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We analyze a model of mutually propelled filaments suspended in a two-dimensional solvent. The

system undergoes a mean-field isotropic-nematic transition for large enough filament concentrations, and

the nematic order parameter is allowed to vary in space and time. We show that the interplay between

nonuniform nematic order, activity, and flow results in spatially modulated relaxation oscillations, similar

to those seen in excitable media. In this regime the dynamics consists of nearly stationary periods

separated by ‘‘bursts’’ of activity in which the system is elastically distorted and solvent is pumped

throughout. At even higher activity, the dynamics becomes chaotic.
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Colonies of motile microorganisms, the cytoskeleton
and its components, cells, and tissues have much in com-
mon with soft condensed matter systems (i.e., liquid crys-
tals, amphiphiles, colloids, etc.), but in addition they show
new phenomena associated with the fact that the constitu-
ent particles are active: They consume and dissipate energy
to fuel internal changes that generally lead to motion.
When active particles have elongated shapes, as seen in
cytoskeletal filaments and some cells, they undergo orien-
tational ordering at high concentration to form liquid crys-
talline phases. The theoretical and experimental study of
active materials has disclosed a wealth of emergent behav-
iors, such as the occurrence of giant density fluctuations
[1], the emergence of spontaneously flowing states [2],
unconventional rheological properties [3], and new spatio-
temporal patterns not seen in passive complex fluids [4,5].
In this Letter, we show that active nematic suspensions
behave as excitable media, showing relaxation oscillations
that couple activity to spontaneous pulsatile flow with
quiescent periods in between, similar to biological pumps.
This hydrodynamic phenomenon arises as a consequence
of the existence of multiple time scales in the system, when
the dynamics of the flow lags with respect to the rate of the
active forcing exerted at the microscopic scale, and is thus
very different from the large-scale fluctuations previously
observed in simulations with noise and no hydrodynamics
[4]. In addition, we see that the orientational dynamics
of the system associated with nematic ordering can give
rise to large-scale swirling motions resembling those
observed in recent motility assay experiments [6] even in
the absence of polar order. Our system consists of a two-
dimensional suspension of filaments of length ‘ in a sol-
vent. The filaments are mutually propelled, for example,
through the action of a motor cluster that binds pairs of
filaments. The dynamical variables in such a system are the
particle concentration c, the solvent flow field v, and the
nematic tensor Qij ¼ Sðninj � 1

2�ijÞ, with S the nematic

order parameter and n the director field, all of which are

allowed to vary in space and time. The total density of the
system � is conserved, so the fluid is assumed to be
incompressible. The total number of active particles is
also constant; thus, the concentration c obeys the continu-
ity equation:

@tc ¼ �r � ðjp þ jaÞ; (1)

where jp and ja are, respectively, the passive and active
contributions to the current density. The passive current
density has the standard form jpi ¼ cvi �Dij@jc, where

Dij ¼ D0�ij þD1Qij is the anisotropic diffusion tensor,

while the active current can be constructed phenomeno-
logically to be of the form jai ¼ ��1c

2@jQij or derived

from microscopic models [7]. Here the factor c2 reflects
the fact that activity arises from interactions between pairs
of rods, while the constant�1 describes the level of activity
and is proportional to the concentration of motors and the
rate of adenosine-triphosphate consumption. The flow ve-
locity obeys an active form of the Navier-Stokes equation

�@tvi ¼ ��vi � @ipþ @j�ij; (2)

with � the viscosity, p the pressure, and the active stress
tensor �ij given by

�ij ¼ ��SHij þQikHkj �HikQkj þ �2c
2Qij: (3)

Here r � v ¼ 0, and the first three terms on the right side
of Eq. (3) represent the contribution to the elastic stress
due to the liquid crystalline nature of the system, with
Hij ¼ ��F=�Qij the molecular tensor defined from the

two-dimensional Landau–de Gennes free energy:

F=K ¼
Z

dA

�
1

2
ðr �QÞ2 þ 1

4
ðc� c�ÞtrQ2 þ 1

4
cðtrQ2Þ2

�
;

whereK is both the splay and bending stiffness (in the one-
constant approximation). At equilibrium, above the critical

concentration c�, S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2trQ2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�=c

p
consistent

with hard-rod fluid models. The last term in Eq. (3) was
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first introduced in Ref. [8] and represents the tensile or
contractile stress exerted by the active particles in the
direction of the director field n, with �2 a second activity
constant. Finally, the nematic order parameter Qij satisfies

a hydrodynamic equation that can be obtained by con-
structing all possible traceless-symmetric combinations
of the relevant fields, namely, the strain-rate tensor uij ¼
1
2 ð@ivj þ @jviÞ, the vorticity tensor !ij ¼ 1

2 ð@ivj � @jviÞ,
and the molecular tensor Hij [9], so that

½@t þ v � r�Qij ¼ ��1Hij þ �Suij þQik!kj �!ikQkj;

