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The Föppl-von Kármán equations for plates
with incompatible strains
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Minneapolis, MN 55455, USA
2School of Engineering and Applied Sciences, Harvard University Cambridge,
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3Department of Mathematics, University of Pittsburgh, 139 University Place,
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We provide a derivation of the Föppl-von Kármán equations for the shape of and stresses
in an elastic plate with incompatible or residual strains. These might arise from a range
of causes: inhomogeneous growth, plastic deformation, swelling or shrinkage driven by
solvent absorption. Our analysis gives rigorous bounds on the convergence of the three-
dimensional equations of elasticity to the low-dimensional description embodied in the
plate-like description of laminae and thus justifies a recent formulation of the problem to
the shape of growing leaves. It also formalizes a procedure that can be used to derive other
low-dimensional descriptions of active materials with complex non-Euclidean geometries.

Keywords: non-Euclidean plates; nonlinear elasticity; gamma convergence;
calculus of variations

1. Introduction

Laminae or leaf-like structures are thin, i.e. they have one dimension much smaller
than the other two. They arise in science and technology in a variety of situations,
from atomically thin graphene (thickness h ∼ o(1) nm) with a lateral span of a few
centimetres, to the earth’s crust (h ∼ 10 km) that spans thousands of kilometres
laterally. On the everyday scale, recently there has been much activity on trying
to understand the mechanics of these laminae when they are active or actuated,
as in a growing leaf, a swelling or shrinking sheet of gel, a plastically strained
sheet, etc. In all these situations, the shape of the lamina arises as a consequence
of the fact that inelastic effects associated with growth, swelling or shrinkage,
plasticity, etc. result in a local and heterogeneous incompatibility of strains that
leads to local elastic stresses. When combined with force balance, this naturally
leads to the non-trivial shapes that are seen even in the absence of any external
forces. A simple experiment suffices to make this point—when growing leaves or
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Elastic plates with incompatible strain 403

plastically strained ribbons (Sharon et al. 2007) are cut in different directions to
partially relieve the incompatible strains owing to growth or plasticity, they relax
to different shapes.

Recently, these observations have led to a quest for a theory that describes the
coupling between residual strain that might arise from a multitude of causes to the
ultimate shape of the object. Given that the deformations and strains involved
are not necessarily small, this raises an age-old question of how to decompose
the deformations into the elastic and inelastic parts. A possible approach is
to consider the equilibrated shape of grown bodies and use a multiplicative
decomposition of the deformation gradient that borrows from the theory of crystal
plasticity, which requires the notion of a reference configuration with respect
to which all displacements are measured. This equilibrium approach leads to
conceptual difficulties when matter is not conserved, as in growth processes, and
suggests an incremental approach embodied in an evolutionary rather than an
equilibrium process, which also has antecedents in the theory of plasticity. In
either case, we then require the knowledge of a constitutive law in addition to
a characterization of the geometry of the body. For soft materials such as plant
and animal tissue, a reasonable assumption is that insofar as the elastic response
is concerned, the material is hyperelastic, while the inelastic deformations follow
different laws depending on their origin. For example, swelling or shrinking gel
sheets (Klein et al. 2007) may be described by a poroelastic theory that couples
fluid flow to osmotic stress and deformation, while growth in biological tissues
arises from cell proliferation or cell shape changes that have their own description
that couple molecular and macroscopic processes. At the molecular level, mutants
responsible for differential cell proliferation (Nath et al. 2003) lead to a range of
leaf shapes. At the macroscopic level, stresses induced by external loads lead to
phenotypic plasticity in algal blades that switch between long, narrow blade-like
shapes in rapid flow to broader undulating shapes in slow flow (Koehl et al. 2008).

Recent work has focused on some of these questions by using variants of thin
plate theory to highlight the self-similar structures that form near the edge owing
to variations in a prescribed intrinsic metric of a surface that is asymptotically
flat at infinity (Audoly & Boudaoud 2004), and also on the case of a circular
disc with edge-localized growth (Dervaux & Ben Amar 2008; Efrati et al. 2009),
the shape of a long leaf (Liang & Mahadevan 2009), etc. However, the theories
used are not all identical and some of them arbitrarily ignore certain terms and
boundary conditions without prior justification. This suggests that it might be
useful to rigorously derive an asymptotic theory for the shape of a residually
strained thin lamina to clarify the role of the assumptions used while shedding
light on the errors associated with the use of the approximate theory that results.
In the context of standard nonlinear elasticity (see, e.g. Ciarlet (2000)) for thin
plates and shells such rigorous derivations have been carried out (Friesecke et al.
2006; Lewicka et al. 2008, 2010; Lewicka & Pakzad 2009a). Further, in Lewicka &
Pakzad (2009b) a version of the linearized Kirchhoff theory for plates (Kirchhoff
1850) with residual strain was rigorously derived under the assumption that the
target metric is independent of thickness.

In this paper, we carry out such a derivation under a different assumption on
the asymptotic behaviour of the prescribed metric and shows that the resulting
equations are identical to those postulated to account for the effects of growth
in elastic plates (Liang & Mahadevan 2009) and used to describe the shape of a
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long leaf. We limit ourselves to the case when a decomposition of the deformation
gradient into an elastic and inelastic part can be carried out—this requires that
it is possible to separate out a reference configuration, and is thus most relevant
for the description of processes such as plasticity, swelling and shrinkage in thin
films, as well as plant morphogenesis; we will use ‘growth’ to mean any of these
processes. In particular, we will only consider the one-way coupling of growth
to shape and ignore the feedback from shape back to growth, plasticity, swelling,
shrinkage, etc. However, we note that it is fairly easy to include this coupling that
would in general serve to shut down growth once the stresses or strains reach a
critical level.

Before describing the details of our theorems and proofs, we describe our basic
geometric and physical model and summarize our main results.

(a) Geometry of incompatible strain

For a given mid-plate U, which is an open bounded and simply connected
subset of R

2, consider a sequence of three-dimensional plates:

Uh = U ×
(

−h
2
,
h
2

)
, 0 < h << 1,

viewed as the reference configurations of thin elastic (and homogeneous) tissues.
A typical point in Uh has the form (x ′, hx3) where x ′ ∈ U and |x3| < 1, and we
shall make no distinction between points x ′ ∈ U and (x ′, 0) ∈ Uh .

Each Uh is assumed to undergo a growth process, whose instantaneous growth
is described by a smooth tensor ah = [ah

ij ] : Uh −→ R
3×3, with the property:

∀x ∈ Uh det ah(x) > 0.

In general, ah may follow its own dynamical evolution. However, here we will
focus only on the effect of the tensor ah on the effective elastic theory for the
grown body. Here we will use a multiplicative decomposition of the deformation
gradient that is similar to the one used in plasticity and also used in various
growth formalisms, e.g. (Rodriguez et al. 1994), u : Uh −→ R

3:

Vu = Fah .

The tensor F = Vu(ah)−1 corresponds to the elastic part of the deformation u, and
accounts for the reorganization of the body Uh in response to the growth tensor
ah . The above assumes that it is possible to differentiate a reference configuration
with respect to which one might measure all relative displacements. As mentioned
before, this is true for some but certainly not all growth processes. In particular,
this is reasonable for botanical growth processes, but is unlikely for animal growth
and remodelling processes that include large-scale tissue flows and movements.

(b) Elastic energy associated with residual strains

The elastic energy of u is now a function of F only, and it is given by:

I h
W (u) = 1

h

∫
Uh

W (F) dx = 1
h

∫
Uh

W (Vu(ah)−1) dx , ∀u ∈ W 1,2(Uh , R3). (1.1)

Proc. R. Soc. A (2011)
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Elastic plates with incompatible strain 405

The elastic energy density W : R
3×3 −→ R+ is assumed to be compatible with the

conditions of normalization and frame indifference (with respect to the special
orthogonal group SO(3) of proper rotations in R

3):

∀F ∈ R
3×3 ∀R ∈ SO(3) W (R) = 0, W (RF) = W (F). (1.2a)

Further, we shall require the non-degeneracy of W in the sense that:

∃c > 0 ∀F ∈ R
3×3 W (F) ≥ c dist2(F , SO(3)), (1.2b)

and also assume that W is C2 regular in a neighbourhood of SO(3).
We note that by the polar decomposition theorem every ah can be uniquely

written as a product Rhãh , where Rh ∈ SO(3) and ãh is symmetric positive
definite. Hence, if W is moreover isotropic:

∀F ∈ R
3×3 ∀R ∈ SO(3) W (FR) = W (F), (1.3)

then without loss of generality we can assume ah to be symmetric positive definite.
As we shall see, it is instructive to study the following energy functional:

I h
0 (u) = 1

h

∫
Uh

dist2(Vu(x)(ah(x))−1, SO(3)) dx , (1.4)

as the energy in (1.1) obeys a bound from below: I h
W ≥ cI h

0 .

