell morphogenesis in higher plants. Curr. Biol. 12, R669–R676.

16. Cole, R.A., and Fowler, J.E. (2006). Polarized growth: Maintaining focus

on the tip. Curr. Opin. Plant Biol. 9, 579–588.

17. Krichevsky, A., Kozlovsky, S.V., Tian, G.W., Chen, M.H., Zaltsman, A.,

and Citovsky, V. (2007). How pollen tubes grow. Dev. Biol. 303, 405–420.

18. Hepler, P.K., Vidali, L., and Cheung, A.Y. (2001). Polarized cell growth in

higher plants. Annu. Rev. Cell Dev. Biol. 17, 159–187.

19. Trinci, A., and Saunders, P. (1977). Tip growth of fungal hyphae. J. Gen.

Microbiol. 103, 243–248.

20. Heath, I.B., and Geitmann, A. (2000). Cell biology of plant and fungal tip

growth—getting to the point. Plant Cell 12, 1513–1517.

21. Cabeen, M.T., and Jacobs-Wagner, C. (2005). Bacterial cell shape. Nat.

Rev. Microbiol. 3, 601–610.

22. Cosgrove, D.J. (2000). Loosening of plant cell walls by expansins.

Nature 407, 321–326.

23. Bosch, M., and Hepler, P.K. (2005). Pectin methylesterases and pectin

dynamics in pollen tubes. Plant Cell 17, 3219–3226.
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1 Derivation of force and mass balance laws

Here we provide a self-contained derivation of the basic balance equations in the
main text.

1.1 Local force balance (Eq. 1 of the main text)

Experimental observations show that the typical thickness of the cell wall (0.1−
1 µm) is much smaller that the typical radius of curvature of tip growing cells,
which is of the order of 10µm. The cell wall can thus be described as a thin shell
from the geometrical viewpoint. Along the cell wall, viscous forces dominate
over inertial effects at the small micrometric length scales and slow velocity
(micrometers/s) scales involved in cell growth. Thus forces must always sum up
to zero during the process of cell growth.

At each point of the cell wall the turgor pressure P leads to a normal stress
in the outward direction (Fig. S1 A,C) and also generates tensions σss and σφφ

along the two principal directions of the surface, the tangential direction, s,
and the azimuthal direction, φ (in the third principal direction, normal to the
shell, the stress is simply the pressure itself). To write down the consequence
of force balance locally along the principal directions, we first note that the
infinitesimal area element da = rdφds where ds is the size of the infinitesimal
element in the tangential direction and rdφ is the size of the infinitesimal element
in the azimuthal direction (Fig. S1 A,B). Let dθ be the differential angle defined
between the tangents (in the s direction) to the surface at the locations s and
s + ds (Fig. S1 B). Then

dθ =
dθ

ds
ds = κs ds , (S1)

where κs = dθ/ds is the local curvature along s [1]. The projected force in the
normal direction due to the tension σss is given by σssdθ rdφ = σssκsrdφds
(Fig. S1 B,C). Similarly, when we consider the azimuthal direction, with an
azimuthal curvature κφ, the projected force in the normal direction due to the
azimuthal stress is σφφκφrdφds. Balancing the cumulative contributions of the
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tensions in both principal directions, s and φ, with the contribution from turgor
P da = P rdφds yields

P = κsσss + κφσφφ , (S2)

which corresponds to the first equation in Eq. 1 of the main text.
The second equation in Eq. 1 of the main text corresponds to force balance

in the direction of growth. If we consider a section of the tip growing cell at
a certain distance from the apex (Fig. S1 D), the cumulative contribution to
the force in the growth direction due to the turgor pressure over the apical cup
defined by such a section is given by∫

dS P cos θ = 2πP

∫ r(s)

0

ds r cos θ = 2πP

∫ r(s)

0

dr r = Pπr2 , (S3)

where we used the relation dr/ds = cos θ. This cumulative force must be bal-
anced by the projection of the tension in the s direction, σss, at the boundary
defined by the section (Fig. S1 D; [2, 3]), which reads

2πrσss sin θ . (S4)

Balancing the contributions S3 and S4, one obtains

P

2
= κφσss , (S5)

where we used the expression κφ = sin θ/r.
We note that the theory described in the main text and detailed above

ignores the effects of any bending resistance that the shell might have. Indeed,
the bending contribution is relevant in regions where the characteristic length
of shell deformation, R, is smaller or about

√
Rh [2]. As the typically observed

radii of curvature for pollen tubes are about 10µm, leading to
√

Rh ∼ 1 µm,
bending contributions can be neglected.

