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Elastohydrodynamics of wet bristles,
carpets and brushes

BY A. GOPINATH† AND L. MAHADEVAN*

School of Engineering and Applied Sciences, Harvard University,
MA 02139, USA

Surfaces covered by bristles, hairs, polymers and other filamentous structures arise in
a variety of natural settings in science such as the active lining of many biological
organs, e.g. lungs, reproductive tracts, etc., and have increasingly begun to be used in
technological applications. We derive an effective field theory for the elastohydrodynamics
of ordered brushes and disordered carpets that are made of a large number of elastic
filaments grafted on to a substrate and interspersed in a fluid. Our formulation for the
elastohydrodynamic response of these materials leads naturally to a set of constitutive
equations coupling bed deformation to fluid flow, accounts for the anisotropic properties
of the medium, and generalizes the theory of poroelasticity to these systems. We use the
effective medium equations to study three canonical problems—the normal settling of
a rigid sphere onto a carpet, the squeeze flow in a carpet and the tangential shearing
motion of a rigid sphere over the carpet, all problems of relevance in mechanosensation
in biology with implications for biomimetic devices.

Keywords: poroelasticity; brushes; elastohydrodynamics

1. Introduction

Soft, porous beds made of arrayed, slender, deformable, filamentous structures,
anchored to a substrate and permeated by a viscous liquid are ubiquitous in
nature, and increasingly seen in technology. These composites span a spectrum
of scales in terms of structure and are versatile in terms of function. Examples in
nature range from ciliary beds enabling respiratory, circulatory, urogenital and
ambulatory functions (Rensch et al. 1983; Schurch et al. 1990; Damiano & Stace
2005; Smith et al. 2007), motion sensing otoliths and stereocilia in ears (Howard &
Ashmore 1986), lubricating filamentous aggrecan brushes (Han et al. 2007) and
lubricin macromolecules (Zappone et al. 2007) in human joints. Figure 1 depicts
some examples of poroelastic filamentous beds in nature. In the technological
world, analogous fibrous interfaces have been employed both as sensors as well as
actuators in machines (Tung & Kim 2006), fluidic pumps driven by beating elastic
filaments (Kim & Netz 2006) and in nanorod arrays used in DNA analysis and
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Figure 1. (a) A fluid-permeated poroelastic bed comprising filaments of length �, radius a and
bending modulus B with �p being the pore size. The undeformed bed height �b ∼ � and the area
fraction occupied by the fibres is fs ∼ O(a/D)2. A sphere of radius R moves with characteristic
speed V0 tangentially past the bed. The system length scale is �s. (b) Schematic of the otolith
structure in the inner ear—of interest here is the response of the bed to the normal motion of a
particle. (c) Sketch of a poroelastic brush comprising cartilage aggrecan. (d) Densely packed ciliary
carpets driving microorganism locomotion. (Online version in colour.)

separation (Evans et al. 2007). These biphasic material interfaces are constituted
primarily of an elastic skeleton permeated by an incompressible fluid. Imposition
of a pressure gradient drives fluid flow through such a composite and causes
it to deform elastically; alternately deforming the composite actively results
in fluid flow.

We illustrate the coupling between deformation and fluid flow using an example
motivated by biological mechanosensing structures which resemble the schematic
in figure 1a. A sphere of radius R moves through a liquid in the vicinity of a
filamentous bed comprising thin elastic bristles. The bed is completely infiltrated
by the same fluid. Each filament is of length �, radius a and spaced apart such
that the inter-filament distance is D so that the pore size �p ∼ a(D/a − 2) and the
solid area fraction fs ∼ O(a/D)2. The macroscopic or system scale is �s. The bed
height �b ∼ � in the undeformed state.1 The filaments are anchored at the base
to an impermeable surface. The permeability of the bed depends on the pore size
and the details of the arrangement of fibres and can be estimated as K ∼ �2

p ∼
a2f1(fs), the function f1 depending on the specifics of the array geometry. The
bending modulus of each filament B depends on �, a and the Young’s modulus, E .

1For microvilli in the endothelial glycocalyx, typical dimensional values are a ≈ 45 nm,
� ≈ 1.5 − 3 mm, fs ≈ 0.23–0.32.
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The effective elastic modulus of the bed Ceff however, depends on E , �, a, as well
as on fs and on the details of the anchoring at the base shoring up the fibres.2
For simplicity, we neglect the intrinsically anisotropic nature of the bed.

Consider first the sphere translating parallel to the bed with speed V0 at a
height �b + h0 ∼ � + h0. As the sphere moves, it sets into motion the fluid in
the interstitial region. This results in an externally applied stress acting on the
bed. The time for which the bed is forcibly deformed is roughly the convective
time scale tc = �s/V0. The deformation of the bed initiates fluid flow through
the bed away from the deformed region. If the sphere moves very fast, the fluid
trapped in the deforming region is unable to escape and thus the composite bed
resists the deformation as if it were incompressible with a large elastic modulus.
If however, the sphere moves very slowly, the fluid has time to escape through the
porous structure and equilibrate with fluid far away from the interaction region.
The elastic solid skeleton then supports the bulk of the imposed stress and the
apparent composite modulus is lower. This behaviour may be quantified using a
poroelastic time scale tp = (m/Ceff )(�2/K ) ∼ (m/Ceff )(�/�p)2f2(fs, a/�). The ratio
tc/tp controls the apparent stiffness of the bed and the magnitude of the resulting
deformation and consequently the lift force acting on the translating sphere.

For a sphere translating towards the surface with a normal speed V0, fluid
is driven into the poroelastic bed and then eventually streams out radially due
to the no-flux condition at the impermeable base. When the sphere moves very
slowly, fluid has time to move through the pores and the bed deformation, fluid
flux and the position of the sphere are all quasi-statically coupled.

For both of the above-mentioned cases, one may ask the following questions.
How does the bed deform in response to the forcing? What are the resultant forces
on the sphere resisting its motion? To answer these questions, it is essential to
accurately take into account the deformation–flow coupling as well the effects
of anisotropy. A natural foundation underlying models of such soft, porous,
fluid infiltrated composites is the theory of poroelasticity first proposed by Biot
(1941, 1955) more than half a century ago and put on a firm footing using
both homogenization techniques and the intuitive mixture-theory formulation for
bulk and low-dimensional objects (Bowen 1973; Rice & Cleary 1976; Burridge &
Keller 1981; Mei & Auriault 1989; Wang 2000; Skotheim & Mahadevan 2004).
Building on these studies, we describe and characterize carpet-like interfaces
on length (spatial) scales that are large compared with the microscopic length
scales characterizing the pore structure using an effective theory that takes
into account the two-way coupling between fluid flow and elasticity and
intrinsically anisotropic characteristics of the material. Experimental support for
this approach comes from studies of naturally occurring macromolecular brushes
(Han et al. 2007; Zappone et al. 2007) demonstrating that these brushes exhibit
both viscoelastic and poroelastic responses under loading.