(c) Relation with the non-Euclidean elasticity

We shall here compare the above approach with the target metric formalism
proposed in Efrati et al. (2009) and further developed in Lewicka & Pakzad
(2009b). On each Uh , we assume that we are given a smooth Riemannian metric
gh = [gh

ij ]. The matrix fields gh : Uh −→ R
3×3 are therefore symmetric and strictly

positive definite up to the boundary vUh . Let
√

gh be the unique symmetric
positive definite square root of gh and define, for all x ∈ Uh , the set:

F h(x) = {R
√

gh(x); R ∈ SO(3)} ⊂ R
3×3. (1.5)

By the polar decomposition theorem, the necessary and sufficient condition for a
deformation u on Uh to be an orientation preserving realization of gh :

(Vu)T Vu = gh and detVu > 0 a.e. in Uh

is the following:
Vu(x) ∈ F h(x) a.e. in Uh .

Motivated by this observation, we can replace the energy functional (1.4)
above by:

Ĩ h
0(u) = 1

h

∫
Uh

dist2(Vu(x), F h(x)) dx ∀u ∈ W 1,2(Uh , R3), (1.6)

where we set gh = (ah)Tah . The energy in (1.6) measures the average pointwise
deviation of u from being an orientation preserving realization of metric gh .
Note that Ĩ h

0 is comparable in magnitude with I h
0 (for each fixed h). Indeed,

the intrinsic metric of the material is transformed by the growth tensor ah to the
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target metric gh and it is only the symmetric positive definite part of ah given
by

√
gh = √

(ah)Tah that plays the role in determining the deformed shape of
the material.

Our main results can be divided in four major subcategories, presented below.

(i) Scaling analysis of thin non-Euclidean plates

Given a sequence of growth tensors ah , each close to Id and defined on Uh , the
main objective is to analyse the behaviour of the minimizers of the corresponding
energies I h

W as h → 0. Let us recall that, as proved in Lewicka & Pakzad (2009a,b),
the infimum:

mh = inf{I h
W (u); u ∈ W 1,2(Uh , R3)},

must be strictly positive whenever the Riemann curvature tensor of the
metric gh = (ah)Tah does not vanish identically on Uh . This condition for gh ,
under suitable scaling properties, can be translated into a first-order curvature
condition (1.9) below. In a first step (theorem 1.1), we establish a lower bound
on mh in terms of a power law:

mh ≥ chb,

for all values of b greater than a critical b0 in (1.10). This critical exponent
depends on the asymptotic behaviour of the perturbation ah − Id in terms of the
thickness h.

Under existence conditions for certain classes of isometries, it can be established
that actually mh ∼ hb0 . In other words, our analysis includes identification of the
magnitude of the elastic energy of minimizers of I h

W , in terms of the thickness h.
The following quantity measures the essential variation of the tensors ah :

Var(ah) = ‖Vtan(ah
|x3=0)‖L∞(U) + ‖v3ah‖L∞(Uh),

together with their scaling in h:

u1 = sup
{

u; lim
h→0

1
hu

Var(ah) = 0
}

.

The symbol Vtan denotes taking derivatives v1 and v2 in the in-plate directions
e1 = (1, 0, 0)T and e2 = (0, 1, 0)T . The derivative v3 is taken in the out-of-plate
direction e3 = (0, 0, 1)T . We will work under the following hypothesis:

‖ah‖L∞(Uh) + ‖(ah)−1‖L∞(Uh) ≤ C (1.7a)

and
u1 > 0. (1.7b)

Theorem 1.1. Assume (1.7a,b). Assume that for some u0 ≥ 0, there exists the
limit:

eg(x ′) = lim
h→0

1
hu0

/

∫ h/2

−h/2
ah(x ′, t) − Id dt in L2(U, R3×3). (1.8)

which moreover satisfies:

curlTcurl (eg)2×2 ≡ 0, (1.9)

Proc. R. Soc. A (2011)
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and that u0 < min{2u1, u1 + 1}. Then, for every b with:

b > b0 = max{u0 + 2, 2u0}, (1.10)

we have: lim sup
h→0

(h−b) inf I h
0 = +∞.

Above, we used the following notational convention which will be employed
throughout the paper. For a matrix F , its n × m principle minor is denoted by
Fn×m . The superscript T refers to the transpose of a matrix or an operator.
The operator curlTcurl acts on 2 × 2 square matrix fields F by taking first
curl of each row (returning 2 scalars) and then taking curl of the resulting
two-dimensional vector, so that: curlTcurl F = v2

11F22 − v2
12(F12 + F21) + v2

22F11.
The symmetric part of a square matrix F is denoted by sym F = 1/2(F + FT ).
In particular, we readily see that: curlTcurl F = curlTcurl(sym F). Physically,
condition (1.9) corresponds to the fact that the growth strain eg is incompatible,
i.e. it is not uniquely integrable and thus it is not derivable from an elastic
deformation gradient.

(ii) Compactness

By a compactness result, we mean identification of the limit behaviour of the
minimizing sequence to I h

W . More generally, this analysis can also be done for
any sequence of deformations uh ∈ W 1,2(Uh , R3) whose energy I h

W (uh) scales like
hb0 . In the scaling regimes considered in this paper, this compactness result has
the following form: first, modulo rigid motions the deformations uh converge, up
to a subsequence and in a suitable space, to the identity map on U. Second, the
suitably re-scaled displacement fields converge to elements of certain classes of
Sobolev infinitesimal isometries.

Note that no assumptions will be made on the special form of the deformations
uh . From this point of view our analysis is Ansatz-free and the limiting behaviour
of minimizers is rigorously shown to depend only on the choice of the sequence ah .

We present the compactness result (theorem 1.2 below) assuming the special
form of the growth tensor (1.11) that corresponds to the von Kármán model
where b0 = 4. In this context, the out-of-plane displacement v will be re-scaled
by the thickness h, and the in-plane displacement w by h2. Again, these scalings
are naturally imposed by the original choice of the growth tensor ah .

Theorem 1.2. Given two smooth matrix fields eg , kg : U −→ R
3×3, define the

growth tensors as:

ah(x ′, x3) = Id + h2eg(x ′) + hx3kg(x ′). (1.11)

Assume that the energies of a sequence of deformations uh ∈ W 1,2(Uh , R3) satisfy:

I h
W (uh) ≤ Ch4, (1.12)

where W fulfills (1.2a,b). Then there exist proper rotations R̄h ∈ SO(3) and
translations ch ∈ R

3 such that for the normalized deformations:

yh(x ′, x3) = (R̄h)Tuh(x ′, hx3) − ch : U1 −→ R
3,

Proc. R. Soc. A (2011)
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we have the following assertions:

(i) yh(x ′, x3) converge in W 1,2(U1, R3) to x ′.
(ii) The scaled displacements:

V h(x ′) = 1
h

/

∫ 1/2

−1/2
yh(x ′, t) − x ′ dt, (1.13)

converge (up to a subsequence) in W 1,2(U, R3) to the vector field of the
form (0, 0, v)T , with the only non-zero out-of-plane scalar component: v ∈
W 2,2(U, R).

(iii) The scaled in-plane displacements h−1V h
tan converge (up to a subsequence)

weakly in W 1,2(U, R2) to an in-plane displacement field w ∈ W 1,2(U, R2).

(iii) G-convergence

Heuristically, a sequence of functionals Fn is said to G converge to a limit
functional F if the minimizers of Fn , if converging, have a minimizer of F
as a limit. More precisely (see Dal Maso (1993)), any G-convergence result
involves a careful comparison of the values of the energies Fn on sequences of
deformations and the value of F on the limit deformation. Hence, it combines
a lower and an upper bound estimate (which are called the G-liminf and the
G-limsup inequalities).