1.2 Stress-strain rate relations (Eq. 2 of the main text)

At a minimal level, we describe the cell wall as a simple viscous fluid with
a viscosity that changes with location following the distribution of cell wall
loosening enzymes. In the case of a fluid shell, the strain rates (elemental rates
of deformation) εs and εφ, along the two principal directions, s and φ, are given
by

εs =
du

ds
and εφ =

u cos θ

r
, (S6)

at steady state. The strain rate εs expresses how much the cell wall is stretched
per unit time along the tangential direction s; indeed, it is the difference in
velocity between two adjacent points, i.e., du/ds, that quantifies how much the
stretch between two adjacent points changes per unit time along the tangential
direction s. Similarly, the strain rate εφ expresses how much the cell wall is
stretched per unit time in the radial direction r: the rate of expansion of the
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Figure S1: Local force balance. (A) Sketch of the apical region of a tip growing
cell, where the contour length s, the cell thickness r and the angle θ between the local
normal n and the direction of growth are indicated. (B) Definition of the infinitesimal
elements ds, dr and dθ, associated to infinitesimal changes of the variables s, r and
θ respectively. (C) Sketch of the forces acting on an element of the surface. The
turgor pressure P (red arrow) is along the outward normal direction to the surface.
The tension σss (blue arrows) acts along the tangential direction (s) at every point,
and the tension σφφ (orange arrows) acts along the azimuthal direction (φ) at every
point. The existence of local curvatures κs and κφ allows the local tensions σss and
σφφ to contribute along the normal direction and balance the turgor pressure, as
explained in the text. (D) Force balance along the direction of cell growth. Forces
generated by turgor pressure are along the local normal direction of the surface (small
red arrows); their cumulative contribution along the direction of cell growth is depicted
with a big light red arrow. The cell wall tension σss along the tangential direction,
at the boundary of the defined cross-section, is represented by long blue arrows. The
cumulative contribution of this tension over the cross-section, projected along the
direction of cell growth, is depicted as a light blue arrow. The cumulative contribution
in the direction of growth of the turgor pressure over the apical cup defined by the cross-
section (light red arrow), is balanced by the projection of the cumulative contribution
of the cell wall tension σss (light blue arrow), as explained in the text.
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cell wall in the radial direction at a given point is simply given by the projection
of the expansion velocity u in the radial direction r, which reads u cos θ, so
that the relative expansion of the cell wall in the radial direction is given by
εφ = u cos θ/r.

To complete the formulation of the equations of motion, we then need to
relate the tensions in the shell to the elemental rates of deformation (the strain
rates). The simplest relations, which follow from our assumption of linear stress-
strain rate relations for a viscous (Newtonian) fluid [4], are

σss = 4µh

[
εs +

1
2

εφ

]
and σφφ = 4µh

[
1
2

εs + εφ

]
, (S7)

where µ is the local viscosity of the cell wall and the tensions σss and σφφ

are obtained by integration across the through-the-thickness direction of the
stresses in the respective principal directions. The integration of the stresses
to obtain the tensions explains the contributions of each strain rate to the ten-
sion in a given principal direction. In particular, the strain rate in the same
principal direction that the tension contributes with a factor 4h (the factor 4
is known as the Trouton ratio and relates the extensional viscosity to the shear
viscosity), while the remaining strain rate contributes with 2h in the case of an
incompressible fluid [5].

1.3 Mass conservation (Eq. 3 of the main text)

In order to derive Eq. 3 of the main text, consider a slice of the growing cell
of differential thickness ds, as sketched in Fig. S2 A. In the steady state, the
difference of fluxes js(s + ds)− js(s) flowing across the circular slice of cell wall
in the s direction must equal the flux of mass being added to the same slice of
cell wall per unit time, which reads 2πr(s)γ(s)ds (with γ(s) being the amount
of new cell wall material added to the preexisting wall per unit surface and unit
time), so that

js(s + ds)− js(s) = 2πr(s)γ(s)ds , (S8)

which in the limit ds→ 0 yields the steady state relation:

djs(s)
ds

= 2πr(s)γ(s) . (S9)