(4)

where � is an orientational viscosity, and the additional
terms on the right-hand side describe the coupling between
nematic order and flow in two dimensions, with � the flow-
alignment parameter which dictates how the director field
rotates in a shear flow and affects the flow and rheology
of active systems [2,3]. The dynamics of such an active
nematic suspension is governed by the interplay between
the active forcing, whose rate ��1

a is proportional to the
activity parameters �1 and �2, and the relaxation of the
passive structures, the solvent and the nematic phase, in
which energy is dissipated or stored. The response of the
passive structures, as described here, occurs at three differ-
ent time scales: the relaxational time scale of the nematic
degrees of freedom �p ¼ ‘2=ð��1KÞ, the diffusive time

scale ‘2=D0, and the dissipation time scale of the solvent
�d ¼ �L2=�, with L the system size. While the presence
of three dimensionless parameters makes for a very rich
phenomenology, we temporarily assume that the three
passive time scales are of the same magnitude �p. When

�a � �p, the active forcing is irrelevant and the system

is akin to a passive suspension. On the other hand, when
�a � �p, a stationary regime can exist wherein the active

stresses are balanced by both elastic distortion and flow.
Finally, when �a � �p, the passive structures will fail to

keep up, leading to a dynamical and possibly chaotic inter-
play between activity, nematic order, and flow. To quantify
these different regimes, we first make the system dimen-
sionless by scaling all lengths by using the rod length ‘,
scaling time with the relaxation time of the director field
�p, and scaling stress by using the elastic stress� ¼ K‘�2.

Linear stability analysis about the homogeneous solution
reveals that coupling between orientation and flow triggers
an instability at a lower critical value of �2:

��
2 ¼

4	2½2�þ S20ð1� �Þ2�
c20L

2S0ð1� �Þ (5)

and results in a spontaneous flowing banded state shown
in Fig. 1 (top). In general, shear flow causes the director
field to rotate for � � 1, which generates elastic stress. For
small activity, the elastic stiffness dominates and sup-
presses flow, while above ��

2 we observe collective motion.
This is the spontaneous flow transition already observed in

the absence of nematic order parameter fluctuations [2]. To
go beyond linear stability analysis, we numerically inte-
grated Eqs. (1)–(4) on a two-dimensional periodic domain
with an initial configuration of a homogeneous system
whose director field was aligned along the x axis subject
to a small random perturbation in density and orientation,
with �1 ¼ �2=2, � ¼ D0 ¼ D1 ¼ 1, �¼0:1, and L¼10.
We used a vorticity or stream-function finite difference
scheme on a collocated grid of lattice spacing �x ¼ �y ¼
0:078. Time integration was performed via a fourth-order
Runge-Kutta method with time step �t ¼ 103. As pre-
dicted by the linear stability analysis, at low activity
the system relaxes to a stationary homogeneous state

with vx ¼ vy ¼ 0 and S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�=c

p
. Above the critical

value ��
2, the system forms two bands flowing in opposite

directions. The solution is constant along the flow direction
(see Fig. 1, top), while the direction of the streamlines (in
this case along the x direction) is dictated by the initial
conditions. As shown in Fig. 2, the extrema in the flow
velocity correspond to the maximal distortion of the direc-
tor field n. Variations in concentration c and the nematic
order parameter S are of the order of 2% with a minimum
in S at the center of a flowing band due to the balance
between diffusive and active currents. Upon increasing the
value of the activity parameter above �2 ¼ 0:41, the spon-
taneously flowing state evolves into a pulsatile flow.

FIG. 1 (color online). The velocity field (left) and the director
field (right) superimposed to a density plot of the concentration
and the nematic order parameter for �2 ¼ 0:4 (top) and �2 ¼ 3
(bottom). The colors indicate regions of large (green) and small
(red) density and large (blue) and small (brown) nematic order
parameter. For moderate values of �2, the flow consists of two
bands traveling in opposite directions with the director field
nearly uniform inside each band. For large �2, the flow is
characterized by large vortices that span lengths of the order
of the system size, and the director field is organized in grains.
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Figure 3 (top left panel) shows a plot of the x and y
components of the flow velocity in the center of the box
for �2 ¼ 1:5. In this regime the dynamics consists of a
sequence of almost stationary passive periods separated
by active bursts in which the director switches abruptly

between two orthogonal orientations. During passive peri-
ods, c and S are nearly uniform, there is virtually no flow,
and the director field is either parallel or perpendicular to
the x direction. Eventually, this configuration breaks down
and the director field rotates by 90� (see Fig. 3). The
rotation of the director field is initially localized along
lines, generating a band of flow similar to those in Fig. 1
(top). The flow terminates after the director field rotates
and a uniform orientation is restored. The process then
repeats. The rotation of the director field occurs through a
temporary ‘‘melting’’ of the nematic phase. As shown in
Fig. 3, during each passive period the nematic order pa-

rameter is equal to its equilibrium value S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�=c