For the von Kármán growth tensor studied in this article, these estimates are
established for the sequence 1/h4I h

W (uh) and the limit energy value Ig(w, v) given
in (1.14) below. The liminf inequality (theorem 1.3) involves a lower bound on
the energy of any sequence of deformations uh . The limsup part (theorem 1.4)
establishes that for any pair of displacements (w, v) in suitable limit spaces, one
can construct a sequence (4.1) of three-dimensional deformations of thin plates Uh

that approximately yield the energy Ig(w, v). The form of such recovery sequence
delivers an insight on how to reconstruct the three-dimensional deformations out
of the data on the mid-plate U. In particular, comparing the present von Kármán
growth model (4.1) with the classical model (Friesecke et al. 2006, section 6.1), we
observe the novel warping effect (4.2) in the non-tangential growth. See electronic
supplementary material for the equivalent G-convergence formulation of the two
theorems below.

Theorem 1.3. Assume (1.11) and (1.2a,b). Let the bound (1.12) be satisfied by a
sequence uh ∈ W 1,2(Uh , R3) so that the convergences (i), (ii) and (iii) of theorem
1.2 hold true. Then there holds:

lim inf
h→0

1
h4

I h
W (uh) ≥ Ig(w, v),

where:

Ig(w, v) = 1
2

∫
U

Q2

(
symVw + 1

2
Vv ⊗ Vv − (sym eg)2×2

)

+ 1
24

∫
U

Q2(V2v + (sym kg)2×2), (1.14)

Proc. R. Soc. A (2011)
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and the quadratic non-degenerate form Q2, acting on matrices F ∈ R
2×2 is:

Q2(F) = min{Q3(F̃); F̃ ∈ R
3×3, F̃ 2×2 = F} and Q3(F̃) = D2W (Id)(F̃ ⊗ F̃).

(1.15)

Theorem 1.4. Assume (1.11) and (1.2a,b). Then, for every w ∈ W 1,2(U, R3) and
every v ∈ W 2,2(U, R), there exists a sequence of deformations uh ∈ W 1,2(Sh , R3)
such that the following holds:

(i) The sequence yh(x ′, x3) = uh(x ′, hx3) converge in W 1,2(U1, R3) to x ′.

(ii) V h(x ′) = h−1/

∫ h/2

−h/2
(uh(x ′, t) − x ′) dt converge in W 1,2(U, R3) to (0, 0, v)T .

(iii) h−1V h
tan converge in W 1,2(U, R2) to w.

(iv) Recalling the definition (1.14) one has:

lim
h→0

1
h4

I h
W (uh) = Ig(w, v).

The main consequence of the G-convergence result is the following: If uh is a
minimizing sequence for I h

W , and if w and v are the respective limiting in-plane and
out-of-plane displacements corresponding to uh , then (w, u) will be a minimizer
of the von Kármán growth functional Ig (corollary 1.5 below).

Another direct corollary is the identification of the lower bound of I h
W for

the von Kármán growth (1.11) under an appropriate curvature condition. Note
that the assumptions of theorem 1.1 do not hold, since in the present case
u0 = 2u1 = u1 + 1 = 2. However, if we replace (1.9) by either of the following
two conditions:

curl((sym kg)2×2) = 0, (1.16)

or:

curlTcurl (eg)2×2 + det((sym kg)2×2) = 0, (1.17)

we indeed obtain that inf I h
W ≥ ch4 with c > 0. The above conditions guarantee

that the highest order terms in the expansion of the Riemann curvature tensor
components R1213, R2321 and R1212 of gh = (ah)Tah do not vanish. Also, either of
them implies that inf Ig > 0 (see lemma 6.1), which combined with theorem 1.3
yields the lower bound on inf I h

W .

Corollary 1.5. Assume (1.11) and (1.2a,b). Then:

(i) There exist uniform constants C , c ≥ 0 such that for every h there holds:

c ≤ 1
h4

inf I h
W ≤ C . (1.18)

If moreover (1.16) or (1.17) holds then one may have c > 0.
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(ii) There exists at least one minimizing sequence uh ∈ W 1,2(Uh , R3) for I h
W :

lim
h→0

(
1
h4

I h
W (uh) − 1

h4
inf I h

W

)
= 0. (1.19)

For any such sequence the convergences (i), (ii) and (iii) of theorem 1.2
hold and the limit (w, v) is a minimizer of Ig .

(iii) For any (global) minimizer (w, v) of Ig , there exists a minimizing sequence
uh, satisfying (1.19) together with (i), (ii), (iii) and (iv) of theorem 1.4.

(iv) Euler–Lagrange equations for the limit theory

When W is frame invariant as in (1.2a) and isotropic (1.3), one can see
(Friesecke et al. 2006) that the quadratic forms of equation (1.15) are given
explicitly as:

Q3(F) = 2m|sym F |2 + l|tr F |2, Q2(F2×2) = 2m|sym F2×2|2 + 2ml

2m + l
|tr F2×2|2,

(1.20)

for all F ∈ R
3×3, where tr stands for the trace of a quadratic matrix, and m and l

are the Lamé constants, satisfying: m ≥ 0, 3l + m ≥ 0.
We will show that under these conditions, the Euler–Lagrange equations (5.3),

(5.8) of Ig in (1.14) are equivalent, under a change of variables, which replaces
the in-plane displacement w by the Airy stress potential F, to the system of von
Kármán-like equations introduced recently (Liang & Mahadevan 2009):{

D2F = −S(KG + lg)
BD2v = [v, F] − BUg ,

(1.21)

under the corresponding boundary conditions (5.13), (5.14) and (5.15). The Airy’s
bracket [·, ·] is defined as in equation (5.11), and the quantities involved in (1.21)
are:

S = Young’s modulus = m(3l + 2m)
l + m

, KG = Gaussian curvature = 1
2
[v, v],

B = bending stiffness = S
12(1 − n2)

, n = Poisson’s ratio = l

2(l + m)
,

lg = curlTcurl (eg)2×2 = v22(eg)11 + v11(eg)22 − v12((eg)12 + (eg)21),

Ug = divT div((kg)2×2 + n cof (kg)2×2) and

= v11((kg)11 + n(kg)22) + v22((kg)22 + n(kg)11) + (1 − n)v12((kg)12 + (kg)21).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In brief, we may summarize our results as follows. Under the special form of the
growth tensor given by (1.11), we have:

(i) mh = inf I h
W scales like h4,

(ii) there exists a sequence of deformations uh such that I h
W (uh) − mh = o(h4),

and for which the re-scaled in-plane and out-of-plane displacements
converge to a limit (w, v), and
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(iii) (w, v) minimizes the von Kármán growth functional Ig in (1.14) and
hence satisfies the system (1.21) with the corresponding free boundary
conditions (5.13), (5.14) and (5.15), when expressed in terms of the Airy
stress potential.

(v) Approximating low energy deformations

A crucial step in obtaining the above results is an approximation theorem
(theorem 1.6 below, see proof in the electronic supplementary material.). The
underlying idea is that we can control the oscillations of the deformation gradient
Vuh in boxes of diameter proportional to the thickness h. The geometric rigidity
estimate of Friesecke et al. (2002) and its generalization to our setting is the basic
tool in this step.

Theorem 1.6. Assume (1.7a,b). Let uh ∈ W 1,2(Uh , R3) satisfy:

lim
h→0

1
h2

I h
0 (uh) = 0.

Then there exist matrix fields Rh ∈ W 1,2(U, R3×3), such that Rh(x ′) ∈ SO(3) for
a.a. x ′ ∈ U and:

1
h

∫
Uh

|Vuh(x) − Rh(x ′)ah(x)|2 dx ≤ C (I h
0 (uh) + h2Var2(ah)),

∫
U

|VRh |2 ≤ Ch−2(I h
0 (uh) + h2 Var2(ah)),

where the constant C is independent of h.

2. Scaling analysis: theorem 1.1

(1) Take b > max{u0 + 2, 2u0} and assume, by contradiction, that for some
sequence uh ∈ W 1,2(Uh , R3) there holds:

1
hb

I h
0 (uh) ≤ C . (2.1)

Since b > 2, in virtue of theorem 1.6 there exists a rotation-valued matrix fields
Rh ∈ W 1,2(U, SO(3)) approximating appropriately Vuh(ah)−1. Observe that:

dist2
(

/

∫
U

Rh , SO(3)
)

≤ /

∫
U

|Rh(x) − Rh(x0)|2 dx ≤ C
∫

U

|VRh |2 → 0 as h → 0,

(2.2)

by the second estimate in theorem 1.6 and by (1.7a,b). We may hence, for small
h, define the averaged rotations R̄h ∈ SO(3) by R̄h = PSO(3)/

∫
U

Rh .
Define now two fields: V h ∈ W 1,2(U, R3) and Ah ∈ W 1,2(U, R3×3):

V h(x ′) = 1
hu0

/

∫ h/2

−h/2
(R̄h)Tuh(x ′, t) − x ′ dt

and

Ah(x ′) = 1
hu0

(
(R̄h)TRh(x ′)/

∫ h/2

−h/2
ah(x ′, t) dt − Id

)
.