The convective flux of cell wall material flowing along the tangential direction,
s, across the considered circular slice is given by

js(s) = 2πr(s)h(s) ρw u(s) , (S10)

where ρw is the cell wall density, assumed to be constant for the sake of sim-
plicity. Combining Eqs. S9 and S10, we obtain Eq. 3 of the main text, i.e.,

d (rhu)
ds

=
rγ

ρw
. (S11)
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Figure S2: Local mass conservation. (A) Sketch of the apical region of a tip
growing cell. The magnified region represents a close up of the cell wall where we
depict the fluxes of cell wall material getting in and out of a cell wall element with
differential length ds. In particular, the fluxes of cell wall material that this differential
cell wall element exchanges with the neighboring cell wall are js(s) and js(s + ds),
while the cell wall material exchange with the cytoplasm is given by γ(s). In the
steady state, the balance of fluxes requires that the difference between outgoing and
incoming cell wall fluxes in any differential cell wall element, i.e., js(s + ds) − js(s),
must be accounted for by the secretion flux γ(s) ds. (B) Given two cross-sections of the
cell, separated by a differential distance ds, any difference between the net cytoplasmic
flow of cell wall material along the direction of growth across the defined cross-sections,
i.e., J(s)− J(s + ds), must be due to secretion to the preexisting cell wall.

1.3.1 Relation between J(s) and γ(s) (Eq. 4 of the main text)

Here we explain the relation between the net axial flux of cell wall material
through a cross-section of the cell (in the reference frame attached to tip of the
growing cell), J(s), and the secretion rate per unit surface γ(s). Consider two
adjacent cross-sections of the cell separated by a differential length ds along
the cell contour (Fig. S2 B). The difference between the net cytoplasmic flux of
cell wall material crossing the two sections is J(s + ds) − J(s). Conservation
of the cell wall material in the cytoplasm of the apical region imposes that any
difference between the flux J(s + ds) and J(s) must have left the cytoplasm
through the boundary that connects the two adjacent sections, i.e., it must
have been secreted to the preexisting wall. As the secretion flux in the annular
region between the two defined cross-sections is given by 2πrγ(s) ds, we obtain

dJ (s)
ds

= 2πrγ(s) , (S12)

by equating the difference J(s+ds)−J(s) to the flux being secreted to the pre-
existing wall and taking the limit ds→ 0. This relation assumes no production
or degradation of cell wall material in the cytoplasm of the apical region. This
assumption is supported by experimental observations showing that the new
cell wall material is produced far away from the growing region and transported
actively to the growing apex along cytoskeletal filaments.
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2 Comparison of numerical solutions to the ex-
perimental data for root hairs

Pollen tubes are not the only example of tip growth in plants; root hairs, also
elongate using the same strategy. Experiments with root hairs have shown
that the meridional curvature is non-monotonic (Figure 3). This has led to
suggestions that one needs a non- monotonic rheology to explain this behavior.
Here we show that the experimental observations on the tip growth of root
hairs [6, 7] are in agreement with our theoretical results, and do not require
any such assumptions; the observed behavior follows from simple monotonic
variations in the viscosity and secretion rates as one moves away from the tip.

Fig. S3 compares the experimental measurements of the meridional curva-
ture (κs), the meridional velocity (cell wall expansion velocity u(s)) and the
strain rates (εs and εφ) as a function of the arc length position (s) in root
hairs [6], to the results obtained by numerical integration of Eqs. 1, 2 and 3
(of the main text) for α = 0.8 (the functional forms of µ and J are the same
as in Fig. 4 of the main text). All measured quantities agree qualitatively, and
even semi-quantitatively, with the theoretical results. In particular, we show
that the predicted strain rates (or elemental rates of expansion) εs and εφ show
a non-monotonous behavior, with maximal strain rates located in an annulus
surrounding the polar axis, even for a secretion rate γ(s) that decreases mono-
tonically from the apex and a viscosity µ(s) that increases monotonically from
the apex. Indeed, the wall viscosity is likely to increase monotonically as it
follows the crosslink concentration in the wall, which is observed to increase
monotonically.
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Figure S3: Comparison of the experimental results on the tip growth of
root hairs [6, 7] to our theoretical results. The panels on the left show the
experimental measure of the meridional curvature (κs), the meridional velocity (cell
wall expansion velocity u(s)) and the strain rates (εs and εφ) as a function of the
arc length position (s) (First reproduced at Journal of Mechanics of Materials and
Structures vol. 2 page 1157. Reproduced here with permission). The panels on the
right show the numerical solution for each of the magnitudes shown on the left panels.
The numerical solutions were obtained by numerical integration of Eqs. 1, 2 and 3 (of
the main text) for α = 0.8, using the same functional forms of µ and J as in Fig. 4 of
the main text.
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3 Variation of pollen tube shape with α, for dif-
ferent functional forms of the viscosity µ(s)
and the flux of cell wall material J(s)

The detailed shape of a pollen tube in the apical region depends on both the
spatial and temporal distribution of cell wall material secretion rate γ(s, t) and
the variation of the cell wall rheology (in our minimal description, the viscosity
µ(s, t)) with location and time. In the main text we showed that the variation
of the pollen tube shapes may be characterized in terms of just one dimension-
less parameter in the problem, α ≡ a/R0. We show here that although the
particular shape of the apical region depends on the spatial dependence of both
the secretion rate of cell wall material (or equivalently, the flux J(s)) and the
wall viscosity µ, the variation of the pollen tube shape with the parameter α is
independent of the particular choice of these functional forms.

