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Whenever we ascribe artistic qualities to nature or
natural qualities to art, we overlook crucial distinctions. It is
one thing to contemplate waves crashing on the shore, candle
flames flickering, or swirling whitewater rapids; quite an-
other to transform, transcribe, or depict those scenes in a
work of art; and still another to let the physical phenomena
per se—waves, instability, turbulence—contribute to the
making of an art object. Whether representational or abstract,
all art is, in essence, artifice. And while the physical proper-
ties of materials undeniably constrain what artists can accom-
plish, the creative process must transcend physics or else
cease to be creative. The prerogative of artists is to shape their
medium—be it liquid paint, colored sand, or molten
bronze —according to an aesthetic vision, to intervene
rather than yield to how materials would naturally be- pm
have. As Voltaire remarked, “le secret des arts est de
corriger la nature” (the secret of the arts is to correct
nature).!

All the same, many artists willfully transgress the
boundary between art and physics. Leonardo da
Vinci’s drawings of water flows and flying machines,
for example, reflect such precision and methodologi-
cal rigor that even present-day engineers, anatomists,
and botanists consider him one of their own. The gears
and pulleys in Giovanni Battista Piranesi’s Carceri en-
gravings® may be situated in fantastical settings but
appear mechanically operational. Alexander Calder’s
mobiles and, more recently, Richard Serra’s sculptures,
such as Prop, in which objects lean on each other, de-
pend on precarious mechanical balance for their very
stability and make a virtue of basic physics. Robert
Morris and Eva Hesse, by using flexible materials in
their hanging sculptures, offer solutions to complex
problems in geometry and elasticity. Robert Smith-
son’s glue and asphalt pourings and Lynda Benglis’s
poured latex and polyurethane foam sculptures owe
their shapes to the flow and solidification of complex
liquids.

Figure 1. Jackson Pollock (1912-56), at work in 1949,
photographed by Martha Holmes. Pollock appears to be
using a relatively viscous paint that forms a continuous
jet of fluid he controls by moving a trowel up, down, or
across the canvas. (Photograph © Time Inc, Getty Im-
ages.)
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An innovator who tested aesthetic boundaries in a man-
ner particularly intriguing to physicists and who influenced
a generation of artists—Morris, Smithson, and Benglis
among them —was the American abstract expressionist Jack-
son Pollock. He developed a new painting technique by pour-
ing and occasionally dripping liquid pigment onto a canvas
stretched horizontally on the floor, as pictured in figure 1. In
so doing, he creatively ceded some of the responsibility for
the appearance of his work to natural phenomena, inviting
fluid dynamics to coauthor his pieces. Long recognized as an
important achievement by art historians,® Pollock’s highly
original and influential contribution has recently received
closer attention from physicists interested in the scaling
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Figure 2. Jackson Pollock’s Autumn Rhythm (1950) displays continuo
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us, meandering lines—jet traces—and numerous drop and

stain marks. The original artwork (267 x 526 cm) hangs in the Metropolitan Museum of Art in New York.

properties of his tangled webs* and in the physical con-
straints of the pouring technique.’

Although the artist co-opted gravitationally driven
flows to achieve his aims, the fluid dynamical aspects and im-
plications of his process have remained largely unexplored.
In this article, we examine the mechanics of Pollock’s tech-
nique, including the physics of lifting and dispensing paint,
and the fundamental role of instabilities in a free viscous jet—
the thin, continuous thread of paint streaming from a brush
or trowel.

Painting with drops
Drip painting, the label often associated with Pollock’s
work, suggests that he primarily relied on drops, or discrete
dribbles of liquid pigment, to create his abstractions. In
the popular imagination, dripping so defines the artist’s
modus operandi that the pejorative moniker “Jack the
Dripper,” coined by Time magazine in 1956, has enjoyed
remarkable longevity. But while separate spots do appear
in his paintings, the predominant effect of his abstract
work, including such best-known pieces as the 1950
Autumn Rhythm, shown in figure 2, is that of a web of sinu-
ous and undulating curves created by continuous filaments
of paint.®

Paintings in which drop splashes dominate the compo-
sition are rare in Pollock’s production, although the artist
could readily have achieved that effect. The majority of the
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discrete marks, moreover, were most likely an accidental con-
sequence of his painting technique, not the result of planning.
It can therefore be argued that Pollock sought to have flow-
ing, continuous lines command the spectator’s primary atten-
tion and that his abstractions are more accurately described
as stream paintings.