Proc. R. Soc. A (2011)

 on January 21, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


412 M. Lewicka et al.

Observe that:

‖VV h − Ah
3×2‖2

L2(U) ≤ C
h2u0

∫
U

∣∣∣∣∣/
∫ h/2

−h/2
Rh(x ′)ah

3×2(x
′, t) − Vtanuh(x ′, t) dt

∣∣∣∣∣
2

dx ′

≤ C
h2u0+1

∫
Uh

|Vuh(x) − Rh(x ′)ah(x)|2 dx

≤ C
(

1
h2u0

I h
0 (uh) + 1

h2u0−2
Var2(ah)

)
→ 0 as h → 0, (2.3)

by theorem 1.6 and since 2u0 < b and 2u0 − 2 < 2u1.
(2) Notice that:

Ah(x ′) = (R̄h)TRh(x ′)eg(x ′) + 1
hu0

(
(R̄h)TRh(x ′) − Id

)

− (R̄h)TRh(x ′)

(
eg(x ′) − 1

hu0
/

∫ h/2

−h/2
ah(x ′, t) − Id dt

)
.

Clearly, the third term above converges in L2(U) to 0, by the definition (1.8). The
first term converges to eg , as by (2.2) and theorem 1.6:

∫
U

|(R̄h)TRh − Id|2 ≤ C
∫

U

|Rh − R̄h |2

≤ C
(∫

U

|Rh − /

∫
U

Rh |2 + dist2
(

/

∫
U

Rh , SO(3)
))

≤ C
∫

U

|VRh |2 → 0 as h → 0. (2.4)

To deal with the second term, in the expansion of Ah , recall that R̄h , Rh(x ′) ∈
SO(3) and so:

1
hu0

sym((R̄h)TRh − Id) = 1
hu0

((R̄h)TRh − Id)T ((R̄h)TRh − Id).

Therefore, reasoning as in (2.4):

1
hu0

‖sym((R̄h)TRh − Id)‖L2(U)

≤ 1
hu0

‖(R̄h)TRh − Id‖2
L4(U)

≤ C
hu0

‖Rh − R̄h‖2
W 1,2(U) ≤ C

hu0

∫
U

|VRh |2

≤ C
(

1
hu0+2

I h
0 (uh) + 1

hu0
Var2(ah)

)
→ 0 as h → 0,

by theorem 1.6 and since u0 + 2 < b and u0 < 2u1.
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(3) Summarizing, the previous step yields:

sym eg = lim
h→0

sym Ah in L2(U, R3×3),

which by (2.3) implies:

(sym eg)2×2 = lim
h→0

sym VV h in L2(U, R2×2).

Consequently, (sym eg)2×2 = sym VV , for some V ∈ W 1,2(U, R3), and hence
there must be: curlTcurl (eg)2×2 = curlTcurl (sym eg)2×2 = 0 in U. This brings a
contradiction with (1.9) and hence ends the proof of theorem 1.1.

3. Lower bound for the Von Kármán scaling: theorems 1.2 and 1.3

Consider a specific form of the growth tensor:

ah(x ′, x3) = Id + hgeg(x ′) + hqx3kg(x ′)

with exponents g, q > 0 and the smooth perturbation moments: eg , kg : U −→
R

3×3. One easily sees that (1.7a,b) holds here with:

Var(ah) = hg‖Veg‖L∞ + hq‖kg‖L∞ , u1 = min{g, q}, u0 = g.

Also, the result in theorem 1.1 holds provided that curlTcurl (sym eg)tan ≡ 0 with:

g < min{q + 1, 2q} and b > max{g + 2, 2g}. (3.1)

In what follows, we shall work with exponents g = 2, q = 1, b = 4 that are critical
for both inequalities in (3.1).

Compactness: Proof of theorem 1.2.
(1) Let Rh ∈ W 1,2(U, SO(3)) be the matrix fields as in theorem 1.6:

1
h

∫
Uh

|Vuh − Rhah |2 ≤ Ch4,
∫

U

|VRh |2 ≤ Ch2. (3.2)

Define the averaged rotations: R̃h = PSO(3)/
∫

U
Rh . These projections of /

∫
Rh onto

SO(3) are well defined for small h in virtue of:

dist2
(

/

∫
U

Rh , SO(3)
)

≤ /

∫
U

|Rh(x) − Rh(x0)|2 ≤ C
∫

U

|VRh |2 ≤ Ch2.

Further:∫
U

|Rh − R̃h |2 ≤ C
(∫

U

|Rh − /

∫
Rh |2 + dist2(/

∫
Rh , SO(3))

)
≤ Ch2. (3.3)

Let now:

R̂h = PSO(3)/

∫
Uh

(R̃h)T Vuh . (3.4)
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The above projection is well defined for small h, because dist2(/
∫

Uh (R̃h)T Vuh ,
SO(3)) is bounded by:∣∣∣∣/

∫
Uh

(R̃h)T Vuh − Id
∣∣∣∣
2

≤ C/

∫
Uh

|Vuh − R̃h |2

≤ C
(

/

∫
Uh

|Vuh − Rhah |2 + /

∫
Uh

|ah − Id|2 + /

∫
Uh

|Rh − R̃h |2
)

≤ Ch2,

(3.5)

where we used (3.2) and (3.3). Consequently, we also obtain (as Id = PSO(3)Id):

|R̂h − Id|2 ≤ C |/
∫

Uh
(R̃h)T Vuh − Id|2 ≤ Ch2. (3.6)

(2) We may now define:

R̄h = R̃hR̂h . (3.7)

By (3.3), (3.6) and (3.2) it follows that:
∫

U

|Rh − R̄h |2 ≤ Ch2 and lim
h→0

(R̄h)TRh = Id inW 1,2(U, R3×3). (3.8)

Let ch ∈ R
3 be vectors such that for the re-scaled averaged displacement V h

defined as in (1.13): V h(x ′) = h−1/
∫h/2

−h/2(R̄
h)Tuh(x ′, t) − ch − x ′ dt, there holds:

∫
U

V h = 0, skew
∫

U

VV h = 0. (3.9)

The second statement in (3.9) follows by noticing that, for a matrix F sufficiently
close to SO(3), its projection R = PSO(3)F coincides with the unique rotation
appearing in the polar decomposition of F , that is: F = RU with skewU =
0. Therefore, and in view of (3.4) and (3.7) we obtain that (R̄h)T /

∫
Uh Vuh =

(R̂h)T /
∫

Uh (R̃h)T Vuh is symmetric. Hence: skew/
∫

U
VV h = h−1skew/

∫
Uh (R̄h)T Vuh =

0. In particular, we see as well that (3.7) coincides with:

R̄h = PSO(3)/

∫
Uh

Vuh .

To obtain (i) we use (3.7), (3.5) and (3.6):

‖(Vyh − Id)3×2‖2
L2(U1) ≤ 1

h

∫
Uh

|(R̄h)T Vuh − Id|2

≤ C
(

1
h

∫
Uh

|(R̃h)T Vuh − Id|2 dx + |R̂h − Id|2
)

≤ Ch2,

(3.10)
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and notice that by (3.2):

‖v3yh‖2
L2(U1) ≤ Ch

∫
Uh

|Vuh |2 ≤ Ch2,

which implies convergence of yh by means of the Poincaré inequality
∫

U1 yh(x) −
x ′ = h

∫
U

V h = 0 by (3.9). Notice also that (3.10) implies the weak convergence
(up to a subsequence) in W 1,2(U, R3) of V h .
(3) Consider the matrix fields Ah ∈ W 1,2(U, R3×3):

Ah(x ′) = 1
h

/

∫ h/2

−h/2
(R̄h)TRh(x ′)ah(x ′, t) − Id dt

= h(R̄h)TRh(x ′)eg(x ′) + 1
h

((R̄h)TRh(x ′) − Id). (3.11)

By (3.8) and (3.2), clearly: ‖Ah‖W 1,2(U) ≤ C and so, up to a subsequence:

lim
h→0

Ah = A and lim
h→0

1
h

((R̄h)TRh − Id) = A (3.12)

weakly in W 1,2(U, R3×3) and(strongly) in Lq(U, R3×3)∀q ≥ 1.
Also, using (3.8) and (3.2) again:

h−1‖sym((R̄h)TRh − Id)‖L2(U)

= 2h−1‖((R̄h)TRh − Id)T ((R̄h)TRh − Id)‖L2(U)

≤ Ch−1‖(R̄h)TRh − Id‖2
L4(U) ≤ Ch−1‖Rh − R̄h‖2

W 1,2(U) ≤ Ch.

