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Controlled gliding during descent has been thought of as a crucial intermediate step
toward the evolution of powered flight in a variety of animals. Here we develop and
analyse a model for the controlled descent of thin bodies in quiescent fluids. Focusing
on motion in two dimensions for simplicity, we formulate the question of steering
an elliptical body to a desired landing location with a specific orientation using the
framework of optimal control theory with a single control variable. We derive both
time- and energy-optimal trajectories using a combination of numerical and analytical
approximations. In particular, we find that energy-optimal strategies converge to
constant control, while time-optimal strategies converge to bang—coast—bang control
that leads to bounding flight, alternating between tumbling and gliding phases. Our
study of these optimal strategies thus places natural limits on how they may be
implemented in biological and biomimetic systems.
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1. Introduction

The origin of flight in insects, birds and mammals is a question of great interest
from an evolutionary perspective. Given the relative paucity of fossil evidence, one is
thus left grasping for intermediate steps that bridge terrestrial or arboreal locomotion
and autonomous flight. Several hypotheses have been proposed for the evolution of
wings and controlled flight, and a number of studies (Dudley 2000; Grimaldi & Engel
2005; Bradley et al. 2009) have discussed how this might have arisen in a variety
of organisms, from dinosaurs to insects. One commonly alluded to pathway for the
evolution of active flight posits an intermediate step between simple parachuting and
flapping flight, namely controlled aerial descent. Evidence for this in living mammals
and reptiles comes from observations of membranes and winglets for controlling
descent in these creatures. More recently (Dudley et al. 2007; Bradley et al. 2009),
ant families have been shown to have a surprising gliding ability although their bluff
bodies are not particularly suited for streamlined flight. This was first reported in
Yanoviak, Dudley & Kaspari (2005) based on the ability of neotropical canopy ants to
launch themselves from, glide and eventually land on a tree with an appropriate body
orientation. Similar behaviour has been reported in African ants (Yanoviak, Fisher &
Alonso 2008), and in bristletails (Yanoviak, Kaspari & Dudley 2009), insects with
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very different evolutionary lineage than canopy ants. These observations give some
credence to the hypothesis of gliding as an intermediate stage between terrestrial and
flying locomotion, see Dudley et al. (2007) and Hasenfuss (2008).

However, to give these plausibility arguments substance requires a combination of
quantitative experiments and mathematical models that characterize the phase space
of stable controllable gliding in the absence of any organs specifically designed for
this task. Here, we take a first step in this direction by addressing the question
theoretically in a very simple context, inspired by recent biological observations
and the relative simplicity of the passive dynamics of a rigid falling object in a
quiescent fluid. The latter subject has attracted the curiosity of researchers for more
than 150 years due to the intriguing interaction between the motion of the solid and
the induced fluid reaction (Lamb 1945), and the small flurry of activity inspired by
the regular and irregular motion of a falling card, both from an experimental and
theoretical/computational perspective, see for example Mahadevan (1996), Belmonte,
Eisenberg & Moses (1998), Mahadevan, Ryu & Aravinthan (1999), Mittal, Seshadri &
Udaykumar (2004), Pesavento & Wang (2004) and Andersen, Pesavento & Wang
(2005a,b). These studies, which focus on both quantitative experiments, and full
scale numerical simulations of the governing Navier—Stokes equations, show that a
simplified finite-dimensional theory suffices to understand the planar motion of an
elliptical cylinder moving in an quiescent fluid, and can capture the qualitative features
associated with oscillatory flutter, rotary tumbling motion and transitions between
these states. These simplified theories parametrize the drag and vorticity, two quantities
that are not present in the classical models that harken back to Kirchhoff, see Lamb
(1945), by averaging over the details of the complex vortical motions of the fluid
around the body.

Although this minimal parametrization of the drag and vorticity is not adequate
for all purposes, the resulting qualitative understanding of the planar dynamics of
flutter and tumble in a heavy elliptical cylinder allows us to investigate qualitatively
the possibility of controlled descent of such an object by means of a single internal
actuator, using the methods of optimal control theory. In §2 we introduce our model
for the physical dynamics of descent and those of a minimal controller subject to some
natural constraints. In § 3 we analyse the uncontrolled and controlled dynamics of the
body to obtain an estimate of the reachable set. In §4 we consider the problem of
optimal perching that requires the body to reach a particular location with a particular
orientation, and we show some examples of trajectories that minimize either the time
or the energy used for completing this task. Finally, in §5 we conclude with some
remarks on the biological relevance and efficacy of these strategies and possible future
directions.