We depart from earlier attempts to study these materials in three important
ways. (i) We account for the elastic nature of the bed and its ability to store
and release energy in response to fluid flow, improving earlier efforts (Keller
et al. 1975; Feng & Weinbaum 2000; Du et al. 2004; Damiano & Stace 2005; Han
et al. 2005; Smith et al. 2007) that neglect the effects of normal deformations,

2For instance, a fibre that is not clamped at the base will tend to rotate rather than deflect when
acted on by a force at its tip.
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Figure 2. The macroscopic soft bed on the left with details of the microstructure. We illustrate an
idealized carpet comprising hexagonally arrayed fibres each of radius a and a disordered polymer
brush with a pore size zH. Also indicated are the boundary layers present at either end of the bed
where the Darcy description is inadequate. (Online version in colour.)

their concomitant elasticity and the complete tensorial nature of the coupling
between local flow and local deformation. (ii) We illustrate how the anisotropic
nature of both bed permeability and elasticity due to the alignment of the
fibres may be properly accounted in the theory. Our work builds on previous
studies of anisotropic poroelasticity (Biot 1941, 1955; Barry & Holmes 2001),
but includes and clarifies the role of boundary conditions in controlling the
elastic properties of the bed. (iii) Finally, we show that matching of shear
and normal stress at the composite-free liquid interface and complete flow–
deformation coupling are both accomplished naturally using a Darcy-type model
(Darcy 1856) describing relative flow between the solid and fluid phases in the
soft medium. This naturally resolves the problem of boundary conditions at soft,
porous interfaces and alleviates the need for ad hoc models based on the Brinkman
equation (Fredrickson & Pincus 1991; Feng & Weinbaum 2000; Du et al. 2004)
that introduce higher order corrections that are asymptotically inconsistent.

It is useful to classify the wet poroelastic beds into two general categories
illustrated in figure 2a—carpets and brushes. Carpets have stiff ordered fibres
with a reference state that consists of straight fibres, while brushes are made
of soft, dense, disordered beds typically made up of permanently anchored
polymeric chains with a reference state given by the initial bed height and spatial
polymer concentration field. We will assume that individual elastic filaments
in the brush and carpet typically do not touch each other even when the bed
deforms since the lubrication forces associated with the permeating fluid prevents
such contact for sufficiently smooth surfaces. Then fibre–fibre contact forces
are negligible.

Proc. R. Soc. A (2011)
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In §2, we formulate the equations of motion and describe the physical
characteristics embodied in the formulation, while in §§3 and 4 we evaluate the
elastic and permeability tensors that characterize the bed in term of microscopic
parameters for disordered brushes and ordered bristles and carpets. These enable
us to close the set of equations formulated in §2. Section 5 is dedicated to
a description of the boundary conditions at the impermeable and permeable
interfaces, correcting earlier ad hoc approximations. In §6, we analyse model
problems in the context of these poroelastic carpets: the settling of a sphere,
compression of a brush and deformation due to a sphere translating past a bed.
Finally, in §7, we conclude with a discussion of our results in the context of a
broader class of phenomena where our framework might be relevant.

2. An effective poroelastic field theory

Formalizing these ideas in the context of an asymptotic theory valid for both
anisotropic carpets and brushes, we note that soft porous beds are typically
characterized at the microscale level by a pore size and at the macroscale level
by a externally determined system size. If V and Vp are the gradients on the
system scale and the pore scale and P and Pp be characteristic pressure scales,
fluid stress balance at the pore scale implies that the sum of the macroscopic
pressure gradient driving the flow, VP, and the microscopic pressure gradient,
VpPp, balances the viscous resistance of the pore fluid mV2

pv
p
F. Momentum balance

in the fluid at the pore scale then yields

mV2
pv

p
F − VP − VpPp = 0 (2.1)

so that when �p/�s � 1, P ∼ (�smv
p
F/�2

p) � (mv
p
F/�p) ∼ Pp, and the dominant

contribution to the fluid stress tensor sF comes from the pressure, so that
sF = −P. Consequently on scales large compared with the distance between the
fibres, but small compared with the system size, we may model the composite bed
as an effective continuum, although it might be anisotropic and inhomogeneous.

In order to make progress and formulate the governing equations for the
elastohydrodynamic response, we limit ourselves to a consideration of linearly
elastic behaviour corresponding to small strains, wherein the linear strain e is
related to the displacement field u, measured relative to the reference state via

e = 1
2((Vu) + (Vu)T). (2.2)

We now define two elastic limits of the test volume element—the jacketed limit
where the composite is enclosed by an impermeable surface so that fluid cannot
flow out of the test element and the freely drained (or draining) limit which
corresponds to the fluid being able to freely move in and out of the test volume.
The simplest form for the averaged stress tensor characterizing the composite then
arises by considering the linear superposition of the fluid stress which, at leading
order, is due to the pore pressure and the elastic stress due to the deformation
of the solid skeleton. Then we may write

V · s + FB = 0 where s = C : e(u) − aP. (2.3)

Proc. R. Soc. A (2011)
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Here C is the fourth-order tensor characterizing the effective elastic moduli of
the poroelastic skeleton and is in fact the drained modulus corresponding to the
deformation response—when fluid can move freely or equivalently when there
is no interstitial fluid. Thus, C is determined by solving canonical microscale
problems that involve analysis of independent deformation modes of a unit
cell, and must clearly vanish as the solid volume fraction, fs vanishes. The
tensorial quantity multiplying the pore pressure in equation (2.3) viz., a, is a
measure of fluid fraction changes due to the compressibility of the solid making
up the skeleton and is thus dependent on both material properties as well as
microstructural properties. When inertial effects are negligible, the composite
effective stress s and external volumetric body forces FB are in balance. If the
constituent solid (subscript s) comprising the skeleton satisfies the constitutive
law ss = Cs : es, then following steps in Rice & Cleary (1976), we may show that

a = d − C : C−1
s : d (2.4)

with d being the identity tensor.3 Note that for an incompressible skeleton
and interstitial fluid, we get a = aIN = d. For an isotropic, compressible porous
medium, equation (2.4) can be simplified to yield, a = aC = aCd = (1 − Kd/Ks)d
with Kd being the bulk modulus of the drained composite.

The local fluid content within material elements of the composite changes
due to stress that results in deformation of the skeleton. For small inertia-less
deformations, Darcy’s law describes the relative motion of the fluid and the
solid phases at the pore level. In the reference rest state, the porosity and solid
volume fraction are homogeneous on pore-averaged system length scales. When
the porous solid is elastic, changes in liquid content per unit volume result due
to change in the volume of the solid content as the solid skeleton moves. To
leading order, the pore-scale-averaged discharge velocity of the fluid relative to the
deforming solid skeleton, Q is then related to the system scale pressure gradient by

Q = −K
m

· VP, (2.5)

where K is cell-averaged anisotropic tensorial version of the classical Darcy
permeability. To understand variations in flow, we first define the porosity,
fs = VF/V and fluid mass content, mF = MF/V = rFfF, where VF is the volume
of fluid, and MF is the mass of fluid contained in unit cell of porous material which
would occupy volume V in an unstressed reference state. With KF being the bulk
modulus of the pure pore liquid, let variations in density and pressure be small
relative to the initial state so that the fluid exhibits adiabatic compressibility,
conservation of fluid mass in an elemental volume of the composite then yields

V · (rFQ) + v

vt
(D(mF)) = 0, (2.6)

3Here a is to be interpreted as a poroelastic constant with the property that if pore pressure is
increased by DP, and all normal stresses acting on the element are decreased (the compression is
increased) by aDP, there is no change in strain.