To this end, we solve the steady-state equations derived in the main text (Eq.
6) for different representative choices of the functions J(s) and µ(θ) (Fig. S4).
All of the chosen functions have the following asymptotic behaviors: (i) close
to the apex or tip (s → 0) the flux J scales like J(s) ∼ s2 (this condition is
equivalent to γ(s)→ γ0 as s→ 0) and the viscosity approaches a constant value
µ0 (µ(s) → µ0 as s → 0); (ii) far away from the apex, in the tubular region
(s→∞) the flux of cell wall material going through a cross-section of the tube
is constant and given by J0, so that J(s → ∞) → J0, and the viscosity must
diverge as µ(s) ∼ 1/ (π/2− θ(s)) for s → ∞. This divergence of the viscosity
simply reflects the fact that the cell wall becomes rigid in the tubular region far
away from the apex.

The set of functions chosen cover the extreme range of features. For the
flux J(s) (Fig. S4 A), while the asymptotic behavior close to the apex is fixed,
the way the flux saturates to J0 is not restricted. We specify two functions
with qualitatively different behaviors as far as saturation is concerned: a slow,
power-law saturation J(s) = J0 s2/(s2 + a2) and a fast, exponential saturation
J(s) = J0

(
1− exp

(
−s2/a2

))
. These choices are meant to differentiate between

a highly localized secretion at the apex or a slowly decaying secretion away
from it. Similarly, for the functional forms of the viscosity, we look at limiting
behaviors wherein both a fast and localized increase and a shallower increase are
accounted for (Fig. S4 B), keeping fixed the asymptotic form of the divergence
in the tubular region.

In Figs. S5 -S9 we plot the results of the numerical integration of the steady-
state equations derived in the main text (Eq. 6) using the functional forms of J
and µ described above. We see that while the quantitative shape of the pollen
tube depends on the choice of these functional forms, the variation of the shape
with α does not. In particular, the transition from a non-monotonic curvature
κs for small values of α to a monotonically decreasing curvature from the apex
at large α, is observed in all cases. Importantly, this non-monotonic behavior
is obtained with a monotonically decreasing secretion rate and monotonically
increasing viscosity. While a detailed comparison with experiments once the
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Figure S4: Spatial dependence of the flux of cell wall material J(s) go-
ing through the pollen tube and the wall viscosity µ(s). Examples of (A)
the flux of cell wall material J(s) and (B) the differential viscosity µ, which have
the required asymptotic behaviors. (A) Two functional forms for the flux J(s),
associated with slowly and rapidly decaying secretion rates away from the apex
were chosen. Slow saturation: J(s) = J0 s2/(s2 + a2) (red line). Fast saturation:
J(s) = J0

(
1− exp

(
−s2/a2

))
(black line). The inset shows a close-up of the vicinity

of s = a, where most of the variation takes place. (B) Three functional forms associ-
ated with slowly, moderate and rapidly increasing cell wall viscosity were chosen. The
general functional form is µ(θ) = µ0

(
1 + (cθ)d

)
/ cos θ, where c and d are dimension-

less parameters. A sharp increase of the viscosity corresponds to c = 2.5 and d = 6
(blue), while shallower increases correspond to c = 1 and d = 6 (red; corresponds to
the functional form used as example in the main text) and for c = 0.8 and d = 10
(black). We plot the scaled inverse viscosity, i.e. µ0/µ(θ), for clarity.