2. Mathematical model

A simple model for the motion of a falling body can be obtained by considering the
motion of an infinite elliptical cylinder in an inviscid, incompressible quiescent fluid in
a gravitational field. If the cylinder height is much larger than its radius, the resulting
motion is essentially two-dimensional with the axis of rotation coinciding with the
cylinder’s main axis and governed by coupled partial differential equations that link
the motion of the surrounding fluid with the dynamics of the solid. As was first shown
by Kirchhoff, this is completely equivalent to a reduced order model that can be
derived by exploiting the linearity inherent in inviscid fluid dynamics, thus obtaining a
finite-dimensional system for the body motion, where the fluid interaction reduces to a
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FIGURE 1. Schematic representation of system model. The position of the centre of mass
is identified in the laboratory frame x—y, whereas its orientation is described by the angle 6
between horizontal direction and major axis. A rotating frame u—v is attached to the cylinder
centre of mass. The control action is represented by a torque t. The system dynamics is
reported in (2.1)—(2.6).

renormalization of the mass and inertia tensor, see Lamb (1945). Of course this model
for motion in an inviscid fluid misses two crucial ingredients that are important in real
motions, associated with viscous drag and vorticity. If these effects can be qualitatively
represented in terms of (as yet unknown) forces and torques on the body, we can write
the equations of motion for the translating, rotating three-degree-of-freedom body in
terms of a moving frame shown in figure 1, as

(m+mit= (m+ my)vw — p;I'v — 7t (p, — py) abgsinf — F, 2.1
(m + my)0 = —(m + m)uw + psI'u — n(p, — pr)abg cosO — G, 2.2)
I+1I)w=n —mh)uv+71t—M, 2.3)

X=wucosf —vsinb, 2.4

y=usinf + vcosb, 2.5)

6 =w. (2.6)

Here the state components u(¢f) and v(f) represent the velocities along the main axes
of the ellipse, w(r) the rotational velocity, 0(¢) the angle of the major axis with the
horizontal direction and x(¢) and y(¢) the ellipse’s geometrical centre in the laboratory
frame, m is the cylinder mass and / its moment of inertia, m;, m, and I, are inertial
renormalization terms due to the fluid interaction, and p; and p, are, respectively, the
fluid and the solid density. For an elliptical cross-section with semi-major axes a and b
with a > b the inertial parameters read

m=mnpab, [= in,osab (a2 + bz) , 2.7
2
my =npb’, my=mnpa’, I, =znp(a’ —b*)". (2.8)

To complete the model, we need to describe the circulation around the body I, the
fluid forces F, G, the fluid torque M and the control torque 7. Attempts to parametrize
the effects of aerodynamics forces and torques in the model qualitatively have a long
history, but have typically been done in an ad hoc way. However, in a series of papers,
Wang and coauthors (Pesavento & Wang 2004; Andersen et al. 2005a,b) have used
simulations and experiments to propose a self-consistent parametric form for these
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effects written as

— uv 2
I = —2C7'aﬁ + 2CRa w, (29)

2 .2
F=pa|d—BY"" | Vi +viu, (2.10)
u? + 2
u?* —?
G=pa|A—B vVu?+v2v, (2.11)
u? + 2
L[V
M =mnpra ZMT + v wl| w, (2.12)

where Cr, Cgr, A, B, . and v, are non-dimensional constants characterizing the
vorticity and drag forces from the surrounding fluid while V and L represent,
respectively, a characteristic velocity and a characteristic length described later. The
quadratic lift and drag terms in the model are consistent with the relatively high
Reynolds numbers (~O(10%)) associated with ant descent, and can capture the
bifurcation between flutter and tumbling as well as the qualitative behaviour of the
forces acting on the cylinder during both steady flutter and tumbling. The magnitude
of the torque acting on the body is overestimated by this model (Andersen et al.
2005b), an effect which shifts the bifurcation threshold for the transition from flutter
to tumble. However, since the qualitative behaviours of the true dynamics are captured
correctly by this simple low-dimensional model, for our analysis of the question
of controlled descent we use expressions (2.9)—(2.12), so that the problem becomes
relatively simple and somewhat analytically tractable.