Above, we used a straightforward observation that:

(R − Id)T (R − Id) = −2 sym(R − Id) ∀R ∈ SO(3). (3.13)

Therefore, the limiting matrix field A has skew values:

sym A = lim
h→0

sym Ah = 0. (3.14)

Further, by (3.13) we observe that:

1
h

sym Ah = sym((R̄h)TRheg) − 1
2

1
h2

((R̄h)TRh(x ′) − Id)T ((R̄h)TRh(x ′) − Id).

Hence, by (3.8), (3.12) and (3.14):

lim
h→0

1
h

sym Ah = sym eg − 1
2
ATA = sym eg + 1

2
A2 in Lq(U, R3×3) ∀q ≥ 1.

(3.15)
(4) Regarding convergence of V h , we have:

VV h(x ′) = Ah
3×2(x

′) + 1
h

(R̄h)T/

∫ h/2

−h/2
Rh(x ′)ah

3×2(x
′, t) − Vtanuh(x ′, t) dt. (3.16)
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Also:

‖VV h − Ah
3×2‖2

L2(U) ≤ C
h2

∫
U

∣∣∣∣∣/
∫ h/2

−h/2
Rh(x ′)ah

3×2(x
′, t) − Vtanuh(x ′, t) dt

∣∣∣∣∣
2

dx ′

≤ C
h3

∫
Uh

|Vuh(x) − Rh(x ′)ah(x)|2 dx ≤ Ch2,

and hence by (3.12) VV h converges in L2(U, R3×2) to A. Consequently, by (3.9):

lim
h→0

V h = V in W 1,2(U, R3), V ∈ W 2,2(U, R3) and VV = A3×2. (3.17)

Use now (3.14) to conclude that symV(Vtan) = 0 and so by Korn’s inequality Vtan
must be constant, hence 0 in view of (3.9). This ends the proof of (ii).

To deduce (iii), divide both sides of (3.16) by h and pass to the limit with its
symmetric part. By (3.15), the first bound in (3.2) and (3.9) we conclude that:

‖h−1V h
tan‖W 1,2(U) ≤ C‖V(h−1V h

tan)‖L2(U) = C‖symV(h−1V h
tan)‖L2(U) ≤ C ,

which proves the claim. �

Lower bound: Proof of theorem 1.3.
(1) Define the re-scaled strains Gh ∈ L2(U1, R3×3) by:

Gh(x ′, x3) = 1
h2

((Rh(x ′))T Vuh(x ′, hx3)ah(x ′, hx3)−1 − Id).

Clearly, by (3.2) ‖Gh‖L2(U1) ≤ C and hence, up to a subsequence:

lim
h→0

Gh = G weakly in L2(U1, R3×3). (3.18)

We shall now derive a property of the limiting strain G. Observe first that:

lim
h→0

1
h2

(v3yh − he3) = Ae3 in L2(U1, R3), (3.19)

where e3 = (0, 0, 1)T , and A is defined by (3.11) and (3.12). This is because:

1
h2

(v3yh(x) − he3) = 1
h

((R̄h)T Vuh(x ′, hx3) − Id)e3

= 1
h

(R̄h)T (Vuh(x ′, hx3) − Rh(x ′)ah(x ′, hx3))e3

+ 1
h

(R̄h)TRh(x ′)(ah(x ′, hx3) − Id)e3

+ 1
h

((R̄h)TRh(x ′) − Id)e3,

where the first term in the right-hand side converges to 0 in L2(U1) by (3.2), the
second term to 0 in L∞(U1), and the last term to Ae3 in L2(U) by (3.12).
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For each small s > 0 define now, with a small abuse of notation, the sequence
of functions f s,h ∈ W 1,2(U1, R3):

f s,h(x) = 1
h2

1
s
(yh(x + se3) − yh(x) − hse3). (3.20)

Clearly f s,h(x) = (1/h2)/
∫s

0 yh(x + te3) − he3 dt, and so by (3.19):

lim
h→0

f s,h = Ae3 in L2(U1, R3).

Also v3f s,h(x) = (1/s)(1/h2)(v3yh(x + se3) − v3yh(x)) so again by (3.19):

lim
h→0

v3f s,h = 0 in L2(U1, R3).

Further, for any a = 1, 2 we have:

vaf s,h(x) = 1
h2

1
s
(R̄h)T (Vuh(x ′, hx3 + hs) − Vuh(x ′, hx3))ea

= 1
s
(R̄h)TRh(x ′)(Gh(x ′, x3 + s)ah(x ′, hx3 + hs) − Gh(x ′, x3)ah(x ′, hx3)

+ 1
h2

(ah(x ′, hx3 + hs) − ah(x ′, hx3)))ea,

which, in view of (3.18) and (3.8) yields the weak convergence in L2(U1, R3×2) of:

lim
h→0

vaf s,h(x) = 1
s
(G(x ′, x3 + s) − G(x ′, x3))ea + kg(x ′)ea. (3.21)

Consequently, we see that f s,h converges weakly in W 1,2(U, R3) to Ae3. Hence,
the left-hand side in (3.21) equals va(Ae3) and so:

G(x)3×2 = G0(x ′)3×2 + x3G1(x ′)3×2, (3.22)

for some G0 ∈ L2(U, R3×3) where:

G1(x ′) = V(A(x ′)e3) − kg(x ′). (3.23)

(2) Divide now both sides of (3.16) by h and pass to the weak limit in L2(U, R3×2)
with its symmetric part. Since lim h−1symVV h = symVw by theorem 1.2 (iii), and
lim h−1sym Ah

2×2 = (sym eg)2×2 + 1/2(A2)2×2 by (3.15), and:

lim
h→0

sym
(

(R̄h)TRh(x ′)
∫ 1/2

−1/2
Gh(x ′, t)ah(x ′, ht) dt

)
3×2

= G0(x ′)3×2,

by (3.18), (3.22) and (3.8), we obtain:

sym Vw − (sym eg)2×2 − 1
2(A

2)2×2 = −G0(x ′)2×2. (3.24)
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(3) We shall now prove the bound of the theorem 1.3. First, Taylor expanding
the function W (F) close to F = Id, and recalling (1.15) we obtain:

1
h4

W (Vuh(x)ah(x)−1) = 1
h4

W (Rh(x)T Vuh(x)ah(x)−1)

= 1
h4

W (Id + h2Gh(x)) = 1
2
Q3(Gh(x)) + h2O(|Gh(x)|3).

Consider now sets Uh = {x ∈ U1; h|Gh(x ′, h3)| ≤ 1}. Clearly cUh converges to 1 in
L1(U1), with h → 0, as hGh converges to 0 pointwise a.e. by (3.2). We get:

lim inf
h→0

1
h4

I h
W (uh) ≥ lim inf

h→0

1
h4

∫
U1

cUhW (Vuh(x ′, hx3)ah(x ′, hx3)−1) dx

= lim inf
h→0

(
1
2

∫
U1

Q3(cUhG
h) + o(1)

∫
U1

|Gh |2
)

≥ 1
2

∫
U1

Q3(symG(x)) dx , (3.25)

where the last inequality follows by (3.2) guaranteeing convergence to 0 of
the term o(1)

∫ |Gh |2, and by the fact that cUhG
h converges weakly to G in

L2(U1, R3×3) (see (3.18)) in view of Q3 being positive definite on and depending
only on the symmetric part of its argument.

Further:

1
2

∫
U1

Q3(sym G) ≥ 1
2

∫
U1

Q2(sym G2×2(x)) dx

= 1
2

∫
U1

Q2(sym G0(x ′)2×2 + x3sym G1(x ′)2×2) dx

= 1
2

∫
U1

Q2(sym G0(x ′)2×2) + 1
2

∫
U1

x2
3Q2(sym G1(x ′)2×2)

= 1
2

∫
U

Q2

(
sym Vw − (sym eg)2×2 − 1

2
(A2)2×2

)

+ 1
24

∫
U

Q2(sym (VAe3)2×2 − (sym kg)2×2), (3.26)

by (3.22), (3.24) and (3.23). Now, in view of theorem 1.2 (ii) and (3.17) one easily
sees that:

(A2)2×2 = −Vv ⊗ Vv and (VAe3)2×2 = −Vv2,

which yields the claim by (3.25) and (3.26). �
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4. Recovery sequence: theorem 1.4

For any F ∈ R
2×2, by (F)∗ ∈ R

3×3 we denote the matrix for which (F)∗
2×2 = F and

(F)∗
i3 = (F)∗

3i = 0, i = 1..3. Recalling (1.15), let c(F) ∈ R
3 be the unique vector

so that:

Q2(F) = Q3((F)∗ + sym(c ⊗ e3)).