p
but drops to �ð2=5ÞS0 during rotation. The reduction of
order is system-wide but, as shown in the middle in the
bottom-left panel of Fig. 3, is most pronounced along
the boundaries between bands. Without transient melting,
the distortions of the director field required for a burst are
unfavorable for any level of activity. A video showing the
dynamics of an active burst is available as supplemental
online material [10].
Oscillatory phenomena have been shown to arise from

nonlinear stress-strain relationships in models of passive
complex fluids under shear [11]. Here we show that excit-
ability can arise in a model for active nematic fluids
without external forcing, driven by the competing time
scales of internal activity, flow, and microstructure relaxa-
tion. To understand this quantitatively, we construct a
minimal set of equations that captures this competition
between time scales and retains the minimal features re-
sponsible for excitability: the coupling between active
forcing and the fluid microstructure and the variable ne-
matic order embedded in the Landau–de Gennes free en-
ergy. We approximate Q2

xx as a constant and uxx 	 0, let
u ¼ �uxy and Q ¼ Qxy, and drop the coupling between

Qij and!ij. Equations (2) and (4) can then be expressed in

Fourier space as

_Q ¼ aQ� bQ3 � u; (6a)

_u ¼ k2ð�Q� �uÞ; (6b)

where k is a wave number of an arbitrary spatial mode and
a and b are proportional to the inverse rotational viscosity
��1. Equation (6) has the form of the FitzHugh-Nagumo
model for excitable dynamical systems [12]. For �<
�c ¼ �ð2aþ �k2Þ=3, the system rapidly relaxes to a state
characterized by a finite strain rate that balances the active

stress with �u ¼ �Q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� �=�Þ=bp

. For �> �c,
this state becomes unstable and the trajectory converges
to a limit cycle with a frequency 
� k2�. In comparison,
the frequency of oscillations as a function of �2 for the full
equations is shown in Fig. 4. As anticipated, when the
active and passive time scales are comparable, the active
forcing is accommodated by the microstructure leading to
a distortion of the director field and a steady flow.

FIG. 3 (color online). Dynamics of active ‘‘burst’’ for �2 ¼
1:5. The flow velocity at the point x ¼ y ¼ L=3 is shown as a
function of time over the course of a director field rotation (top
left), and the director field is shown for the three labeled time
points. Between two consecutive bursts, the system is homoge-
neous and uniformly aligned. During a burst, nematic order is
drastically reduced in the whole system, and the director under-
goes a distortion with a consequent formation of two bands
flowing in opposite directions. Concentration fluctuates by
only about 10%. After a burst, a stationary state is restored
with the director field rotated of 90� with respect to its previous
orientation.

FIG. 2 (color online). The hydrodynamic fields c, S, �, and vx

along the y axis for �2 ¼ 0:4. The yellow region indicates the
band visible in the top panels of Fig. 1.
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However, when the active forcing rate is increased, the
microstructure dynamics lags, resulting in relaxation os-
cillations. The critical active rate can be obtained by re-
writing �c in terms of time scales defined above to give
3��1

a ¼ ð2a��1
p þ ‘2k2��1

d Þ, with �a ¼ �=�. The origins

of the kink at �2 ¼ 1:35 are unclear at present, but it does
not correspond to excitation of a spatial mode of a larger
wave number.

Returning to the full equations, when the activity is
further increased, the sequence of bursts and flow patterns
becomes more complex and eventually chaotic. Figure 1
(bottom) shows a typical snapshot of the flow velocity and
the director field superimposed to a density plot of the
concentration and the nematic order parameter, respec-
tively. The flow is characterized by large vortices with
patches, or ‘‘grains,’’ where the director field is uniformly
oriented. The relatively narrow grain boundaries span the
entire system and are the fastest flowing regions in the
system. In this regime, the dynamics is characterized by
sets of grains of approximatively uniform orientation that
swirl around each other and continuously merge and re-
form. Other examples of chaotic flows in active fluids have
been reported in models of dilute bacterial suspensions
with no liquid crystalline elasticity [13] (see also Ref. [2]).

Our analysis of the hydrodynamics of active nematic
suspensions in two dimensions shows that allowing spatio-
temporal fluctuations in the magnitude of the nematic
order parameter S qualitatively changes the flow behavior
as compared to systems in which S is constrained to be
uniform, most notably leading to excitable behavior. We
note that both the flip-flop dynamics (Fig. 3) and the
swirling motion (Fig. 1, bottom) resemble behavior ob-
served in the motility assay experiments of Schaller et al.
[6]. While those experiments consider polar filaments, our
analysis of mutually propelled rods with nematic order
suggests that these classes of patterns can emerge even in
the absence of polar order. Finally, we note that excitability
is crucial to many biological functions, such as cardiac
rhythms and the nervous system. While relaxation oscil-
lations in those systems arise from heavily regulated

networks of chemical and electrical signals, the predictions
of our model suggest that they can also emerge directly
from the physical interactions among constituent compo-
nents of a cell.
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