That distinction is not merely a matter of semantics. If
the drop marks were more prevalent—either more promi-
nent or simply more numerous—the visual impact would
have been dramatically different, closer to the work of Sam
Francis, an American artist influenced by abstract expres-
sionism. In many of his canvases, even those not purely
abstract, discrete drop splashes or sprayed dots dominate
the field.

Another common assumption is that Pollock simply
poured paint directly from a can or other container. Though
perhaps he occasionally did so, he usually dispensed pig-
ment in a more refined way, which provided greater control
over the flow rate and produced a steadier stream for making
fine lines. He dipped a stick or trowel into a can containing
pigment, rapidly lifted his implement with paint adhering to
it, and then let a stream run down onto the canvas below.

As the paint ran out and the flow rate decreased, the jet
naturally broke into droplets. It is safe to conjecture that nu-
merous marks were created that way—the appearance of
drops perhaps reminded Pollock it was time to reload the
trowel. But drops can be produced in another way: When a
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coherent jet becomes hydrodynamically
unstable, it evolves into a cascade of drops,
a process dependent on the fluid proper-
ties and geometry of the jet. That process
of jet breakdown is particularly conspicu-
ous in some of Robert Motherwell’s paint-
ings from the Beside the Sea series—see, for
example, figure 3. Evidently, the jets and
drops visible in those works resulted from
sprays created by rapid flicks of an ink-
laden brush above the paper, which
recorded, in several instances, jet break-
down as it occurred.

In contrast, judging from their round
shapes, the majority of the drops discern-
ible in Pollock’s abstractions were likely
due to dripping from a stationary or nearly
stationary trowel. For sufficiently low flow
rates, drops would break away from a
trowel of radius r, with the paint mass 6m
given by the Rayleigh formula, 6m ~ yr /g,
where y is the surface tension and g is
gravitational acceleration.” It follows that
stain radii should not vary considerably in
any given painting; indeed, in a typical

" Pollock abstraction, drop size varies by one
i - order of magnitude at most, which ex-
s g plains the conspicuous absence of large

. (bigger than, say, 2.5 cm in diameter) cir-
cular stains throughout his work.
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Painting with jets

That Pollock’s pouring technique required reloading was
undoubtedly an inconvenience. But it must have been less
onerous than conventional easel painting because he could
carry more pigment on a trowel than could be lifted on an
average paintbrush. On the other hand, the approach af-
forded the artist more flexibility in adjusting the amount of
paint lifted out of the container and greater ease in deploy-
ing it on a canvas. To appreciate that flexibility and ease, we
consider in greater detail the process of gathering and
dispensing paint.

The flow rate obtained by letting a liquid of density p
and viscosity i issue under gravity from an axisymmetric
trowel depends on two easily adjustable parameters: the
paint’s kinematic viscosity v = u/p, and the speed u, with
which the implement is pulled to gather the paint via viscous
adhesion and entrainment. The amount of paint lifted out of
the container by a cylindrical rod of radius r, pulled verti-
cally, as sketched in figure 4a, is proportional to the thickness
h of the entrained fluid. Balancing the viscous and gravita-
tional forces—and assuming that 1 < r,—leads to the charac-
teristic thickness i, which scales as

h~\vuo/g. )

To maintain that thickness for some appreciable time, one
could twirl the trowel with an angular velocity Q ~u,/r,,
while keeping it horizontal, as one would to lift more honey
with a dipper.® Photographs attest that Pollock almost cer-
tainly practiced that method to some degree.