Proc. R. Soc. A (2011)
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where
D(mF) = rFPb + rF[(C−1 − C−1

s ) : d] : (C : e). (2.7)

Fluid–solid coupling due to compressibility of either constituent enters via

b = [(C−1 − C−1
s ) : d] : d

(1 + (1 − fs)(K (Ks − KF)/(Ks − K )KF))−1

− [(C−1 − C−1
s ) : d] : C : [(C−1 − C−1

s ) : d]. (2.8)

To uncover the meaning of the different terms in equations (2.7) and (2.8)
we first consider the limit of an isotropic, compressible composite. In this
limit and for a jacketed composite, D(mF) = 0. In the general unjacketed case,
equation (2.7) reduces to D(mF) = rF(aCV · u + bCP). The parameter bC ≡
(fFKs + (aC − fF)KF)/(KFKs) can be rewritten as bC = a2

C/(Ku − Kd) and is
then seen to be a measure of the jacketed modulus, Ku. In other words,
for incompressible constituents (Ks → ∞, KF → ∞) we find b = bIN = 0 with
v(V · u)/vt = (K/m)V2P matching the analysis of Barry & Holmes (2001). We
also note that in the limit Ku → ∞, equation (2.7) matches expressions for
isotropic media derived by Rice & Cleary (1976), while the expression for b,
equation (2.8), can be rewritten in the form derived earlier by Loret et al.
(2001). We emphasize that equation (2.7) embodies the role played by skeleton
compressibility (due to porosity), fluid compressibility and the compressibility of
the bulk solid comprising the skeleton.

Finally, combining equations (2.5)–(2.8), we obtain the generalization of
Darcy’s law to anisotropic, compressible media

1
m

V · (K · VP) = v

vt
([(C−1 − C−1

s ) : d] : (C : e) + bP). (2.9)

In deriving this equation we have ignored nonlinear terms arising from the
product rFQ in equation (2.6). Equations (2.2)–(2.4), (2.8) and (2.9) involve
the deformation field, u and the pore pressure P as unknowns.4 To complete
the formulation of the problem, we need to specify the effective elastic modulus
tensor C and the effective fluid permeability tensor K as well as the boundary
conditions that accompany the field equations.

3. Disordered brushes and carpets

We start with a specialization of our theory to a polymer brush obtained by
grafting polymers with a characteristic monomer size am onto surfaces with
density G—(the number of monomers per unit area) in the presence of a good
solvent of viscosity m. We assume that the equilibrium brush thickness is much
larger than the mesh size, the monomer size and the grafting length scale
(distance between chains at the base), so that the polymers form a spongy,
compressible fluid-infiltrated bed. Furthermore, in good solvent conditions the
polymer coil swells and the various filaments tend to intersperse so that the
brush is transversely isotropic.
4The correspondence between equation (2.9) and the analogous equation obtained using mixture
theory is given in the electronic supplementary material.
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For a Newtonian, incompressible solvent and incompressible polymer units, the
total composite stress in the soft medium reduces to a simple form. Thus, while,
a = d, the elasticity tensor C satisfies

Cijkl = (
Kd − 2

3G
)

dijdkl + G(dikdjl + dildjk). (3.1)

Substituting equation (3.1) in equations (2.3) and (2.4) and setting external body
forces to zero yields5,

s = 2G(c)e + (Kd(c) − 2
3G(c))d(V · u) − PT d with V · s = 0. (3.2)

Here, PT is the net fluid pore pressure that includes concentration-dependent
osmotic effects. The pore pressure at steady state corresponds to a local
equilibrium between the osmotic pressure, ambient equilibrium fluid pressure and
the elastic stress. In the absence of any external force or flow, the elastic stress
due to network deformation balances the osmotic pressure. The fluid flux through
the soft brush couples to deformation via a permeability that now depends on
polymer concentration,

v

vt
(V · u) = 1

m
V · (z2

H(c)VPT ) (3.3)

where zH(c) is the pore size, or equivalently a hydrodynamic screening length
that depends on c (Fredrickson & Pincus 1991), the local polymer concentration.
The shear and bulk moduli for the brush follow the simple scaling laws

G(c) ∼ c1kBTzH(c)−3, K (c) ∼ c2kBTzH(c)−3, (3.4)

where c1 and c2 are constant with c1 � c2.
The hydrodynamic screening length zH(c) is a function of local mean-field

polymer concentration, c(z) and the monomer size am. We now restrict our
descriptions to macroscopic length scales Lc much larger than the mesh size of the
brush and to small and moderate volume fractions. For grafted polymers in a good
solvent with volume fractions in the semi-dilute regime a reasonable estimate for
zH(c) is the equilibrium concentration correlation length (deGennes 1979)—thus
zH(c) ∼ ze ∼ c−3/4a−5/4

m . For grafted polymer brushes, as a first approximation
(Alexander 1977) we can choose c to be an appropriate spatially averaged value.
For instance, when considering the compression of a polymer brush of thickness h,
we could replace c(z) with the spatial average c ∼ G/h. Adsorbed polymer brushes
are complicated to treat (deGennes 1979) as ze ∼ z , where z is the axial position
perpendicular to the grafting surface. In general, the hydrodynamic screening
length as well as elastic constants in equations (3.2) and (3.3) are functions of
the coordinate normal to the plane of transverse isotropy.

5It is interesting to compare these equations with the two-fluid equations characterizing the
coupling between network stress s(n) and composition in polymer blends (Brochard & deGennes
1983; Doi & Onuki 1992). The stress balance in these systems is usually written as

V · (s(n) − (P + p)d) = 0.

Proc. R. Soc. A (2011)

 on January 21, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Poroelastohydrodynamics 1673

4. Ordered bristles and carpets

We now turn to a bed of bristles or a carpet of cylindrical fibres made of
an isotropic elastic material, each of radius a and length � � a arranged in
a regular hexagonal lattice as shown in figure 2a. The fibres are anchored to
a rigid, impermeable fixed substrate (corresponding to the x–y plane). We
assume that the fibres are not perpendicular to the bed since that is a very
non-generic situation, and will instead assume that they are tilted on average
at a small angle, q0 with the z-axis (0 < sin q0 � a/�). The inter-fibre distance
D ≡ 2a(1 + ec), and the system length in the lateral direction, �s � max(�, a, D).
For z � �, provided � � D, the fibre–fluid composite is effectively a permeable,
poroelastic bed with 2ec = �p being the characteristic pore size. The coordination
number for this geometry Zc = 6 and thus the maximum packing fraction is given
by fm

s = p(2
√

3)−1 ≈ 0.907. The solid area fraction, or equivalently, the volume
fraction, is given by fs = p/(1 + ec)22

√
3 = 2pa2/D2

√
3 ∼ O(a/D)2 in terms of

which both the elastic modulus tensor C and the permeability tensor K may
be expressed.

Symmetry dictates that Cijkl = Cjikl , Cijkl = Cjilk and Cijkl = Cklij . Defining
the column vector (e)T = (e1, e2, e3, e4, e5, e6) = (e11, e22, e33, 2e23, 2e13, 2e12) and
analogously, we write the stress–strain relationship characterizing the drained
response of the skeleton concisely as ta = C ∗

abeb and ea = S∗
abtb where we have

specifically used t to denote the skeleton stress, as distinguished from the
composite stress s. Note that C ∗

ij and S∗
ij are not the fourth-order elasticity

and compliance tensors but matrices that do not transform like tensors. The
stiffness and compliance matrix can be written in terms of just five constants—the
transverse (in-plane—with 1 and 2 denoting the x and y axes) Young’s moduli,
Ep = E11 = E22, the longitudinal Young’s modulus, E⊥ = E3, the two transverse
in-plane Poisson ratios, np = n12 = n21, the Poisson ratio, n⊥ = nzp that denotes
the effect of in-plane deformations due to axial loading and the in-plane shear
modulus, G⊥. The compliance matrix takes the form

S∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E−1
p −npE−1

p −n⊥E−1
⊥ 0 0 0

−npE−1
p E−1

p −n⊥E−1
⊥ 0 0 0

−n⊥E−1
⊥ −n⊥E−1

⊥ E−1
⊥ 0 0 0

0 0 0 (2G⊥)−1 0 0

0 0 0 0 (2G⊥)−1 0

0 0 0 0 0 (1 + np)E−1
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.1)

To determine the non-zero elastic constants in terms of the solid volume
fraction fs and evaluate the dependence on boundary conditions of the composite
material,6 it suffices to consider the mechanics of a single fibre. The unit vector
perpendicular to the substrate plane, ez is also approximately the axis about
which the fibres are arrayed symmetrically as shown in figure 3. A typical
6Evaluating the terms in the stiffness tensor, we find C ∗

11 = [1 − (Ep/E⊥)n2
31]E1/(AB), C ∗

12 = [n12 +
(E1/E3)n2

31]E1/(AB), C ∗
13 = n31E1/B, C ∗

33 = (1 − n12)E1/B, G∗
13 = E1(2(1 + n13))−1 and n13 =

(E1/E3)n31 with constants A = 1 + n12 and B = 1 − n12 − 2(E1/E3)n2
31.
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(III)(I) (II)

z

Ks Ks Ks

h

h||

h

P

Figure 3. Schematic of canonical deflection problems analysed to calculate the compliance matrix.
The test fibre of length � and radius a has bending stiffness B and is anchored to the base by a
torsional spring of stiffness Ks. Additionally, the fibre is attached at the base with an offset angle
of q0. In problem (I), the fibre is sheared at the tip by a force P� causing a lateral deflection h‖
and normal deflection h⊥. In (II) the fibre is deformed by a uniform force of density q� acting all
along its length and in (III), compressed by a force P⊥. (Online version in colour.)

situation involves fibres with bending stiffness B clamped at the base to the
underlying substrate by torsional springs of stiffness Ks, as seen often in natural
and artificial systems. For example, hairs and cilia are strongly anchored at the
basal body but can bend, while actin bundles and bristles often are fairly stiff
but can easily pivot about their base. Since the fibres are unlikely to be precisely
normal to the base, we assume that the fibres are inclined at a small angle q0 with
the z-axis (q0 � 1). The small offset angle also introduces out of plane bending
forces, but these are an order of magnitude smaller than the dominant bending
moment.

Consider first a test fibre subject to shearing forces as in figure 3 (cases I
and II). Denoting derivatives with respect to z by primes, the equation for the
shape of a fibre h(z) relative to the vertical can be written Bh ′′′′ = q�, h(0) = 0,
Ks(h ′(0) − q0) + Bh ′′(0) = 0, h ′′(�) = 0 and h ′′′(�) = P�, where P� is the load at the
tip, and q� is any distributed load along its entire length, �. At a scaling level,
the tip deflects by an amount that scales as P��

3/B, when q = 0 a result that
follows from a simple energy balance. In contrast, a rigid fibre that is supported
by a torsional spring of stiffness Ks at the base when subject to a point load
will deflect by an amount that scales as P��

2/Ks. Similar scaling relations may
be derived for the case when q� �= 0, and also when the test fibre is compressed
by a perpendicular force P⊥ (figure 3, case III). Expressions for the transverse
displacement h‖ = xTip and normal displacement h⊥ = zTip − � ≈ − 1

2

∫�

0(h
′)2 dz are

listed in table 1.
To convert the response of a single fibre to that for the entire bed, we consider

the elastic response of the composite in the fully drained limit—a useful way to
visualize this is to consider a slab of the carpet encapsulated by a membrane
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Table 1. Scaling relationships for the normal and transverse displacements for a single fibre in the
limit of small external forcing for canonical problems illustrated in figure 3. Results are shown
for very stiff fibres (case (i) as indicated) corresponding to B → ∞ when deformations depend
on the spring constant, Ks and a clamped base (case (ii))—the limit Ks → ∞ with deformations
dominated by bending.

deflection I. shear II. distributed III. compression

(i): (h⊥ − h⊥
0 )

P��
2

Ks

(
P��

2Ks
+ q0

)
q��

3

2Ks

(
q��

2

4Ks
+ q0

)
q0�

2P⊥
Ks

(
q0�P⊥
2Ks

+ q0

)

(ii): (h⊥ − h⊥
0 )

P��
3

3B

(
P��

2

5B
+ q0

)
q��

4

8B

(
q��

3

14B
+ q0

)
q0�

3P⊥
3B

(
180q0�

2P⊥
113B

+ 5q0

4

)

(i): (h‖ − h‖
0 )

P��
2

Ks

q��
3

2Ks

q0�
2P⊥
Ks

(ii): (h‖ − h‖
0 )

P��
3

3B
q��

4

8B
q0�

3P⊥
3B

that is completely permeable to the fluid but retains the fibres inside. We first
consider the shear response of the bed associated with a stress per unit area—
t∗

5—acting parallel to the (x − y) plane at the upper edge of the brush. The
typical shear strain associated with this load e∗

5 = (h‖ − h‖
0)/�. The number of

fibres per unit area that support this load is fs(pa2)−1 (here we consider the fully
drained limit to calculate the response of the skeleton). The effective bed shear
modulus is then given by G⊥ = t∗

5/2(e∗
5). For instance, when B → ∞, one obtains,

G⊥ = fsKs(2p�a2)−1 while when Ks → ∞, we obtain G⊥ = 3Bfs(2p�2a2)−1. Next,
to calculate E3 = E⊥, we consider a compressive stress, t∗

3 acting on the same
elemental test area that leads to a compressive normal strain e∗

3 = (h⊥ − h⊥
0 )/� so

that the elastic modulus to leading order is given by E⊥ = t∗
3/e∗

3 = t∗
3�/(h

⊥ − h⊥
0 ).

When B → ∞, E⊥ = Ksfs(q2
0�pa2)−1, while when the torsional spring is very

stiff and bending is the dominant mode of deflection, E⊥ = 6Bfs(5q2
0�

2pa2)−1.
The composite in-plane Poisson ratio, np = 0 is zero. When the bed of fibres is
subjected to a compressive stress at the top boundary, each fibre individually
buckles in response. However, since there is no fibre–fibre contact and hence
no correlation between the fibres, so that n⊥ = nzp = npz = 0. Finally, we consider
the in-plane modulus Ep, which characterizes the response of the carpet as it is
squeezed by normal forces laterally.7 Consider a normal stress t∗

1 acting on an
area of unit width �y and height equal to the bed height �z = �. A calculation
similar to that carried out earlier then yields the estimates Ep ∼ Ks(a�2)−1f1/2

s
for B → ∞ and Ep ∼ B(�3a)−1f1/2

s for Ks → ∞.
7Given that the bed is anchored at the base, one might argue that it makes no sense to talk of an
in-plane modulus. Nonetheless, it is not zero as the anchoring shores up the bed. Visualize a strip
of the carpet being squeezed or compressed by normal forces acting in the x direction—it is this
response we want to characterize. This mode of deformation exists because the fibres are fixed at
the base.
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We now turn to estimates for the pore-averaged macroscale permeability
tensor K. As the bed is not unbounded, one can speak of only apparent
permeabilities defined to establish a relationship between the mean flow and the
macroscopic pressure gradient. For small fibre inclinations 0 < q0 � 1 and small
deformations, the permeability is close to that for perfectly aligned straight fibres.
In the interior of the poroelastic bed outside of the boundary layers (see figure 2),
transverse isotropy at scales larger than the pore size implies that

