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Despite the common use of the blooming metaphor, its floral
inspiration remains poorly understood. Here we study the physical
process of blooming in the asiatic lily Lilium casablanca. Our obser-
vations show that the edges of the petals wrinkle as the flower
opens, suggesting that differential growth drives the deployment
of these laminar shell-like structures. We use a combination of
surgical manipulations and quantitative measurements to confirm
this hypothesis and provide a simple theory for this change in the
shape of a doubly curved thin elastic shell subject to differential
growth across its planform. Our experiments and theory overturn
previous hypotheses that suggest that blooming is driven by dif-
ferential growth of the inner layer of the petals and in the midrib
by providing a qualitatively different paradigm that highlights the
role of edge growth. This functional morphology suggests new
biomimetic designs for deployable structures using boundary or
edge actuation rather than the usual bulk or surface actuation.

mechanics ∣ curvature reversal

Plant and fungal movements, although limited by the absence
of dedicated motile elements such as muscles, are neverthe-

less varied. They span a range of length and time scales, from
the rapid movements in microscopic nematophagous fungi (1),
to the slow opening and closing of leaf stomata. A striking exam-
ple of rapid movements is seen in the Venus flytrap, which snaps
in a fraction of a second as a result of an actively controlled
release of turgor across the thickness of the leaf, switching its
curvature (2). This and other examples of rapid movements in
plants and fungi usually involve slender geometries and may be
quantified in terms of the motion of water flow in a soft porous
solid (3). Morphological transitions that guide cell,tissue, leaf,
branch, root, and stem shape, on the other hand, are much slower
and are driven by differential growth. Here we consider a ubiqui-
tous example of plant movement driven by differential growth,
the blooming of a flower, the inspiration for much art and poetry
but surprisingly little science.

When a flower blossoms, its petals change curvature on a time
scale of a few hours to days, consistent with the idea that these
movements are growth driven. In flowers that bloom just once,
differential cell proliferation is the dominant mode of growth,
whereas in those that open and close repeatedly, cell elongation
plays an important role (4). Frequently proposed explanations for
petal movements posit a difference in growth rate between the
abaxial and adaxial sides (surfaces) of a petal or an active role
for the midribs (4, 5). However many flower petals have rippled
edges, and this raises another qualitatively different possibility
that we will explore here, namely that it is possible to change the
shape of a lamina via excess growth of the margins relative to the
center. This mechanism of differential planar growth has recently
been shown to both explain the morphology of saddle and ripple
shaped leaves and algal blades (6–10) and to engineer the shape
soft thin sheets using differential swelling (11). Indeed, our ap-
proach quantifies and synthesizes the observations of von Goethe
(12) who argued that flower petals are analogous to leaves phy-
siologically.

Observations and Experiments
We study the process of blooming in the common lily Lilium
casablanca as its popularity and large size makes it easily available

and amenable to manipulation. Anatomically, a lily bud consists
of 3 inner petals embraced by 3 outer sepals shown in Fig. 1 A
and B. All petals/sepals are convex doubly curved surfaces
(i.e., they are curved simultaneously in two orthogonal directions
at all points along the mid surface), with their longitudinal cur-
vature less than their lateral curvature. Both petal and sepals have
midribs that are bilayer composite structures (Fig. 2A) with a soft
leafy part (gray) that is contiguous with the petal/sepal and a stiff
woody part (green) that is distinct from the lamina. Whereas the
midrib of the outer sepals are featureless, those of the inner
petals have grooves into which the margin of the outer sepals
are tucked, as shown in Fig. 1A. This locking mechanism main-
tains the structural integrity of the bud while allowing for the
rapid deployment of the petals once blooming starts.