In the simplest case, when the rod is pulled up vertically,
the volume V of lifted paint can be estimated as

V~ 7‘0Lh ~ 1oL VVuu/g/ (2)

where L is the length of the portion of the rod submerged in
paint. Once that volume has been entrained, a free gravita-
tional jet will start to form, as shown in figure 4b. The jet
effectively reverses the process of loading the trowel and
leads to a flow rate Q ~ hryu,~ r/°g/v, which, upon using
equation 1, yields

Q ~ rotte™*\v/g. (3)

Clearly, the higher the loading speed u,, the thicker the
film of entrained liquid and the higher the flow rate in the re-
sulting jet. That logic, of course, assumes maintaining a
nearly uniform film thickness and, consequently, a steady
flow rate while pouring, something easily achieved by in-
creasing L and twirling the trowel. The dependence of Q on
v in equation 3 shows that increased viscosity would actually
enhance the flow rate, since the amount of liquid that may be
lifted grows with v, a relation seen in equation 2. Pollock,
through trial and error, must have intuitively assimilated the
implications of those relationships. It's well known that he ad-
justed the viscosity of his paint by diluting it with water and
other solvents and tested the results both for ease of loading
and for dispensing the pigment in a free stream. Once the jet
was formed, he could freely control it by moving the tip of the
trowel sideways, or up and down, from a few centimeters to

Figure 3. Robert Motherwell’s Beside the Sea (1962), an oil
on paper housed at the University of California, San Diego. The
splashes and drips evident in the painting clearly show a transi-
tion from jetting—the continuous flow of paint onto the
canvas—to dripping. (Art © Dedalus Foundation Inc/Licensed
by VAGA, New York, NY.)

June 2011  Physics Today 33



more than a meter above the canvas. The

films and numerous photographs of Pol- a] b Figure 4.(a) A
lock show him comfortably manipulating Uy — cylindrical rod
the flow (see figure 1). of radius r, acts
In choosing his particular method of as a trowel, en-
dispensing pigment, Pollock gained the training viscous
freedom to paint in three dimensions— liquid with a
even if the resulting work remained con- ) thickness h as the
ventionally two-dimensional. He could — <_r0 rod is pulled up-
vary the width of his traces by changing ward with speed
the lateral speed, the flow rate, or the u, out of a paint
height of the jet. Pollock could thus sug- A can. (b) When the
gest sideways acceleration without actu- — 2ry+2h liquid-coated rod
ally changing the lateral speed of his im- - emerges from
plement; the art historical implications of the can, a gravi-
such sleight of hand have been recently tationally driven
discussed.” ) - 5 jet of viscous lig-
One intriguing, if subtle, conse- —»  — -
quence of introducing liquid-jet dynamics e enel o dhe
into the creative process is the appearance rod at a rate Q
of fluid instability. As recently noted,’ a v ’

number of Pollock’s works on paper dis-
play fine oscillatory lines of very short

&

lQ
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wavelength (a few millimeters). Those
traces almost certainly resulted from a
coiling and folding instability of the vis-
cous jet, superposed on a linear translation of trowel. Indeed,
the coiling instability is particularly conspicuous in some of
the red lines in Untitled 1948—49, shown in figure 5. Although
Pollock’s exact motivations are unknown, the effect likely re-
sulted from a combination of pure chance and guided
inquiry. Perhaps seeing that a stream of red enamel paint
autonomously produced the fine but distinct undulations,
he set out to playfully explore them. Remarkably, the inquis-
itive exploration preceded the first papers on the physics
of coiling.!0!!

A quantitative explanation for the folding and coiling in-
stabilities in falling viscous streams and jets was published
more recently; a scaling law for the inertial regime, in which
viscous forces and inertia are balanced in the coiling tail, was
first derived and experimentally verified just over a decade
ago.”? Two other regimes of coiling can be distinguished: a
viscous regime, in which gravity and inertia are negligible in
the coil and the net viscous force on any liquid element is
zero—a situation akin to the folding of a toothpaste stream
onto a toothbrush—and a gravitational regime, in which vis-
cous forces are balanced by gravity."®

The coiling effect in Untitled 1948—49 corresponds to the
scaling law for the inertial regime, which gives the frequency
w of the coiling tail as

-~ V—l/sr—lO/3Q4/3, (4)

where r is the radius of the jet’s tail (see the box on page 35). Ex-
pression 4 is valid when two conditions are satisfied. First, the
height of the trowel above the floor must be large relative to
the jet radius, as otherwise the coil radius R is proportional
to the height H of the jet. The maximum radius of oscillations in
the red enamel traces shown in figure 5 is less than 0.3 cm, so
H> R>r. Second, gravitational forces must be small compared
to the inertia of the coiling tail, so that ¢ < @’R, which can be
reformulated as Q?> gRr%. Assuming a typical flow rate,
Q=1 cm?s, coil radius R~0.3 cm, and half line width
r~0.05 cm, we see that the second condition is also easily satisfied.