functional forms for wall secretion rate and wall rheology is clearly an important
goal for the future, the robust qualitative results shown here already allow us
to ask comparative questions in the morphology of tip growing cells.
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Figure S5: Numerical solutions of Eq. (6) for a sharp increase in viscosity
and slow decay of the secretion rate. (A) The functional forms J(s) (left) and
µ(θ) (right) used in the numerical integration are highlighted (black curves) and the
other functional forms are shown for comparison (light gray). (B) Pollen tube shapes
obtained numerically for different values of the parameter α ≡ a/R0; black - α = 0.5,
red - α = 1, green - α = 2. The shapes are also shown in 3D for clarity reasons
(left). The curvature κs(s), the tangential expansion velocity of the cell wall, u(s),
and the cell wall thickness, h(s), are shown for the different shapes. The curvature
κs is non-monotonous for small α and becomes a monotonically decreasing function
away from the apex at large α. (C) The scaled secretion rate per unit surface γ(s)
and scaled inverse viscosity µ(s) and are plotted as a function of the arclength.
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Figure S6: Numerical solutions Eq. (6) for a very shallow increase in
viscosity and slow decay of the secretion rate. (A) The functional forms J(s)
(left) and µ(θ) (right) used in the numerical integration are highlighted (black curves)
and the other functional forms are shown for comparison (light gray). (B) Pollen tube
shapes obtained numerically for different values of the parameter α ≡ a/R0; black -
α = 0.5, red - α = 1, green - α = 2, blue - α = 4. The shapes are also shown in 3D for
clarity reasons (left). The curvature κs(s), the tangential expansion velocity of the cell
wall, u(s), and the cell wall thickness, h(s), are shown for the different shapes. The
curvature κs is non-monotonous for small α and becomes a monotonically decreasing
function away from the apex at large α. (C) The scaled secretion rate per unit surface
γ(s) and scaled inverse viscosity µ(s) and are plotted as a function of the arclength.
The non-monotonic behavior of the secretion rate γ at large values of α is due to the
non-monotonic behavior of the curvature. Note that J(s) is a monotonically increasing
function.
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Figure S7: Numerical solutions Eq. (6) for a shallow increase in viscosity
and fast decay of the secretion rate. (A) The functional forms J(s) (left) and
µ(θ) (right) used in the numerical integration are highlighted (black curves) and the
other functional forms are shown for comparison (light gray). (B) Pollen tube shapes
obtained numerically for different values of the parameter α ≡ a/R0; black - α = 0.5,
red - α = 1, green - α = 2, blue - α = 4. The shapes are also shown in 3D for
clarity reasons (left). The curvature κs(s), the tangential expansion velocity of the
cell wall, u(s), and the cell wall thickness, h(s), are shown for the different shapes. The
curvature κs is non-monotonous for small α and becomes a monotonically decreasing
function away from the apex at large α. (C) The scaled secretion rate per unit surface
γ(s) and scaled inverse viscosity µ(s) and are plotted as a function of the arclength.
The non-monotonic behavior of the secretion rate γ at large values of α is due to the
non-monotonic behavior of the curvature. Note that J(s) is a monotonically increasing
function.
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Figure S8: Numerical solutions Eq. (6) for a very shallow increase in
viscosity and fast decay of the secretion rate. (A) The functional forms J(s)
(left) and µ(θ) (right) used in the numerical integration are highlighted (black curves)
and the other functional forms are shown for comparison (light gray). (B) Pollen tube
shapes obtained numerically for different values of the parameter α ≡ a/R0; black -
α = 0.5, red - α = 1, green - α = 2, blue - α = 4. The shapes are also shown in 3D for
clarity reasons (left). The curvature κs(s), the tangential expansion velocity of the cell
wall, u(s), and the cell wall thickness, h(s), are shown for the different shapes. The
curvature κs is non-monotonous for small α and becomes a monotonically decreasing
function away from the apex at large α. (C) The scaled secretion rate per unit surface
γ(s) and scaled inverse viscosity µ(s) and are plotted as a function of the arclength.
The non-monotonic behavior of the secretion rate γ at large values of α is due to the
non-monotonic behavior of the curvature. Note that J(s) is a monotonically increasing
function.
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Figure S9: Numerical solutions Eq. (6) for a sharp increase in viscosity
and fast decay of the secretion rate. (A) The functional forms J(s) (left) and
µ(θ) (right) used in the numerical integration are highlighted (black curves) and the
other functional forms are shown for comparison (light gray). (B) Pollen tube shapes
obtained numerically for different values of the parameter α ≡ a/R0; black - α = 0.5,
red - α = 1, green - α = 2. The shapes are also shown in 3D for clarity reasons
(left). The curvature κs(s), the tangential expansion velocity of the cell wall, u(s),
and the cell wall thickness, h(s), are shown for the different shapes. The curvature
κs is non-monotonous for small α and becomes a monotonically decreasing function
away from the apex at large α. (C) The scaled secretion rate per unit surface γ(s)
and scaled inverse viscosity µ(s) and are plotted as a function of the arclength.
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