To follow the bud of the Lily Lilium casablanca, we place it
with its stem immersed in water in an environment of uniform
humidity and temperature, under continuous fluorescent lighting
and then film it with time lapse video to record the blooming
process at intervals of 1 min. The blooming process takes four
and a half days until the lily opens fully over which time we ensure
that the ambient conditions are kept constant (Movie S1). Fig. 1C
shows a typical opening sequence of a lily. During the first 4
days, the young green bud (10 cm long and 2.5 cm wide) absorbs
about 0.2 L of water, increasing in length by 10% and in diameter
by 20% and turns white. Although the bud is closed at the end
of this stage, it is ready to burst forth quite literally; evidence for
this can be seen by peeling back the outer sepals that show that
the inner petals have wrinkled edges, as shown in Fig. 2C. It is
worth pointing out that the inner petals wrinkle before blooming
whereas the outer sepals wrinkle at the end of blooming. At the
end of the fourth day (Fig. 1C and Movie S1) these growth-
induced stresses in the bud reach a critical value large enough
to overcome the petal-sepal lock. This causes the flower to bloom
rapidly as the petals/sepals reverse curvature and bend outward.
Simultaneously, wrinkles of typical wavelength (approximately
1.5 cm) develop along the edges of these laminae. To quantify the
growth of these tissues, we paint equidistant black dots (1-cm
apart) along both the periphery, the center, and along the midribs
of both the petal and sepal in their closed state and track them
over time. This allows us to measure the total in-plane relative
growth strain of the tissue along the long axis of the petal over
the period associated with blooming. We find that there is a
growth strain 10% of the midrib in both petals and sepals is
relatively uniform. However, the marginal growth strain in the
sepal in the longitudinal direction is more than 20% basally
and increases to nearly 50% distally (Fig. 3A). This lateral strain
gradient in a lamina of finite width can give rise to global saddle-
shaped structures as well as rippled edges (10) and is consistent
with our observations of wrinkling of the petal edges in the
prestressed bud and in the fully bloomed lily. In addition to
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the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.
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Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.
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Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.
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observations (5). However, this cannot and does not lead to the
reversal of curvature in the petals and is thus responsible only for
a small contribution to the final conformation of the flower.
Taken together these observations, combined with the edge rip-
pling of petals that is observed both in the bud and bloomed states
clearly shows that edge growth is both necessary and sufficient
for blooming, and hereuntofore we will focus on understanding
how this is brought about.

Mathematical Model of Blooming
At a mesoscopic scale, because both cell elongation and cell
proliferation lead to differential growth and strain, we see that
the mechanical basis for the margin-driven deployment of a dou-
bly curved petal stems from the coupling between bending and
stretching in thin curved shells. A minimal theory that couples
growth to the shape of a thin lamina of nonuniform thickness
takes the form of the Föppl–von Kármán equations (13) general-
ized to account for differential growth, both in the plane and
across the thickness (10), as well as a nonzero natural curvature
of the shallow shell. These may be written as

Δ
�
ΔΦ
t

�
− ð1þ νÞ

�
1

t
;Φ

�
þ E

2
ð½w;w� − ½w0;w0�Þ þ Eλg ¼ 0 [1]

ΔðDΔðw − w0ÞÞ − ð1 − νÞ½D;w − w0� − ½Φ;w� þ Ωg ¼ 0; [2]

where ∂xyP ¼ ∂2P∕∂x∂y, ΔP ¼ ∂xxP þ ∂yyP, ½P;Q� ¼ ∂xxP∂yyQ−
2∂xyP∂xyQþ ∂xxQ∂yyP, tðx;yÞ is the spatially inhomogeneous
thickness, ν is Poisson’s ratio, E is Young’s modulus, D ¼ Et3∕
12ð1 − ν2Þ is the bending stiffness of the shell that is assumed
to be made of a linear isotropic material, Φ is the Airy stress
potential, w0ðx;yÞ is the initial transverse coordinate, and
wðx;yÞ is the current coordinate. The in-plane differential growth
tensor is

λg ¼ ∂yyϵ
g
xx þ ∂xxϵ

g
yy − 2∂xyϵ

g
xy; [3]

while the differential growth gradient across the thickness leads
to a transverse curvature growth tensor

Ωg ¼ ∂xx½Dðκgxx þ νκgyyÞ� þ ∂yy½Dðκgyy þ νκgxxÞ� þ 2ð1 − νÞ∂xyðDκgxyÞ;
[4]

which is the equivalent pressure induced by transverse growth
gradients. Eq. 1 quantifies the incompatibility of the in-plane
strain due to (i) the difference in the Gauss curvature ½w;w� of
the shell (an intrinsic invariant of the surface) from its natural
value ½w0;w0� and (ii) the additional contribution from in-plane
differential growth. Eq. 2 describes the force balance in the
out-of-plane direction due to the in-plane stresses in the curved
shell and the growth curvature tensor associated with transverse
gradients in the growth. In light of our experimentally measured
growth strains shown in Fig. 3A we retain only the term ∂yyϵ

g
xx,

ignoring all other components of the in-plane growth strain
tensor and the transverse growth curvature tensor entirely, given
that our experiments eliminate the role of the midrib as the
primary driver of blooming,