Reading jet traces
A work on paper, Pollock’s Untitled 1948—49 is executed not
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only in red enamel paint but also in black ink. The black
marks display no coiling instability whatsoever, presumably
because they were created with diluted ink of low viscosity,
comparable to that of water. Hence, whereas the red traces
are glossy and slightly protrude from the canvas, those in
black are matte and planar, the ink having partially seeped
into the paper.

To explore the implications of equation 4 for the coiling
effects manifest in the red skeins, it is convenient to eliminate
w—which, after all, cannot be measured post factum—and
find scaling laws for two principal observable parameters:
the line half-width r and the coil radius R. Because the vol-
ume of the paint is conserved in its transport from the imple-
ment to surface, Q ~ u,r,>=ur?, where u, and u are, respec-
tively, the speed of the jet at the origin and its speed at the
point of contact with the canvas, while 7, and r are the respec-
tive jet radii at those locations. By balancing the gravitational
force and the viscous resistance to stretching, and using the
results in equation 4 after setting Q ~ ur* ~ wRr? we obtain

r~l (VQ)U2 and R~v Q

1/3

— ®)
H g H4g2

Those scalings can be used to estimate the range of flow
rates that Pollock produced when painting Untitled 1948—49.
From the enlargement of the work, the coil radius can be seen
to vary by roughly a factor of 4, between 0.5 and 2 mm. Based
on the second scaling in equation 5, the flow rate Q thus varied
by nearly two orders of magnitude —somewhere in the range
of 0.1 — 10 cm’/s—assuming a fixed height. Accordingly, using
the first of the scalings in equation 5, the thickness of the os-
cillating lines should have varied by about one order of mag-
nitude or more; and indeed, the observed range is approxi-
mately 0.1-1 mm. Further, taking r = 0.5 mm as a typical value
for this painting, we estimate Q/H?= 2.5 x 10 cm/s, so that if
the artist kept his trowel at about 30 cm above the painting (as
suggested by figure 1), the flow rate in the jet might have been
about 2 cm?/s, a reasonable value.

A close look at figure 5 reveals several instances in which
the coiling oscillations become less distinct and eventually
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Dynamics of coiling: A scaling argument

When viscous paint is poured onto a surface from a relatively large height H, the insta-
bility of the fluid stream causes it to form a helical coil whose radius and frequency are
determined by the balance of viscous and inertial torques. To understand that balance
quantitatively, we start with an equation for the conservation of material: Q ~ wRr?,
which relates the flow rate Q to the radius R of the coil, its rate of rotation w, and the
radius r of the paint stream.

The expression for the viscous torque, uur*/R?, characterizes the stream’s resistance
to bending, which is proportional to the viscosity u of the paint, the fourth power of
its radius, and the rate of change of its curvature u/R?, where u is the paint’s axial veloc-
ity. This equation follows from dimensional analysis, or the Stokes-Rayleigh analogy
relating the equations of equilibrium for an elastic solid and the equations of motion
for the creeping flow of a viscous liquid, as described in Lord Rayleigh's The Theory of
Sound.” (The kinematic viscosity v can be expressed in terms of the fluid's density p as
v=u/p.)

The expression for the inertial torque, (ow?R)-r*R-R, characterizes the Coriolis and
centripetal torques; the term in parentheses is the inertial force per unit volume, which
acts on a volume of liquid r?R. Equating the viscous and inertial torques and using the

blur together as the line thickens. The scaling relations in
equation 5 offer an explanation. Note that for a given paint
(and thus v) and at a fixed jet height H, the width 2r of the
line grows more quickly with Q than does the amplitude R
of the oscillations: #/R is proportional to Q'. If the flow rate
tripled at some instant— for example, due to an accumulation
of paint on the trowel —the ratio r/R would rise by 20% and
render any oscillations in the trace hard, if not impossible, to
observe. (In any case, the sudden influx of paint would likely
disturb the coiling instability.)