K = K 0
⊥ezez + K 0

‖ (d − ezez), (4.2)

where K 0
‖ is the in-plane permeability and K 0

⊥ is the vertical permeability. In
the limit of very small Reynolds number, the Stokes equations characterize the
flow both at pore scales as well as at scales of the order of the fibre radius. The
linearity of the Stokes equations and time reversibility implies that the mean flow
is linear in the imposed pressure gradient and thus the permeability tensor can be
obtained from a single canonical calculation. Since the pressure drop across a unit
cell is in effect balanced by the net force per unit length per cylinder in the cell
multiplied by the number of cylinders per unit area, one can write,F‖,⊥/(mU ) =
f‖,⊥(fs) = pa2/(fsK 0

‖,⊥) with F being the axial (‖) or transverse (⊥) mean drag
force per unit length per cylinder, U , the appropriate superficial (mean) velocity
in the bed and fs the areal/volume solid fraction. The exact forms of the reduced
force, f and the permeabilities, K‖ and K⊥ depend on the details of the packing
and on the solid volume fraction, fs. In the following, we focus on the case of
hexagonally packed fibres and summarize the single fibre mean-field problems
that have to be solved to evaluate the permeabilities.

In the dilute (D) limit as 0 < fs � 1, the fluid velocity field governed by the
Stokes equations varies logarithmically with distance from the cylindrical fibre
with the divergence cut-off by finite pore size effects via the dependence of velocity
on the parameter (D/a). Matching the Stokes solution valid for distances that are
smaller than O(a) with a (renormalized) mean field far field velocity field that
takes into account the presence of other cylinders yields (Sangani & Acrivos 1982)

(K 0
‖ )D ≈ (4fs)

−1a2
(

ln f−1/2
s − 0.745 + fs − f2

s

4

)
. (4.3)

A similar analysis for the axial permeability yields (Sparrow & Loeffler 1959)

(K 0
⊥)D ≈ (4fs)−1a2

(
2fs − 1.5 − ln fs − f2

s

2

)
. (4.4)

In the dense limit (C) as fs → fm
s , with fm

s being the critical (maximum)
packing at the solid fraction at which the fluid cannot flow through the bed,
most of the pressure drop required to maintain the flow is associated with the
resistance due to the small gap between adjacent cylinders. Lubrication theory
implies that the fluid velocity through this gap is O(U e−1

c ) and the pressure
drop across the gap, obtained by matching with contributions from viscous shear,
is O(mU e−5/2

c a−1). Using this result and accounting for the hexagonal packing as
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in Sangani & Acrivos (1982), we obtain

(K 0
‖ )C ≈ 4

√
2

27
f−1

s a2

((
fs

fm
s

)−1/2

− 1

)5/2

. (4.5)

The axial permeabilities for a hexagonal array are obtained from an adaptation
of the Hagen–Poiseuille relationship and yield

(K 0
⊥)C ≈ 1

4a
2f−1

s (1 − fs)2. (4.6)

While one may use an interpolation for moderate volume fractions 0 � fs �
fm

s , equations (4.3) and (4.4) are observed to provide good estimates of the
permeability for volume fractions as large as fs ∼ 0.2. For comparison, we note
that the Carman–Kozeny relationship (Happel & Brenner 1973) yields (K 0

‖ ) ≈
a2(4kKCf2

s )
−1(1 − fs)3 for an isotropic porous medium.

5. Boundary conditions

The correct boundary conditions at a porous interface have been a source of long-
standing debate owing to the problem of matching of both normal and tangential
stresses at the interface (see Beavers & Joseph 1967; Saffman 1971; Taylor 1971;
Hou et al. 1989; Barry & Holmes 2001; Jager & Mikeli 2009; Nield 2009). Previous
models for the flow through porous media (Fredrickson & Pincus 1991; Feng &
Weinbaum 2000; Du et al. 2004) use the Brinkman equation and its variants that
take the form

meffV
2Q − VP − m(K−1 · Q) = 0 and V · Q = 0,

where the exact value of the micro-structure dependent effective viscosity meff
is the subject of significant disagreement. While this equation is applicable in
many scenarios, using the Brinkman equation to model macroscale flow through
a poroelastic bed is not mathematically correct, since it violates the asymptotic
separation between the viscous contribution and the pressure in the fluid stress
tensor, as indicated in §2. In fact, it is also not required since shear stresses can
be borne by the deformation of the solid skeleton.

Since the filamentous bed—be it a carpet or a brush—is bounded from below by
a rigid, impenetrable wall, the mean-field deformation and the normal component
of the macroscopic pore-averaged flux vanish at the wall, so that

u|z=0 = 0, (ez · VP)|z=0 = 0. (5.1)

Note that this implies that the pore-averaged normal fluid velocity component is
zero as well and is thus consistent with the point-wise fluid velocity field vanishing
at the impermeable rigid wall.

At the upper boundary that separates the brush from the pure fluid, we must
impose continuity of the averaged traction as well as a condition on the fluid flux.
For a fluid flow above the carpet with velocity field v(0)

F with the concomitant fluid
stress field s

(0)
F , continuity of traction at the interface I implies that

(s · n)|I = (s(0)
F · n)|I. (5.2)
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This stress balance yields a vector equation with the two independent components
for normal stress balance and the tangential stress balance. Tangential stresses
exerted by interfacial fluid flowing past the bed are borne by the deformation of
the solid skeleton—the pore fluid itself contributes only to the isotropic stress via
the pore pressure. Details of the velocity field in the porous medium are averaged
into the effective fluid flux flowing in accordance with the system scale pressure
gradient and viscous effects at the pore scale are already taken into account via
the effective pore-averaged permeability in the Darcy term. Thus the matching
condition (5.2) involves tangential and normal stresses of the composite and the
pore pressure and not individual velocity components.

The general boundary condition on the fluid flux at the fluid–bed interface
may be formulated by assuming the upper fluid–bed interface to be bounded by
a semipermeable thin skin of thickness df and isotropic permeability Kf . Imposing
continuity of the fluid flux at the interface, we obtain

−ez ·
(

K
m

· VP
)∣∣∣∣

I
+

(
Kf

mdf

)
P∗

∣∣∣∣
I
= 0, (5.3)

where P∗|I is the pressure difference across the skin. This expression thus includes
both the case of an impermeable skin for which Kf = 0, but is more general, being
a consequence of flux continuity across the skin.

Equations (5.1)–(5.3) differ significantly from the boundary conditions based
on the Brinkman model for the porous bed that involve point-wise velocity fields
(described in appendix B). Equations (2.2)–(2.4), (2.8) and (2.9) along with the
boundary conditions (5.1)–(5.3) complete the formulation of the problem for the
effective field-theoretic description of the poroelastic bed of ordered or disordered
bristles or brushes, with the relevant elasticity and permeability tensors given by
equations (3.1) and (3.4) for disordered brushes and by equations (4.1)–(4.5) for
ordered carpets.

6. Model problems: normal and tangential deformations of a bed

We now discuss canonical problems that characterize the response of a carpet or
a brush to normal and tangential forcing. Schematic sketches of these scenarios
are depicted in figure 4. In all cases, bed deformation drives an anisotropic fluid
flow through the bed.