The mapping c : R
2×2
sym −→ R

3 is well-defined and linear, as Q3 is a quadratic form,
positive definite on the space of symmetric matrices. Also, for all F ∈ R

3×3, by
l(F) we denote the unique vector in R

3, linearly depending on F , for which:

sym(F − (F2×2)∗) = sym(l(F) ⊗ e3).

(1) Let the in-plane displacement w and the out-of-plane displacement v be as in
theorem 1.4. We first prove the result under the additional assumption of w and
v being smooth up to the boundary. Define the recovery sequence:

uh(x ′, x3) =
[
x ′
0

]
+

[
h2w(x ′)
hv(x ′)

]
+ x3

[−hVv(x ′)
1

]
+ h2x3d0(x ′) + 1

2
hx2

3d1(x), (4.1)

where the smooth warping fields d0, d1 : U −→ R
3 are given by:

d0 = l(eg) − 1
2 |Vv|2e3 + c

(
sym Vw − 1

2Vv ⊗ Vv − (sym eg)2×2
)

and d1 = l(kg) + c(−V2v − (sym kg)2×2).

}
(4.2)

The convergence statements in (i), (ii) and (iii) of theorem 1.4 are verified by
a straightforward calculation. In order to establish (iv) we need to estimate the
energy of the sequence uh . Calculating the deformation gradient we first obtain:

Vuh = Id + h2(Vw)∗ + hA − hx3(V2v)∗ + h2[x3Vd0 d0] + h
[ 1

2x
2
3 Vd1 x3d1],

where the skew-symmetric matrix field A is given as:

A =
[

0 −(Vv)T

Vv 0

]
.

We shall use an auxiliary SO(3)-valued matrix field Rh = ehA. Clearly: Rh = Id +
hA + (h2/2)A2 + O(h3) and (Rh)T = Id − hA + (h2/2)A2 + O(h3). Also, recall
that: (ah)−1 = Id − h2eg − hx3kg + O(h3). We hence obtain:

(Rh)T (Vuh)(ah)−1 = Id + h2 (
(Vw)∗ − 1

2A
2 − eg + d0 ⊗ e3

)
+ hx3(−(V2v)∗ − kg + d1 ⊗ e3) + O(h3).

Recalling now the definition of the quadratic form: Q3(F) = D2W (Id)(F ⊗ F) =
Q3(sym F), Taylor expanding the energy density W around the identity, and
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taking into account the uniform boundedness of all the involved functions and
their derivatives we get:

I h
W (uh) = 1

h

∫
Uh

W (Vuh(ah)−1) = 1
h

∫
Uh

W ((Rh)T (Vuh)(ah)−1)

= h4

2

∫
U

Q3

(
sym((Vw)∗ − 1

2
A2 − eg + d0 ⊗ e3)

)

+ h4

24

∫
U

Q3(sym(−(V2v)∗ − kg + d1 ⊗ e3)) + O(h5).

Note that A2 = (Vv ⊗ Vv)∗ − |Vv|2(e3 ⊗ e3). Therefore:

sym((Vw)∗ − 1
2
A2 − eg + d0 ⊗ e3) =

(
symVw + 1

2
Vv ⊗ Vv − (sym eg)2×2

)∗

+ sym
((

d0 − leg + 1
2
|Vv|2e3

)
⊗ e3

)
,

sym(−(V2v)∗ −kg +d1 ⊗e3) = (−V2v − (sym kg)2×2)∗ + sym((d1 − lkg )⊗e3).

In view of (4.2) it follows that:

1
h4

I h
W (uh) = Ig(w, v) + O(h), (4.3)

which proves the desired limit (iv) for smooth displacements w, v.
(2) In order to carry out the analysis for w ∈ W 1,2(U, R2) and v ∈ W 2,2(U, R),
it suffices to suitably approximate them in their respective norms by smooth
sequences wh and vh . Define the sequence uh as in (4.1) using wh and vh instead
of w and v for each h. The error O(h) in the final estimate (4.3), contains now
an additional term hC (wh , vh) where the quantity C (wh , vh) depends only on the
higher norms of wh and vh . This quantity can always be controlled by a uniform
constant, by slowing down the rate of convergence of the sequences wh and vh .

5. Euler–Lagrange equations of the functional Ig : the derivation of (1.21) and
the free boundary conditions

Assume that (w, v) is a local minimizer of Ig in (1.14) with Q2 as in (1.20).
(1) Consider a variation f ∈ C∞

0 (U, R2) in w. That is, for all small (positive
or negative) 3:

Ig(w + 3f, v) − Ig(w, v) ≥ 0.

Collecting terms of order 3, we obtain that:∫
U

(
2m(sym Vf) : (sym Vw + J) + 2ml

2m + l
(div f) (div w + tr J)

)
= 0, (5.1)

where J ∈ L2(U, R2×2) is the vector field:

J = 1
2Vv ⊗ Vv − (sym eg)2×2. (5.2)
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After integrating (5.1) by parts and recalling the fundamental theorem of calculus
of variations, we obtain:

div M = 0, with M = 2m(sym Vw + J) + 2ml

2m + l
(div w + tr J)Id. (5.3)

Above, the divergence of a symmetric matrix field M is taken row-wise.
Consequently, the ith row of M (i = 1, 2) can be written as V⊥ji for some scalar
fields (j1, j2). The symmetric matrix field cof M has hence the form V(j2, −j1)T ,
which implies that:

cof M = V2F for some F ∈ W 2,2(U, R).

Recall that for a matrix M ∈ R
n×n , cof M denotes the matrix of cofactors of M ,

that is (cof M )ij = (−1)i+j det M̂ij , where M̂ij ∈ R
(n−1)×(n−1) is obtained from M

by deleting its ith row and jth column.
From this discussion we see that equation (5.3) is equivalent with:

M = cof V2F. (5.4)

In classical elasticity, the scalar field F is called the Airy stress potential.
(2) We shall now need the following result:

Lemma 5.1. Let a, b ∈ R be such that: a = 0 and a + 2b = 0. Then the following
conditions are equivalent, for any matrix field F ∈ L2(U, R2×2):

(i) F = a sym Vw + b(div w)Id, for some w ∈ W 1,2(U, R2),
(ii) curlTcurl F − (b/(a + 2b))D(trF) = 0, in the sense of distributions.

Proof. We shall use the following easily obtained formulae:

curlTcurl(gId) = Dg = divTdiv(gId),

valid for any scalar field g on U.
To prove the implication (i)⇒(ii), note that by (i): tr F = (a + 2b)div w. Thus:

curlTcurl F = b curlT curl((div w)Id) = bD(div w) = b

a + 2b
D(tr F).

To prove the reverse implication (ii)⇒(i) observe that by (ii):

curlTcurl F − b

a + 2b
curlTcurl((tr F)Id) = 0.

Thus:

F − b

a + 2b
(tr F)Id = a sym Vw, (5.5)

for some vector field w. In particular:

div w = tr(sym Vw) = 1
a

(
tr F − 2b

a + 2b
tr F

)
= 1

a + 2b
tr F .

Together with (5.5) the above implies (i). �
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We now use lemma 5.1 with:

F = cof V2F −
(

2mJ + 2ml

2m + l
(tr J)Id

)
, a = 2m, b = 2ml/(2m + l).

Clearly, the condition (i) is equivalent to (5.4) and hence (5.4) is further equivalent
to (ii), which after recalling (5.2) takes the form:

curlTcurl (cof V2F) − l

2m + 3l
D(tr cof V2F)

= m curlTcurl (Vv ⊗ Vv − 2(sym eg)2×2).

Since curlTcurl (sym eg)2×2 = curlTcurl (eg)2×2, and curlTcurl (Vv ⊗ Vv) = −2
det V2v and both curlTcurl (cof V2F), and D(tr cof V2F) equal D2F, we obtain:

2(m + l)
2m + 3l

D2F = −2m(detV2v + curlTcurl(eg)2×2),

or equivalently:
D2F = −S(detV2v + curlTcurl(eg)2×2). (5.6)

(3) Consider now a variation 4 ∈ C∞
0 (U, R) in v, so that for all small positive and

negative 3:
Ig(w, v + 34) − Ig(w, v) ≥ 0.