We now turn our attention to the shape of the undulating
lines in Pollock’s paintings. When coiling (the circular motion
of the tail of the paint jet) is superposed with transverse mo-
tion (the sweeping lateral movement of Pollock’s arm), the re-
sulting trace depends on a dimensionless quantity known as
the Strouhal number St = U/wR, where w is the angular speed
of coiling as given by equation 4 and U is the transverse speed
of the paint.

When St =0, the trace coils into a circle. But as St in-
creases, the trace becomes a series of overlapping loops of
ever decreasing overlap until St =1, when the trace becomes
a curve with evenly spaced cusps. When St increases beyond
unity, the trace is an oscillating quasi-sinusoidal line that be-
comes straighter as the transverse velocity increases.

A viscous thread of paint that’s held stationary but that
falls on a moving surface—the inverse of the scenario exe-
cuted by Pollock—would engender a richer variety of au-
tonomous instability effects, including loops that alternate
between the two sides of an undulating line and other two-
frequency traces, such as a sequence of figure eights. The
physics of that meandering instability, or fluid dynamical
“stitching,” has been recently explored using experimental,
semianalytical, and numerical methods;" for a video of a vis-
cous thread falling on a moving belt, see the online version
of this article.

Whether a jet’s origin is moving above a stationary sur-
face or is stationary above a moving surface may seem to be,
at first glance, a simple choice of coordinate system for de-
scribing the flow. The two scenarios, however, are not equiv-
alent from the perspective of understanding how the insta-
bilities evolve in space and time—especially in an inertial
setting because of the difference in how the boundaries are
forced. The different scenarios thus lead to different strate-
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relation u = wR leads to the scaling for the coiling frequency:> w ~ Q*3r13y 153,

gies for controlling the patterns that emerge, the natural goal
of a painter, even if those patterns are similar.

All three of the possible kinds of traces that can form on
a stationary surface—loops, cusps, and sinusoids—are
clearly visible in the inset detail of Untitled 1948—49. Indeed,
it is possible to decipher the variations in transverse speed U
of Pollock’s arm from the changing form of his traces. (For
many of the lines, variations in r are imperceptible over 10-
to 20-cm stretches, and one can suppose that Q was nearly
constant in those instances.) In particular, one can deduce
that Pollock’s arm was slowing down while turning, as one
would expect, and that he purposefully varied the conditions
in order to elicit coiling instability in his viscous jets—
delighting, one might imagine, in deploying the effect repeat-
edly in that work.

The ease with which coiling instabilities are obtained
raises the question as to why they appear in just a few of Pol-
lock’s poured abstractions. Barring direct knowledge of the
artist’s intentions, one can only speculate. On the one hand,
Pollock’s jets of paint may have coiled, but the instability left
no trace in the finished work—because of the irregularity of
the surface (from, for example, the weave of the canvas), the
pigment’s absorption into the substrate, or subsequent layers
of paint covering the initial marks. On the other hand, inas-
much as Pollock might have taken pleasure in amending Un-
titled 1948—49 with coiling, he might also have concluded that
creating those oscillations ceded too much of his control
to natural phenomena.

Painting with sheets

If drops and jets generate a rich variety of artistic effects, can
the same be said of gravitationally driven thin films of paint?
Although it is easy enough to envision such a scenario, we
have yet to find any examples of art unambiguously fash-
ioned in that way. To be sure, Smithson and Benglis created
sculptures using quasi-2D laminar flows that later solidified
on the ground or on wire scaffolding. But those works were
not, for the most part, free-falling flows, nor could they be
easily manipulated, and the possibilities opened by the
artists” approach, at least from a physics perspective, seem
limited.

Pollock himself did not paint with sheets, except in those
rare instances when a narrow film of pigment would have
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Figure 5. Jackson Pollock’s
Untitled 1948-49. This
work of ink and enamel on
paper (57 X 76 cm) exempli-
fies the use of continuous
jets of paint as Pollock ex-
plores the role of fluid insta-
bilities and his own move-
ment to create patterns. In
the enlargement of an area
near the lower left corner
(inset), one can see a variety
of oscillatory lines that arise
from the natural instability
of the jet and the transla-
tion of the artist’s hand.
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released from his trowel tilted away from the vertical. And
such instances are hard to detect in his abstractions. In any
case, his particular technique was not easily adaptable to
free-falling sheets. He would have required wide imple-
ments and, by extension, a number of sufficiently large paint
containers. And manipulating such tools would have been
cumbersome. But even if those challenges were met, the
paint sheets produced would soon break into separate jets
due to surface-tension instabilities. And as the paint ran out,
those continuous jets would, in turn, break into cascades of
discrete drops.