(a) Compression of a poroelastic bed by a sedimenting sphere

We consider first the gravity-driven sedimentation of a small rigid sphere of
density rs and radius R onto a poroelastic fibrous bed of thickness H�, infiltrated
by a Newtonian fluid with viscosity m and density rf , as shown in figure 4a.
The density difference is Dr = rs − rf with Dr/rf � 1. We choose our coordinate
system so that the centre of mass of the sphere lies a height R + h(t) + H� away
from the rigid base of the carpet. Measuring radial position from the axis of
symmetry, let Hp(r , t) be the position of the carpet interface as measured from
the rigid base, the deformation of the interface relative to the initial thickness
be db(r , t) = H� − Hp(r , t), and the velocity of the sphere be dh/dt. The width of
the gap between the bed and the sphere is thus h + db(r , t) with h > 0 initially,
but eventually we have h < 0.
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Figure 4. (a) Schematic of the sphere sedimenting towards a soft bed with variables defined.
(b) Distinct regimes in the settling process discussed in §6a are shown (schematic—not to scale).
As the sphere settles on the soft bed, the initial constant velocity is modified due to a combination
of viscous and elastic forces—each regime is thus characterized by a different dominant balance
that sets the characteristic settling velocity. (c) Compressive deformation of a thin soft brush
of radius R and thickness H� due to a circular punch (d) Schematic of the bed deformation for
tangential motion of rigid sphere moving with speed V0 past a carpet of thickness H� and a sketch
of the ensuing fluid flow. Dots denote the deformed surface. (Online version in colour.)

The settling of the sphere and resulting bed deformation are coupled quasi-
statically, a situation of some relevance in mechanosensation, as statoliths,
otoliths and amyloplasts settle on sensory cilia in a variety of animal organs
and plants. For negligible sphere and fluid inertia, gravitational sedimentation
is resisted by viscous and elastic forces. As the particle moves close to the wall
with H� � h � R, the fluid pressure in the gap and flow through the bed resists
motion. Power balance then reads:

DrR3g
∣∣∣∣dh
dt

∣∣∣∣ ∼
[

m

(
dh
dt

)2 R2

h + db

]

+
[

m

K 0
‖

(
ddb/dt

min(H�,
√

Rdb)

)2

Rdb min(H�,
√

Rdb)

]

+ d
dt

[
E⊥

(
db

min(H�,
√

Rdb)

)2

Rdb min(H�,
√

Rdb)

]
(6.1)

a form applicable to both thin (R � H�) and thick (R � H�) beds.

Proc. R. Soc. A (2011)

 on January 21, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1680 A. Gopinath and L. Mahadevan

The first term on the right-hand side of equation (6.1) corresponds to viscous
dissipation due to the radial flow of liquid at a speed O((dh/dt)(R/(h + db))1/2)
through a gap of size O(h + db). The second term corresponds to the viscous
dissipation due to radial Darcy flow as the fluid is squeezed between the fibres
whose number scales as O(fs(Rdb)(pa2)−1) over a volume O(Rdb min(H�,

√
Rdb)).

The third term corresponds to the power associated with the deformation
of the elastic bed with a compressive modulus O(E⊥) which is strained by
an amount O(db/min(H�,

√
Rdb)), over a volume O(Rdbmin(H�,

√
Rdb)). We

assume here that the deformation itself is small compared with the thickness
of the bed db � H�.

(i) Viscous regime

During the initial stages of approach, db ∼ 0 so that the second and third terms
on the right-hand side of equation (6.1) are negligible compared to the first. Then
the gap h ≥ R, the first term reduces to m(dh/dt)2R, and we find that the particle
falls at the Stokes settling speed |dh/dt| = us ∼ DrR2g/m. When H� ≤ h � (Rh)1/2,
the bed is deformed weakly, and the gap is O(h). Provided the flux of fluid
through the interface into the bed is small compared with flow through the gap
i.e. H�K 0

‖ h−3 � 1, the first term on the right-hand side of equation (6.1) reads
m(dh/dt)2R2/h so that the settling velocity now becomes8 |dh/dt| ∼ DrRgh/m.

(ii) Poroelastic regime

As the sphere sinks into the bed h = −db < 0, and fluid flow occurs mainly
through the bed. Now the settling velocity is determined by balancing the
gravitational power with dissipation rate due to the Darcy flow and the
energy stored in the bed. Initially, for t < mRdb/E⊥K 0

‖ , i.e. ddb/dt � E⊥K 0
‖ /Rm,

viscous dissipation dominates over the elastic storage term. Then ddb/dt ∼
d−2

b (K 0
‖ DrRgH�/m) (for H� � √

Rdb) and ddb/dt ∼ d
−3/2
b (K 0

‖ DrgR3/2/m) (for H� �√
Rdb). Since the rate at which the bed is being compressed decreases with

increasing db, the sphere slows down so that—ddb/dt ∼ E⊥K 0
‖ /Rm—then a larger

fraction of the gravitational work is stored as elastic energy, and a progressively
lower volume of fluid is squeezed out.

(iii) Elastic regime

When t > mRdb/E⊥K 0
‖ i.e. ddb/dt � E⊥K 0

‖ /Rm, elastic power balances
gravitational power, and at equilibrium, the first two terms on the right-hand
side of equation (6.1) vanish, and we may integrate the equation once. For
a thin bed, when H�/db � 1, the characteristic strain d∞/H� so that (6.1)
now yields d∞ ∼ (DrgH�/E⊥)1/2R. In contrast, for a thick carpet H�/R → ∞,
the characteristic strain d∞/(Rd∞)1/2 stores energy in a volume O(R3/2d

3/2
∞ ) so

that d∞ ∼ (DrgE−1
⊥ R5/2)2/3 consistent with the classical Hertzian scaling for the

indentation of an elastic half space by a rigid sphere of radius R under its
own weight. These different scaling regimes are shown schematically in figure 4b.
8For a rigid non-porous bed, classical lubrication theory would predict that the speed of settling
vanishes with the gap; in this degenerate limit, the sphere never makes contact. When the layer is
poroelastic, the functional dependence of the force on height h changes significantly once h ∼ O(H�).
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(b) Compressive deformation of a soft brush

Analysis of the final stages of approach becomes easier to analyse when the soft
bed is isotropic; indeed a typical assay to measure the mechanical properties of
poroelastic biological tissues uses the compression of a thin disc of the material
as shown in figure 4c. Here we consider a circular block of the soft brush of
length H� and radius R � H� attached to a rigid lower plate of the same radius.
The brush is compressed locally at the top by a rigid impermeable circular
punch also of radius R positioned as shown. At time t = 0, we apply a force
to the centre of the upper plate. For a short time interval thereafter the bed
behaves as a solid impermeable block with the response corresponding to the
undrained elastic response. This is followed by equilibration of the pressure across
the thin gap (since R � H�) after which the reduction in the thickness of the
gel is accompanied by a compensatory flow directed radially outwards. Scalings
for the steady and transient deformations may be obtained by ignoring the
(small) boundary layer at r = R. Denoting by uz and ur the z and r components
of the deformation field and the pore pressure by P, one can write for this
latter stage in the transient response, (vP/vr) ∼ G(v2ur/vz2), (v2uz/vz2) ∼ 0,
(v/vt)(vuz/vz) ∼ (K 0

‖ /m)[r−1(v/vr)(rvP/vr)] and −F = 2p
∫R

0 r(szz − P)dr . We
thus obtain uz ∼ A(t)z where A evolves according to(

R2m

8K 0
‖ (K + (4/3)G)

)
dA
dt

+ A = − F
pR2(K + (4/3)G)

. (6.2)

When the moduli and the permeability are constant, A(t) exhibits exponential
decay with a characteristic relaxation time reflecting the rate at which the
interstitial fluid can diffuse out through the pores. In general for a polymer brush,
K = K (A), G = G(A) and K 0

‖ = K 0
‖ (A) with the displacement of the top of the

bed being uz(H�) = AH�. At steady state, the bed height attains a constant value
given by H� (1 + F(pR2(K∞ + 4G∞/3))−1) with the elastic constants and the
final steady state value of A = A∞ determined self-consistently.