To complete the formulation of the problem, we prescribe the
boundary conditions that the edge Γ of the shallow elliptical shell
is free of torques and forces, so that (13),

Df∂nn þ νð∂ss þ ∂sψ∂nÞgðw − w0ÞjΓ ¼ 0 [5]

fD½∂nΔþ ð1 − νÞ∂sð∂ns − ∂sψ∂sÞ� þ ∂nD½∂nn þ νð∂ss þ ∂sψ∂nÞ�
þ 2ð1 − νÞ∂sD½∂ns − ∂sψ∂s�gðw − w0ÞjΓ ¼ 0; [6]

where n is the unit normal and s is the arc length along the bound-
ary curve Γ of the elliptical shell which has a curvature ∂sψ .

The nonlinear system of partial differential Eqs. 1–6 has no
analytic solutions for general forms of the thickness and/or
growth strain tensor, and so one must resort to approximate
methods of solution. We use a combination of numerical method
that allows us to explore the parameter regimes of the pro-
blem, and also show that a simple exact solution for a class of
thicknesses and growth strains captures the essence of the
mechanisms at play.

Analysis
Numerical Simulations. We follow (14) and use a discrete approx-
imation to an elastic shell in terms of equilateral-triangular
elements, with the elastic energy density F ¼ Fs þ Fb as the sum
of the stretching energy Fs ¼

ffiffi
3

p
S

4
Σijðrij − a0Þ2, where rij is the cur-

rent spring length and a0 is the rest spring length and the bending
energy Fb ¼ Bffiffi

3
p Σαβð ~nα − ~nβÞ2, where ~nα and ~nβ are the unit nor-

mal vectors of the two facets, and S and B are the 2D Young’s
modulus and bending stiffness respectively. In the continuum
limit as a0 → 0, the total discrete energy density Fs þ Fb con-
verges to the continuum elastic energy density of a shell

F ¼ 1

2

ZZ �
Eh3

12ð1 − ν2ÞFb þ
Eh

1 − ν2
Fs

�
dxdy; [7]

where the bending energy density Fb ¼ ð∂xxwe þ ∂yyweÞ2þ
2ð1 − νÞ½ð∂xyweÞ2 − ∂xxwe∂yywe� with ∂ijwe ¼ ∂ij w − w0ð Þ − κgij and
the stretching energy density Fs ¼ ðϵexx þ ϵeyyÞ2 þ 2ð1 − νÞ
ðϵe2xy − ϵexxϵ

e
yyÞ with ϵeij ¼ ϵij − ϵgij. The Euler–Lagrange equations

associated with the functional in Eq. 7 yield Eqs. 1 and 2.
Minimizing the discrete energy given above as a function of

the relative in-plane growth strain, characterized in terms of
the variations in the rest length a, allows us to simulate the
deployment of the petal/sepal. Scaling all lengths by the thickness
of the petal (h ¼ 1 mm), we generate an elliptical shallow shell
of semimajor axis a ¼ 25 (longitudinal axis x) and semiminor axis
b ¼ 10 (lateral axis y) with natural curvatures κx ¼ 0.04 and
κy ¼ 0.02. To mimic the differential growth gradients in the petal,
we increase the rest length of the springs using the form ϵgxx ¼
ðy∕bÞ4 þ e−ðb−yÞ; the first term generates the global saddle shape
whereas the second is responsible for edge rippling, simulating
the behavior of outer sepals. To minimize the discrete analog
of Eq. 7, we use a damped molecular dynamics method (15)
with a series of incremental growth strains of 0.01% followed
by 100,000 steps with time step Δt ¼ 0.1 until equilibrium is
reached. The results are shown in Fig. 3B, and as a movie
(Movie S2), and clearly show both the blooming process as well
as the subsequent wrinkling of the edge. Variations in lateral
growth gradients can lead to a reversal of the sequence of the
event such that edge rippling precedes global curvature change.

Whereas our numerical simulations allow us to probe the
effect of strong edge-localized lateral growth gradients in an
elliptical doubly curved elastic shell and are consistent with
experimental observations, they do not expose the underlying
simplicity of the mechanisms involved. This can be seen using
an analytic theory, which we turn to next.