Perhaps a more effective way of painting with a sheet of
pigment would be to let it issue from a narrow slit in an elon-
gated container. Such a film of viscous liquid could, for suf-
ficiently large drop height, exhibit a quasi-2D folding insta-
bility,”® but the visual effects obtainable by manipulating
films of paint, and their aesthetic appeal, remain to be
explored.

Whatever directions artists take, their work ultimately
stands apart from nature. But to the extent that they relin-
quish some degree of control to natural phenomena, their art
becomes open to quantitative analysis. Fluid dynamical con-
siderations not only clarify the distinctions among various
modes of gravity-assisted painting and the limitations and
potential of each, they also couple the movements of the artist
to the dynamics of the medium. Using the tools of physics
and art history one may begin to delineate the intersection of
what is aesthetically viable and what is physically possible.

References

1. Voltaire, Oeuvres Complétes de Voltaire, vol. 10, Garnier Freres,
Paris (1877), p. 513.

36 June 2011 Physics Today

14.

15.

. See, for example, The Drawbridge, Carceri Plate VII, in L. Ficacci,

Piranesi: The Complete Etchings, Taschen, Cologne, Germany
(2000), p. 141.

. See C. Cernuschi, Jackson Pollock: Meaning and Significance, 1st

ed., Harper/Collins, New York (1992), chap. 7.

. R. P. Taylor, A. P. Micolich, D. Jonas, Nature 399, 422 (1999); R. P.

Taylor, A. P. Micolich, D. Jonas, Leonardo 35, 203 (2002); K. Jones-
Smith, H. Mathur, Nature 444, E9 (2006); K. Jones-Smith,
H. Mathur, L. Krauss, Phys. Rev. E 79, 046111 (2009); C. Cer-
nuschi, A. Herczynski, D. Martin, in Pollock Matters, E. G. Lan-
dau, C. Cernuschi, eds., McMullen Museum of Art, Boston
College, Chestnut Hill, MA (2007), p. 91.

. C. Cernuschi, A. Herczynski, in Pollock Matters, E. G. Landau,

C. Cernuschi, eds., McMullen Museum of Art, Boston College,
Chestnut Hill, MA (2007), p. 73.

. C. Cernuschi, "Not an Illustration but the Equivalent”: A Cognitive

Approach to Abstract Expressionism, Fairleigh Dickinson U. Press,
Madison, NJ (1997), p. 127.

. S.D. R. Wilson, |. Fluid Mech. 190, 561 (1988).

. H. K. Moffatt, . Mec. 16, 651 (1977).

. C. Cernuschi, A. Herczynski, The Art Bulletin XC, 616 (2008).

. G. Barnes, R. Woodcock, Am. J. Phys. 26, 205 (1958).

. G. I. Taylor, Proceedings of the 12th International Congress in

Applied Mechanics, Springer, Berlin (1969), p. 382.

. L. Mahadevan, W. S. Ryu, A. D. T. Samuel, Nature 392, 140

(1998); correction, Nature 403, 502 (2000).

. M. Skorobogatiy, L. Mahadevan, Europhys. Lett. 52, 532 (2000);

N. M. Ribe, Proc. R. Soc. London A 460, 3223 (2004).

S. Chiu-Webster, J. R. Lister, |. Fluid Mech. 569, 89 (2006); N. M.
Ribe, J. R. Lister, S. Chiu-Webster, Phys. Fluids 18, 124105 (2006);
S. W. Morris, J. H. P. Dawes, N. M. Ribe, J. R. Lister, Phys. Rev. E
77, 066218 (2008).

J. W. Strutt (Lord Rayleigh), The Theory of Sound, 2nd ed., Dover,
New York (1945). ||

www.physicstoday.org