Collecting terms of order 3 and calling:

J̃ = V2v + (sym kg)2×2, (5.7)

we obtain that: ∫
U

((V4 ⊗ Vv) : M + BV24: (J̃ + ncof J̃)) = 0, (5.8)

where we used the following identity, valid for any F ∈ R
2×2
sym:

2mF + 2ml

2m + l
(tr F)Id = 12B(F + ncof F).

By (5.4) the first term in the integrand of (5.8) equals V4 · ((cof V2F)Vv).
Integrate by parts in (5.8) and use fundamental theorem of calculus of variations
to obtain:

−div((cof V2F)Vv) + BdivT div(J̃ + n cof J̃) = 0. (5.9)

Use now the following formulae:

div((cof V2F)Vv) = (cof V2F) : V2v, divT div(V2v) = D2v,

and remember that div cof of a gradient of a vector field vanishes, to find the
following equivalent form of (5.9):

(cof V2F) : V2v = BD2v + BdivTdiv((sym kg)2×2 + ncof(sym kg)2×2) (5.10)
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Recalling the definition of Airy’ bracket:

[v, F] = V2v : (cof V2F), (5.11)

so that det V2v = 1/2[v, v], we see that (5.6) and (5.10) give the system (1.21).
(4) We will now derive the natural (free) boundary conditions satisfied by the
minimizers (w, v) of Ig in (1.14). The analysis is equivalent as the above, for the
variations f and 4, which do not vanish on the boundary of vU.

Integrating (5.1) by parts and taking into account (5.3), we obtain:

M �n = 0 on vU, (5.12)

where �n denotes the normal to vU. Hence by (5.4): (cof V2F)�n = 0, which is
equivalent to: vtVF = 0, for the tangent vector field t to vU. Therefore:

VF ≡ const. on vU.

Since F is determined up to affine functions, we may assume that F(x0) and
VF(x0) vanish at a given point x0 ∈ vU. We obtain hence the first set of boundary
conditions, for F:

F = v�nF = 0 on vU. (5.13)

To deduce the boundary conditions for the out-of-plane displacement v we use
(5.8), which is again valid for all 4 ∈ C∞(U, R). Integrating by parts as before and
applying (5.9) yields:∫

vU

(M: (Vv ⊗ �n)4 + BVf · (J̃ + n cof J̃)�n − Bdiv(J̃ + ncof J̃) · �n 4) = 0.

The first term above drops out by (5.12). Writing V4 = (vt4)t + (v�n4)�n we obtain
the following new boundary equations:

(J̃ + n cof J̃) : (�n ⊗ �n) = 0.

and:
vt((J̃ + n cof J̃) : (�n ⊗ �t)) + div(J̃ + n cof J̃)�n = 0,

which are, respectively, equivalent to:

J̃ : (�n ⊗ �n) + n J̃ : (t ⊗ t) = 0 on vU (5.14)

and
(1 − n)vt(J̃ : (�n ⊗ t)) + div(J̃ + n cof J̃)�n = 0 on vU. (5.15)

In the particular case when (sym kg)2×2 = 0 on vU, (5.14) and (5.15) become:

v2
�n �nv + n(v2

ttv − Kv�nv) = 0

and (2 − n)vtv�nvtv + v3
�n �n �nv + K (Dv + 2v2

�n �nv) = 0,

where K stands for the (scalar) curvature of vU, so that vtt = K �n. If
additionally vU is a polygonal, then the above equations simplify to eqn (5) in
Liang & Mahadevan (2009).
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6. Discussion and a proof of corollary 1.5

Recall that in classical elasticity it is usually the magnitude of the applied forces
or the types of boundary conditions that determine the behaviour of thin plates
or shells, e.g. Friesecke et al. (2006). Such exterior constraints are replaced in
our case by the geometric constraints induced by the prescribed metric. In this
line, we conjecture existence of a hierarchy of limit model theories, depending on
the choice of the tensor ah whose qualifications can be predicted by geometric
observations. Indeed, in what follows, we demonstrate how ah in (1.11) is related
to conditions (1.16) and (1.17) through the Gauss–Codazzi equations or through
an expansion of the Riemann curvature tensor of the metric Gh = (ah)Tah . In
particular, these two conditions can be interpreted as the leading order defect in
Gh from being a flat metric. Other choices of scalings in ah should in turn impose
the corresponding scalings of the energy and the acceptable displacements for the
limiting model.

Corollary 1.5 follows now from the next result:

Lemma 6.1. The following are equivalent:

(i) There exists w ∈ W 1,2(U, R2) and v ∈ W 2,2(U, R) such that Ig(w, v) = 0,
(ii) curl((sym kg)2×2) = 0 and curlTcurl (eg)2×2 = −det((sym kg)2×2).

The two equations in (ii) are the linearized Gauss–Codazzi–Meinardi equations
corresponding to the metric Id + 2h2sym(eg)2×2 and the shape operator
h(sym kg)2×2 on the mid-plate U.

Proof. Recall that for a matrix field B ∈ L2(U, R2×2
sym) the following two

assertions hold true:

curl B = 0 ⇐⇒ B = −V2v for some v ∈ W 2,2(U, R) (6.1)

and

curlTcurl B = 0 ⇐⇒ B = sym Vw for some w ∈ W 1,2(U, R2). (6.2)

By (6.1), the first identity in (ii) is equivalent to:

(sym kg)2×2 = −V2v.

Consequently, the second identity in (ii) becomes:

curlTcurl
(− 1

2Vv ⊗ Vv + (sym eg)2×2
) = 0,

which, in view of (6.2), is equivalent to the existence of w with:

symVw + 1
2Vv ⊗ Vv − (sym eg)2×2 = 0.

Since Q2 is positive definite on symmetric matrices we see that indeed (ii) is
equivalent to the vanishing of both terms in Ig .
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To identify the equations in (ii), recall the Gauss–Codazzi–Meinardi system
(Han & Hong 2006):

v2L − v1M = LG1
12 + M (G2

12 − G1
11) − NG2

11,

v2M − v1N = LG1
22 + M (G2

22 − G1
21) − NG2

21

and LN − M 2 = K (EG − F 2),

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

which provides the necessary and sufficient conditions for existence of a surface
with the first and second fundamental forms:

I = [gab] =
[
E F
F G

]
and II =

[
L M
M N

]
.

In (6.3) Gi
jk denote the Christoffel symbols, and K stands for the Guassian

curvature, which can be calculated from I and II . Substituting now
I = Id + 2h2(e′)2×2, II = h(k′)2×2, where e′ and k′, respectively, denote the
symmetric parts of eg and kg , and taking into account the relations:

Gk
ij = 1

2
gkl(vj gil + vigjl − vl gij) = (vje

′
ik + vie

′
jk − vke′

ij)h
2 + O(h2)

and
K = R1212

EG − F 2
.

We directly obtain the first identity in (ii):

h(v2(k′)11 − v1(k′)12) = O(h2) and h(v2(k′)12 − v1(k′)22) = O(h2),

and h2 det (k′)2×2 = R1212. Now recall that the Riemann curvatures are given by:

Rijkl = glm(vkGm
ij − vjG

m
ik + Gn

ijG
m
nk − Gn

ikGm
nj) = vkGl

ij − vjG
l
ik + O(h4).

Hence, after straightforward calculations, we obtain:

h2det (k′)2×2 = R1212 = v2G2
11 − v1G2

12 + O(h4) = −h2(curlTcurl(e′)2×2) + O(h4),

which yields the second identity in (ii). �
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ELECTRONIC APPENDIX FOR

”THE FÖPPL-VON KÁRMÁN EQUATIONS FOR PLATES WITH

INCOMPATIBLE STRAINS”

MARTA LEWICKA, L. MAHADEVAN AND MOHAMMAD REZA PAKZAD

1. Approximating low energy deformations

The first crucial observation follows from the rigidity estimate below, which reproduces
that of (Lewicka and Pakzad 2009b), and it is a non-Euclidean version of the bound in
(Friesecke et al. 2002):

Lemma 7.1 For every u ∈ W 1,2(Ωh, R3) and every x0 ∈ Ω there exists R ∈ SO(3) such
that:

1

h

�
Ωh

|∇u(x) − Rah(x0)|
2 dx ≤ C

(

Ih
0 (u) + (diam Ωh)2V ar2(ah)|Ω|

)

.