Simplified Theory.We focus on the consequence of minimal quad-
ratic gradient in the growth strain that yields an exactly solvable
theory of blooming, analogous to that thermally induced buckling
in shells (13). It is sufficient to consider a single petal, modeled as
a shallow elliptical shell of semimajor axis a (longitudinal axis x)
and semiminor axis b (lateral axis y) with a naturally convex
shape, as shown in Fig. 4A. We describe its transverse coordi-
nate using w0 ¼ − 1

2
ðκx0x2 þ κy0y2Þ with κx0 > 0 and κy0 > 0 the
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spontaneous principal curvatures. For convenience, we define a
dimensionless parameterm ¼ κx0∕κy0 to characterize the shape of
the natural curved petals; for most petals m ∈ ½0;1�, so that they
are weakly curved longitudinally and strongly curved laterally.
Following our observations and measurement on lily petals
and sepals, we assume that the dominant contribution to the
growth is given by ϵgxx ¼ gðy∕bÞ2 with g > 0 denoting the maximum
value at the edge, and ϵgyy ¼ ϵgxy ¼ 0. The current transverse coor-
dinate takes the form of w ¼ − 1

2
ðκxx2 þ κyy2Þ with κx and κy the

principal curvatures of the deformed shape. Finally, we assume
that a petal may be modeled as a shell with a lenticular cross-
sections (i.e., a thickness t ¼ t0ð1 − x2

a2 −
y2

b2Þ) where t0 is the max-
imum thickness of the shell at its center, so that its bending
rigidity is

D ¼ D0

�
1 −

x2

a2
−
y2

b2

�
3

; [8]

where D0 ¼ Et30∕12ð1 − ν2Þ. Then, if the Airy stress potential

Φ ¼ βDðx;yÞ [9]

with β an unknown constant that describes the in-plane elastic
response, we find that along the boundary Γ of the elliptical shell

DjΓ ¼ ∂nDjΓ ¼ ΦjΓ ¼ ∂nΦjΓ ¼ 0 [10]

vanish identically so that the boundary conditions Eqs. 5 and 6
are also satisfied identically. The assumption of a lenticular
cross-section with a thickness that varies quadratically (at least)
is tantamount to stating that the forces and torques on the edges
vanish faster than either the in-plane stress or the curvature, so
that the edges are automatically free of forces and torques (13).

The above assumption of a quadratic form for the lenticular
cross-section, the original and the current displacement field
and the growth strain allows us to reduce Eqs. 1 and 2 to a
set of three nonlinear algebraic equations (13)

κ̄xκ̄y − κ̄x0κ̄y0 ¼ −β − βg [11]

ð1þ ν − βÞðκ̄x þ κ̄yÞ ¼ ð1þ νÞðκ̄x0 þ κ̄y0Þ [12]

ð1 − νþ βÞðκ̄x − κ̄yÞ ¼ ð1 − νÞðκ̄x0 − κ̄y0Þ; [13]

with three dimensionless unknowns β, κ̄x, and κ̄y. Here,
βg ¼ 2g∕b̄2 is a measure of growth strain, β is a measure of the
elastic in-plane strain as characterized by (9), κ̄x0 ¼ κx0L,
κ̄y0 ¼ κy0L, κ̄x ¼ κxL, κ̄y ¼ κyL, and b̄ ¼ b∕L, with the intrinsic
length L ¼ ab

t0
ð 1−ν2
4þ2νþ5ða2∕b2þb2∕a2ÞÞ1∕2 ≡ λ1∕2ab∕t0. It is useful to

introduce a parameter α ¼ κ̄x0κ̄y0 ¼ mκ̄2y0, a rescaled natural
Gauss curvature that measures the bend-stretch coupling, so that
there is a critical growth strain β�g ¼ β�gðκ̄x0;κ̄y0Þ that demarcates
the stretch-dominated regime from the bend-dominated regime.

To see how a petal changes its geometry during blooming, we
first explore the case of naturally curved spherical shell with
κ̄x0 ¼ κ̄y0 ¼ κ̄0 > 0 (or m ¼ 1), so that Eqs. 11–13 read

κ̄xκ̄y − κ̄20 ¼ −β − βg [14]

ð1þ ν − βÞðκ̄x þ κ̄yÞ ¼ 2ð1þ νÞκ̄0 [15]

ð1 − νþ βÞðκ̄x − κ̄yÞ ¼ 0. [16]

The above equations have two solution regimes depending on the
magnitude of the differential growth βg relative to a critical value