(c) Tangential motion of sphere parallel to a squishy bed

We now consider steady tangential motion of a rigid sphere over squishy beds
as shown in figure 4d. A sphere of radius R moves with velocity V0ex such
that its centre lies at a distance R + h0 from the surface of the undeformed
bed of thickness H�. We restrict ourselves to the small deformation limit so
that h0/R � 1, (R/h0)1/2 � 1 and H� � (Rh0)1/2. Of interest here is the coupling
between tangential velocity and normal lift force on the sphere.

Note that anisotropy in either the permeability or elasticity results in multiple
pressure/deformation relaxation scales. Specifically, if the in-plane and transverse
permeabilities are different, the time for elastic stresses to diffuse through
the deformable layer is t⊥

p ∼ mH 2
� (E⊥K 0

⊥)−1 while the time for diffusion across
the contact region is t‖

p ∼ mRh0(EpK 0
‖ )−1. Here, we have assumed that the shear

modulus and compressive modulus are of the same order. One can then ask
if the coupling of tangential motion to normal lift as elucidated by Skotheim &
Mahadevan (2005) is still qualitatively valid.
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To enable the analysis of both polymer, we study a two-dimensional problem
of a circular cylinder translating past a model thin, dense anisotropic brush. To
enable reduction to both polymer brushes (ac = 1 and bc = 0) as well as more
general compressible disordered media such as filamentous gels (ac < 1 and bc >
0), we choose a simpler version of equations (2.2) and (2.9):

V · s = V · (2Ge + l(V · u)d − acPd) = 0 (6.3)

and
1
m

V · ((K 0
⊥ezez + K 0

‖ exex) · VP) = ac
v

vt
(V · u) + bc

v

vt
P, (6.4)

with the elastic and permeability constants G, l, ac, bc, K 0
‖ and K 0

⊥ now functions
of position z . We differentiate between the axial and in-plane permeability
to include the case of adsorbed brushes and structured gels. The elastic and
permeability constants are to leading order equal to the values evaluated for the
static, undeformed base state.

Recasting the equations (6.3) and (6.4) in a frame translating with the cylinder
and scale quantities as in Skotheim & Mahadevan (2005), we find that the solution
depends on three dimensionless parameters—the slenderness ratio c ≡ H�/

√
2h0R,

flow anisotropy J2 ≡ (K 0
‖ /K 0

⊥)c2, and the deformation h ≡ PcH�(2G + l)−1h−1
0 .

In the physically interesting limit c � 1 and J � 1 valid when the flux driven
through the bed is small (compared with the total flux driven by the cylinder) and
the in-plane and out of plane permeabilities are roughly the same, we find that
the two parameters n1 ≡ tc/tp ≡ K 0

⊥[(2Rh0)1/2/(H 2
� V0m)][(2G + l)/bc(2G + l) +

a2
c] and n2 ≡ ac(bc(2G + l) + a2

c)
−1 determine the transient response. The lift

force per unit length, FL is given by FL ∼ (1 − ac)m2V 2
0 H�R3/2h−7/2

0 (2G + l)−1.
When J ∼ O(1) anisotropy in the permeability begins to strongly influence the
deformation and this expression for the lift force is no longer valid.

Extending these results to three dimensions, we find that the lift force
on a sphere translating past the bed (for n1 � 1), scales as FL ∼ (1 −
ac)m2V 2

0 H�R2h−3
0 (2G + l)−1 with the prefactor being a function of n1 and n2.

Thus we find that the equation for the normal lift derived by Skotheim &
Mahadevan (2005) is still qualitatively valid provided that the brush comprising
the bed is dense.

7. Discussion

We have shown that a simple, asymptotically correct, anisotropic generalization
of linear poroelasticity theory suffices to describe soft squishy beds of both
ordered as well as disordered elastic microstructures. Our theory allows for
a coupling between deformation of the solid skeleton and flow through the
pores constituting the network in a self-consistent manner. Except in boundary
layers close to interfaces that are of the order the pore size, momentum
exchange between the fluid and solid constituents is adequately modelled
using a modified Darcy’s law. Since the solid skeleton comprising the bed
can deform, and matching of stresses at interfaces between the bed and pure
fluid is easily accomplished without having to invoke ad hoc viscous terms as
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in previous approaches. Furthermore, we have shown how anisotropy in both
elastic properties of the effective soft composite and the permeability due to
the aligned fibres or bristles might be incorporated to explicitly calculate the
material constants needed to close the governing equations in terms of the
micro-geometry of the bed and the intrinsic material properties of the solid and
liquid phases.

While linear poroelasticity does not correctly take into account boundary layers
(of spatial extent comparable to the pore size) near interfaces, it does provide a
consistent set of boundary conditions that enables matching of tangential and
normal tractions and normal flow/pressure at the interface albeit with a jump
in the liquid velocity gradient. In this spirit, our model resembles attempts to
treat interfaces between a rigid porous medium and a free-fluid via a Darcy
model supplemented with modified boundary conditions rather than invoking the
Brinkman model. While the latter model is indeed valid in boundary layers close
to porous(and rigid) and fluid interfaces as used in its original form, arbitrary
use of the Brinkman term in the bulk is tantamount to double counting the
viscous contributions. Finally, we emphasize that previous models that invoke
the Brinkman approximation to study filamentous porous beds do not correctly
account for the coupling between flow of permeating fluid and deformation of
the solid skeleton. So we need a poroelastic model—as here. Note that for very
dilute systems, the poroelastic model itself breaks down. In this case, the position
and motion of each deforming filament in the bed has to be tracked in time and
the resulting forces on the permeating fluid calculated explicitly—as for example
in the study by Favier et al. (2009) of flow at high Reynolds number around a
cylinder coated with rigid, slender filaments.

We conclude by commenting on two possible extensions of our theory. In
the first, we consider the frictional interaction between contacting polymer
brushes permeated with a good solvent. Studies on compressed and sheared
polymer brushes (Rubinstein & Obukhov 1993; Galuschko et al. 2010) may be
used to systematically account for the effect of additional non-hydrodynamic
interactions on the collective dynamics of sliding between the brushes.
Second, while we considered only passive elastic media, active poroelastic
media that couple solid deformation and fluid flow to the concentration
c of a species such as motor concentration may also be modelled using
similar principles. The composite stress tensor for such a composite will
include the fluid pore pressure, elastic response of the skeleton as well as
additional terms incorporating the coupling of mechanics to chemistry—for
example volumetric forces generated by active motors and moving fibres
such as natural or artificial cilia via appropriate volumetric body force
terms. Possible applications of such descriptions would be in modelling the
mechanics of biological tissue (Teff et al. 2007) as well as the transport
and dispersion properties of ciliary beds. We envision combining microscale
experimental measurements of the geometry and material properties with
macroscale poroelastic descriptions to yield a multi-scale characterization of such
active beds.