The constant C above depends on ‖ah‖L∞ , ‖(ah)−1‖L∞ , and on the domain Ωh. Its depen-
dence on Ωh is uniform for a family of plates which are bilipschitz equivalent with controlled
Lipschitz constants.

Proof. Recall that according to the celebrated result in (Friesecke et al. 2002), for every
v ∈ W 1,2(V, Rn) defined on an open, bounded and connected set V ⊂ R

n, there exists
R ∈ SO(3) such that:

(1)

�
V
|∇v − R|2 ≤ CV

�
V

dist2(∇v, SO(3)).

The constant CV depends only on the domain V and it is uniform for a family of domains
which are bilipschitz equivalent with controlled Lipschitz constants.

In the present setting call A0 = ah(x0) and apply (1) to the vector field v(y) = u(A−1
0 y) ∈

W 1,2(A0Ω
h, R3). After change of variables we obtain:

∃R ∈ SO(3)

�
Ωh

|(∇u)A−1
0 − R|2 ≤ CA0Ωh

�
Ωh

dist2((∇u)A−1
0 , SO(3)).

1
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Since the set A0Ω
h is a bilipschitz image of Ωh, the constant CA0Ωh has a uniform bound

C depending on |A0|, |A
−1
0 | and Ωh. Further:

1

h

�
Ωh

|∇u − RA0|
2 ≤ C|A0|

4h−1

�
Ωh

dist2(∇u, SO(3)A0)

≤ C|A0|
4h−1

(�
Ωh

dist2
(

∇u(x), SO(3)ah(x)
)

dx +

�
Ωh

|ah(x) − ah(x0)|
2 dx

)

≤ C|A0|
6

(

Ih
0 (u) + h−1

�
Ωh

|ah(x) − ah(x0)|
2

)

.

The claim follows now through:�
Ωh

|ah(x) − ah(x0)|
2 dx ≤ 2

�
Ωh

(|ah(x) − ah(x′)|2 + |ah(x′) − ah(x0)|
2) dx

≤ C

�
Ωh

h2|∂3a
h|2 + ‖∇tan(ah

|Ω)‖2
L∞(diam Ωh)2 dx.

(2)

�

Proof of Theorem 1.6.
The proof follows the line of Theorem 10 (Friesecke et al. 2006) (see also Lemma 8.1
(Lewicka et al. 2010)).

1. Let Dx′,h = B(x′, h) ∩ Ω be 2d curvilinear discs in Ω of radius h and centered at
a given x′ ∈ Ω. On each 3d plate Bx′,h = Dx′,h × (−h/2, h/2) use Lemma 1 to obtain
Rx′,h ∈ SO(3) such that:

1

h

�
Bx′,h

|∇uh − Rx′,hah(x)|2

≤ C

(

h−1

�
Bx′,h

dist2(∇uh(ah)−1, SO(3)) dx + h2V ar2(ah)|Dx′,h|

)(3)

with a universal constant C, depending only on the Lipschitz constant of ∂Ω, but inde-
pendent of h. Notice that we have also used (2) to exchange ah(x′) with ah(x) in the left
hand side above.

Consider now the family of mollifiers ηx′ : Ω −→ R, parametrized by x′ ∈ Ω:

ηx′(z′) =
θ(|z′ − x′|/h)

h
�
Ω θ(|y′ − x′|/h) dy′

,

where θ ∈ C∞
c ([0, 1)) is a nonnegative cut-off function, equal to a nonzero constant in a

neighborhood of 0. Then ηx′(z′) = 0 for all z′ 6∈ Dx,h and:�
Ω

ηx′ = h−1, ‖ηx′‖L∞ ≤ Ch−3, ‖∇x′ηx′‖L∞ ≤ Ch−4.
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2. Define now Qh ∈ W 1,2(Ω, R3×3):

Qh(x′) =

�
Ωh

ηx′(z′)∇uh(z)ah(z)−1 dz.

By (3), we obtain the following pointwise estimates, for every x′ ∈ Ω:

|Qh(x′) − Rx′,h|
2 ≤

∣

∣

∣

∣

�
Ωh

ηx′(z′)
(

∇uh(z)ah(z)−1 − Rx′,h

)

dz

∣

∣

∣

∣

2

≤

�
Ωh

|ηx′(z′)|2 dz ·

�
Bx′,h

|∇uh(ah)−1 − Rx′,h|
2

≤ Ch−3

(�
Bx′,h

dist2(∇uh(ah)−1, SO(3)) dz + h3V ar2(ah)|Dx′,h|

)

(4)

|∇Qh(x′)|2 =

(�
Ωh

(∇x′ηx′(z′))
(

∇uh(z)ah(z)−1 − Rx′,h

)

dz

)2

≤

�
Bx′,h

|∇x′ηx′(z′)|2 dz ·

�
Bx′,h

|∇uh(ah)−1 − Rx′,h|
2

≤ Ch−5

(�
Bx′,h

dist2(∇uh(ah)−1, SO(3)) dz + h3V ar2(ah)|Dx′,h|

)

.

Applying the estimates above and in (3) on doubled balls Bx′,2h we arrive at:

1

h

�
Bx′,h

|∇uh(z)ah(z)−1 − Qh(z′)|2 dz

≤ C

(

1

h

�
Bx′,h

|∇uh(ah)−1 − Rx′,2h|
2 +

1

h

�
Bx′,2h

|Qh(z′) − Rx′,2h|
2 dz

)

≤ C

(

h−1

�
Bx′,2h

dist2(∇uh(ah)−1, SO(3)) dz + h2V ar2(ah)|Dx′,2h|

)

,�
Dx′,h

|∇Qh|2 ≤ Ch−2

(

h−1

�
Bx′,2h

dist2(∇uh(ah)−1, SO(3)) dz + h2V ar2(ah)|Dx′,2h|

)

.

Consider a finite covering Ω =
⋃

Dx′,h whose intersection number is independent of h (as
it depends only on the Lipschitz constant of ∂Ω). Sum the above bounds:

(5)
1

h

�
Ωh

|∇uh(x) − Qh(x′)ah(x)|2 dx ≤ C
(

Ih
0 (uh) + h2V ar2(ah)

)

,

(6)

�
Ω
|∇Qh|2 ≤ Ch−2

(

Ih
0 (uh) + h2V ar2(ah)

)
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3. Notice that by (4):

dist2(Qh(x′), SO(3)) ≤ |Qh(x′) − Rx′,h|
2 ≤ C

(

h−2Ih
0 (uh) + h2V ar2(ah)

)

→ 0 as h → 0,

in view of assumption (1.7a, 1.7b). We may therefore, for small h, project Qh onto SO(3):

Rh(x′) = PSO(3)(Q
h(x′)).

We further have, by (5):�
Ω
|Rh(x′) − Qh(x′)|2 dx′ =

�
Ω

dist2(Qh(x′), SO(3)) dx′

≤ Ch−1

(�
Ωh

|∇uh(x)ah(x)−1 − Qh(x′)|2 dx +

�
Ωh

dist2(∇uh(x)ah(x)−1, SO(3)) dx

)

≤ C
(

Ih
0 (uh) + h2V ar2(ah)

)

.

On the other hand |∇Rh| ≤ C|∇Qh| and the claim follows by (5) and (6).

2. The Γ-convergence formalism

Theorems 1.3 and 1.4 can be summarized using the language of Γ-convergence (Dal Maso
1993). Recall that a sequence of functionals Fh : X −→ R defined on a metric space X, is
said to Γ-converge, as h → 0, to F : X −→ R provided that the following two conditions
hold:

(i) For any converging sequence {xh} in X:

F

(

lim
h→0

xh

)

≤ lim inf
h→0

Fh(xh).

(ii) For every x ∈ X, there exists a sequence {xh} converging to x and such that:

F(x) = lim
h→0

Fh(xh).

Corollary 8.1 Define the sequence of functionals:

Fh : W 1,2(Ω1, R3) × W 1,2(Ω, R3) × W 1,2(Ω, R2) −→ R

Fh(y, V,w) =

{

1

h4
Ih
W (y(x′, hx3)) if V (x′) =

�
y(x′, t) − x′ dt and w = h−1Vtan,

+∞ otherwise.

Then Fh Γ-converge, as h → 0, to the following functional:

F(y, V,w) =

{

Ig(w, v) if y(x′, t) = x′ and V = (0, 0, v)T ∈ W 2,2,
+∞ otherwise.

Consequently, in view of Theorem 1.2, the (global) approximate minimizers of Fh converge
to a global minimizer of F .
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