β�gðκ0;κ0Þ ¼ ð1 − νÞ þ 1
4
ð1 − νÞð3þ νÞκ̄20 as for thermally induced

buckling (13).
(i) Before buckling: 0 < βg < β�g . From Eq. 16, we see that if

1 − νþ β ≠ 0, then κ̄x ¼ κ̄y, and the first two Eqs. 14 and 15 yield
the cubic

ðκ̄x − κ̄0Þfκ̄xðκ̄x þ κ̄0Þ þ 1þ νg þ βg κ̄x ¼ 0; [17]

with only one real root for κ̄x, and furthermore

β ¼ ð1þ νÞ
�
1 −

κ̄0
κ̄x

�
: [18]

Thus we see that as the growth strain βg increases from zero, the
shell unbends slowly but remains spherical, while the in-plane
strain β decreases monotonically as shown in Fig. 4C.

(ii) After buckling: βg ≥ β�g ðκ̄0;κ̄0Þ > 0. Now the curvatures
are unequal after buckling (i.e., κx ≠ κy), so that third of Eq. 16
requires β ¼ ν − 1. Then we may solve for the curvatures from
Eqs. 14 and 15 to get

κ̄x ¼
1þ ν

2
κ̄0 − ðβg − β�g Þ1∕2 [19]

κ̄y ¼
1þ ν

2
κ̄0 þ ðβg − β�gÞ1∕2; [20]

i.e., there is a pitchfork bifurcation in the solution and the shell
suddenly unbends anisotropically with the petal bending outward
longitudinally while curving inward laterally. Fig. 4B shows three
typical configurations of a shell with an elliptical planform cut
from a spherical cap as it opens. We pause to observe that when
βg > β�g , the stretching strain β ¼ ν − 1 becomes constant, indicat-
ing the exchange of stability from a stretch-dominated regime to a
bend-dominated regime of the shell occurs via pitchfork bifurca-
tion as shown in Fig. 4D. Any further in-plane growth is converted
directly to bending deformations, so that the shell becomes a
perfectly efficient bending actuator beyond the bifurcation. The
subsequent increase in longitudinal curvature is consistent with
earlier observations (5), as well as our own.

More generally, when a petal is not spherically curved,
0 < κ̄x0 < κ̄y0 (or m < 1), the in-plane response characterized
by β must be found by solving a quintic defined by Eqs. 11–13

ð1þ ν − βÞ2½4ð1 − νþ βÞ2ðκ̄x0κ̄y0 − β − β0Þ þ ð1 − νÞ2ðκ̄x0 − κ̄y0Þ2�
− ð1 − νþ βÞ2ð1þ νÞ2ðκ̄x0 þ κ̄y0Þ2 ¼ 0; [21]

using, for example, the polynomial root solver FindRoot in
Mathematica (Fig. 4D). Again the shape of the petal as a function
of the growth strain (i.e., κ̄x and κ̄y) is obtained fromEqs. 12 and 13
as shown in Fig. 4D. We see that for nonspherical petals when
m < 1, the pitchfork bifurcation is unfolded so that there is
no sudden transition and the petal opens smoothly. However,
there is still a critical value of the growth strain β�g ðκ̄x0;κ̄y0Þ that
separates the stretch-dominated and bend-dominated regimes.
In terms of the total elastic energy of the petal (see Eq. 7) and
its discrete analog, the critical point β�g is found when ∂βg∂βg Fs

reaches a maximum, which ∂βg∂βg Fs signifies a switch from stretch-
dominated deformations to bend-dominated deformations just as
for a spherical curved shell with m ¼ 1, as shown in Fig. 4E. In-
deed, this transitionmay be quantified in terms of the stretch-bend
geometric coupling parameter α ¼ κ̄x0κ̄y0 ¼ mκ̄2y0 ∼ Δx0Δy0∕t20
where Δx0 ¼ λ1∕2a2κx0 and Δy0 ¼ λ1∕2b2κy0 are the longitudinal
and lateral rise respectively (16). In Fig. 4E, we see that when
α ≪ 1, the critical scaled growth strain β�g is small, whereas when
α > 1, the critical growth strain β� is large (i.e., a weakly curved
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petal will open when the growth strain is quite small, or equiva-
lently, for a given growth strain rate associated with lateral gradi-
ents, a highly curved petal will openmore slowly) a simple testable
prediction of our theory.