The authors thank the Harvard NSF MRSEC, the Kavli Center for NanoBio Science and
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Appendix A: Comparison of cell averaged permeability tensor from
multiple scale analysis to mixture theory predictions

We choose a unit cell representative of the periodic array constituting the system. The
total cell system volume Ω comprises of the fluid and solid fractions viz., Ω = ΩF ∪ ΩS.
Let ΓSF be the solid-fluid interface and Γc denote free boundaries of the cell through which
fluid flows. We define three averages of the quantity Z. First, we define the averages over
the solid and liquid phases,

(A-1) 〈Z〉S =
1
Ω

ˆ
Ω

Z ΠS dΩ′ and 〈Z〉F =
1
Ω

ˆ
Ω

Z ΠF dΩ′.

where ΠS is unity only in the solid phase and zero otherwise and ΠF is unity only in the
liquid phase and zero otherwise. The third average - average over the full cell - is then
〈Z〉 = 〈Z〉S + 〈Z〉F.

For a saturated, rigid porous medium (which we take to be stationary) through which
fluid flows as a result of an imposed macroscopic pressure gradient, the the fluid stress and
induced mean velocities are linear in the imposed gradient. The the point-wise fields (see
Mei & Auriault 1989)

(A-2) v(0)
F = −K̂0(r, rp)

µ
· ∇P (0), P (1) = Ŝ1(r, rp) · ∇P (0)

where the tensors K̂0(r, rp) and Ŝ1(r, rp) are to leading order periodic and vary on the
system length scale, r and the pore scale, rp. These point-wise defined fields are obtained for
an appropriate unit cell computation that in essence corresponds to solving the equations

(A-3) ∇p · K̂0 = 0, −(δ +∇pŜ1) =∇p · ep(K̂0), and K̂0|ΓSF
= 0

within the volume ΩF of the unit cell. The pore volume averaged fluid velocity may then
be written as

(A-4) 〈v(0)
F 〉F = −〈K̂0〉F

µ
· ∇P (0)

1
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where the pore averaged macroscopic permeability tensor is symmetric and positive-definite
(Mei & Auriault 1989). For the case of a stationary interface we obtain

(A-5) ∇ · 〈v(0)
F 〉F = 0,

and thus an elliptic equation for the pressure

(A-6) ∇′ · (〈K̂0〉F · ∇P (0)) = 0.

For a poroelastic medium, the bounding surface ΓSF can move relative to the fluid and
thus an overall fluid flow can arise due to local relative motion between the solid and liquid.
Let uS be the deformation field characterizing the mean-field induced strain in the solid
matrix. It follows that inside the pore,

(A-7) v(0)
F − ∂tu

(0)
S = −K̂0

µ
· ∇P (0).

In the unit cell and specifically inside the pore, v(0)
F is varying but ∂tu

(0)
S is constant. Thus

a cell-average of this equation yields

(A-8) 〈v(0)
F 〉F − φF∂tu

(0)
S = −〈K̂0〉F

µ
· ∇P (0).

Taking the divergence of both sides in this equation we get

(A-9) ∇ · 〈v(0)
F 〉F = φF∇ · (∂tu

(0)
S ) + (∇φF) · (∂tu

(0)
S )−∇ · (〈K̂0〉F

µ
· ∇P (0)).

In order to compare this to equations obtained by mixture theory, we postulate that at each
point the total field (stress or mean velocity) of the mixture comprises of suitably weighted
contributions from the solid and from the fluid phase. Define thus a pore averaged mean
fluid velocity vF = φ−1

F 〈v
(0)
F 〉F. The solid velocity is a constant as it is a macroscopically

varying quantity and so we can write ∂tu
(0)
S = vS. Using these results, we can write

equation (7.8) as

(A-10) φFvF − φF∂tu
(0)
S = −〈K̂0〉F

µ
∇P (0).

which may be rewritten as

(A-11) µφF〈K̂0〉F
−1 · (vF − vS) = −∇P (0).

This is identical to the expressions used in mixture theory.

Appendix B: Boundary layers and Brinkman corrections

In deriving equations (2.2)-(2.7), we retained terms corresponding to viscous dissipation
at the pore scale via a formal homogenization process while effects of shear at system scales
are of lower order and negligible. This is certainly valid in the bulk of the medium, far
away from any boundaries where the flow follows Darcy’s law. The first correction to the
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Darcy equation due to viscous effects in a rigid porous medium may be easily obtained by
continuing the analysis and calculating higher order terms in the expansion. This yields

(B-1) ∇p · v(1)
F =

1
µ
∇′ · (K̂0 · ∇′P (0))

and

(B-2) −(∇pP
(2) +∇′P (1)) + 2µ∇p · ep(v(1)

F )+

(B-3) 2µ(∇p · e′(v(0)
F ) +∇′ · ep(v(0)

F )) = 0.

We again obtain,

(B-4) ∇′ · 〈v(1)
F 〉F = 0

and the general form

(B-5) v(1)
F = −K̂1(r, rp)

µ
· ∇′P (1) + M̂1(r, rp) : e′(v(0)

F )

and

(B-6) P (2) = Ŝ2(r, rp) · ∇′P (1) + M̂2(r, rp) : e′(v(0)
F )

which is the anisotropic geometry dependent generalization of the Brinkmann correction
to the Darcy term in the bulk. Note that the permeability can change with time as well,
since the governing equations within the fluid phase are the Stokes equations and the
boundary conditions are applied to the instantaneous boundary between fluid and solid.
Thus the first viscous shear correction to this base Darcy flow that is a manifestation of
viscous effects at the system length scale or close to boundaries depends on details of the
porosity and microstructure. Provided these effects are small and contribute negligibly to
the quantity of interest, the flow-deformation coupling is accurately described by using a
modified Darcy-type model.

Near boundaries such as impermeable rigid walls or free interfaces - point wise velocity
and pressure fields vary rapidly over length scales comparable to the pore size. The local
flow field can no longer be described by a simple modification of Darcy’s law. It is however
unclear what exactly the governing equations would be. The idea of averaging breaks
down and a formal calculation indicates that effective transport coefficients depend on the
details of the microstructure. One may certainly use additional terms as that used in the
Brinkman model for the poroelastic equation - however there is no single functional form for
these extra terms. In fact, the exact form of the Brinkman equation for anisotropic media
is the subject of significant disagreement. While for a rigid porous medium, this results
in formulating asymptotically correct and general boundary conditions, such problems
do not arise when the porous medium is soft and can deform. The ability of the solid
constituent to sustain steady shear stresses implies that one may not have to resolve the
details of tangential fluid motion at pore scales at the interface. Indeed, the averaging
procedure results in equations that involve only the pore pressure and the deformation.
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Thus boundary conditions - equations (5.1)-(5.3) do not involve the fluid velocity in the
bed directly, but only arise via the pressure driven Darcy flux.

In this respect these equations differ from the recent work by Weinbaum and co-workers
(Du et. al. 2004; Han, Ganatos & Weinbaum 2005; Weinbaum, Tarbell & Damiano 2007)
who have studied the response of elastic fibers due to a shearing fluid flow in various
biological contexts. As an illustration, we consider their analysis of the viscoelastic recoil
of an hexagonal fiber array in a fluid after the removal of a point force applied at the tips.
They consider first the scenario where the background fluid is initially stagnant and each
fiber recoils passively via a local hydrodynamic drag. They then extend their results to
both small and large deflections with hydrodynamic interactions between different fibers
modeled using a modified permeability (see Han. et. al. (2005) for details). The fluid
motion past the recoiling array is determined by assuming that the aggregate array moves in
an ambient, Brinkman medium. However, the connection between the elastic deformation
of the bed and flow induced as elastic stresses relax, as well as the full three dimensional
nature of the coupling is not considered in their approach, which considers the steady
and transient response of a single fiber array in steady shear flow but does not take into
account coupled fluid-elastic effects that are likely to dominate the transient response as
the medium deforms.
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