Discussion
Our observations, experiments, theory, and simulation show that
the dynamic deployment of petals during blooming is an edge-
driven morphological transition in a curved lamina, thus illumi-
nating Goethe’s analogy between leaves and flowers (12) using
physics, with an important qualitative difference, namely that
flower petals are almost always naturally curved, unlike leaves.
This example of functionally driven convergent evolution also

has implications beyond biology. In addition to infusing a scien-
tific aesthetic into a thing of beauty, our study suggests a biomi-
metically inspired approach to thin film morphologies that may
be controlled by edge actuation rather than surface actuation,
with some similarities to engineer the shape of elastic sheets using
a tunable metric (11) but here emphasizing the role of the bound-
ary in controlling the behavior in the interior, and easily adapting
as a design tool for a new generation of bimorphs.
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Supplementary Information for “How the Lily Blooms”
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I. THE RELATIVE ROLE OF EDGE ACTUATION

Having demonstrated that the midrib is unnecessary for the actuation of the blooming

response (Fig.2, main text), we now focus on the role of edge actuation on blooming by

considering the morphology of the petal/sepal (without midribs) both before and after the

edges have been surgically removed. In Fig.S1, we show the results of these experiments.

We can see that sepal/petal whose edge is cut opens out and exhibits a smaller curvature

compared to those with intact edges, as viewed from two perspectives. In Fig.S1, the average

radius of curvature of the intact petal is ∼ 2cm while that of the one with edges removed is

∼ 5cm. We see that there is a variation of the curvature as a function of location along the

longitudinal axis of the petal; in particular removing the edges causes the petal to spring

back near the apex much more than near the base. This is because edge actuation is far

more dominant where the petal-midrib composite is thinner (and less stiff), i.e. near the

apex.

Thus, we see that the dominant mechanism underlying the blooming of a lily is that of

edge actuation of a thin lamina. Of course there are quantitative corrections to this due

to the presence of a midrib of thickness that varies along the longitudinal axis and a hinge

-like actuation at the base itself, but the qualitative feature of curvature change induced by

lateral growth persists, as evidenced by our surgical and mechanical measurements.

II. THE RELATIVE CONTRIBUTION OF THE LEAFY AND WOODY PARTS

OF THE PETAL TO ITS STIFFNESS

In cross-section, a petal can be seen to be made of a woody midrib and a leafy tissue

that forms the petal itself, as shown in Fig.S2. The leafy region has a thickness t = 0.5mm

and a midrib of diameter d = 2mm, and the cross section of a petal may be geometrically

approximated by a half circle at the onset of opening, with a radius r = 10mm. To assess

1



FIG. S1: The shape of petals with and without its lateral edges. Midribs of both petals have been

removed. (a) and (c) show the same petal with edge intact from two different perspectives, while

(b) and (d) show the same petal with the edge removed from the same two perspectives. We see

that near the apex, the curvature of the petal with intact edges is much larger than that of the

petal with its edges removed. Near the base, the curvature of the petal with and without its lateral

edges is similar because the thickness of the leafy and woody parts and thus the stiffness of the

petal is so large that edge actuation alone is not enough.

the contributions of the two materials to the stiffness of the whole petal, we measured the

Young’s modulus of the leafy part El and woody parts of the midrib Em using a microtensile

tester (CMT80202 dual column electromechanical universal testing machine, MTS Systems

Co.), after these regions were surgically separated from the leaf. We find that El = 5 MPa

and Em = 20 MPa. Similar measurement on herbaceous plants shows that the Young’s

modulus of parenchyma (leafy) and the sclerfied (woody) tissues are around 102MPa and

103
∼ 104MPa [1]. The neutral axis of the composite is given by the expression

y =

∫ π
0

r2t sin θdθ + Amr

πrt + Am

= 8.0mm (S.1)

where the effective area of midrib is Am = (Em/El)πd2/4 = 12.6mm2. The bending stiffness

of leafy part is

Bl = El

∫ π

0

(r sin θ − y)2trdθ = 948.7Nmm2 (S.2)

The bending stiffness of midrib is

Bm = Em[
πd4

64
+ Am(r − y)2] = 271.7Nmm2 (S.3)

Therefore, the contributions of leafy part and midrib to the total bending stiffness are 78%

and 22% respectively, so that to a first approximation, we may neglect the effect of the

midrib in determining the stiffness of the petal.
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FIG. S2: The geometry of petal/sepal. The leafy part is well approximated by a semi-circle of

radius r over much of its length, and the midrib is well approximated by a circle of diameter d.

[1] Moulia B, Fournier M. (1997) Mechanics of the maize leaf: a composite beam model of the

midrib.Journal of Materials Science, 32, 2771-2780.
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