The system dynamics can be conveniently expressed in dimensionless form using
the cylinder semi-major axis a as a characteristic length scale and the velocity
V = \/(ps/pr — 1)gb, obtained from the balance between the gravity and a quadratic
drag (Mahadevan et al. 1999), as a characteristic velocity scale, along with a
characteristic force per unit length scale p;aV? and a characteristic torque per unit
scale 1,V?a/b. This leaves us with the following dimensionless parameters (see
Andersen et al. 2005a)

b b

=2, I= Ds ’

a pPra

where f represents the cross-section aspect ratio, / is the non-dimensional moment of

inertia. The dynamics can be then written in dimensionless form, with a little abuse of
notation by replacing the dimensional variables with their dimensionless versions, as

(2.13)

I+ BHi=I+1vw—Tv—sind — F (2.14)
I+ Do=—U+ BHuw+ 'u —cos — G (2.15)
WA+ + LA =)W=~ Duv+7-M (2.16)
X=ucosf —vsin6 2.17)

y=usin6 + vcos6 (2.18)

6=w. (2.19)

Note that only / and S appear explicitly in the governing equations. The circulation
and the drag terms (2.9)—(2.12) read, in dimensionless form, as

2 uv
I'=—|-Cr——+C, 2.20
- Tm+ RW ( )
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1 2 _ .2
F=-|A-BL"Y | /e +v2u 2.21)
7T u? +v?
1 > —?
G=-|A—B ViZ + 2 v (2.22)
7T u? 4+ 2
M =[u, + v wl|]w. (2.23)

For later use, we note that typical values for the dimensionless constants that
parametrize the drag and vorticity, as reported in Wang, Birch & Dickinson (2004)
and Andersen et al. (2005a) are

Cr=12, Cr=mn, A=14, B=10, pu,=rv,=02 (2.24)

derived for the aerodynamics of thin bodies with Reynolds number around 10°, the
regime associated with ant gliding. In any case, these values do not strongly depend on
Re (Andersen et al. 2005a), although w. and v, that are responsible for the rotational
time scale increase slightly with decreasing Reynolds number due to an increase in
rotational damping.

We finally augment the passive dynamics of the body with an active control action
that allows a falling animal to control its orientation and descent velocity. Here, we
assume that animals can apply a torque 7, for example by bending its body or
rotating its legs. This assumption is in accordance with the experimental observations
of gliding ants reported in Yanoviak et al. (2010) where removal of hind legs results in
a severe impairment of control ability, probably because the relatively large length of
the legs compared with the body length allows for a large value of t. Although there
is a potential shift of the centre of mass because of the motion of the legs, since their
mass is small compared with the body mass, here we neglect this effect. We further
assume that the rate of change of torque is limited by physiological constraints so that

t=17 (2.25)

where J, the angular jerk, is the actual controlled variable with some natural bounds,
which we discuss later.

3. Reachable set analysis

A first step in analysing the control problem associated with the capability of
controlled gliding requires an estimate of the reachable set, i.e. the maximum
horizontal range that can be covered given an initial height and some constraints
on the maximum power associated with the control action.

The model presented in the previous section exhibits three qualitatively different
kinds of motion, namely steady vertical descent, oscillatory flutter and rotary tumbling.
Thus, it is convenient to focus the analysis on these three different regimes; the
bifurcations between these modes with T = 0 have been numerically investigated
(Andersen et al. 2005a) by varying [ in the limit 8 « 1. For I > 3, i.e. when the
aspect ratio b/a is at least three times the density ratio p;/p,, the body flutters and
the net horizontal displacement is zero. In the following we limit ourselves to the case
where the body passively flutters because it is satisfied by most gliding animals, such
as gliding ants and bristletails (Yanoviak et al. 2005, 2009). We also note that the
alternate case where the system naturally tumbles is much harder to control because a
large aspect ratio cylinder induces a strong reaction torque from the fluid that limits
the controllability of the system.
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To quantify these different regimes, we use a combination of numerical simulations
of the complete nonlinear equations (2.14)—(2.19), shown in figure 3, and analytical
estimates for the reachable set. To be able to compare our results qualitatively with
the observations of ant gliding, we need estimates of the aspect ratio 8 and the scaled
moment of inertia /. Clearly, the shape of an ant body is not cylindrical; as a first
approximation, we assume that it can be represented as an ellipse with a major axis
a equal to the width the body and its extended legs, the body thickness as minor axis
b and an average density p; obtained by dividing the sum of body mass and mass of
the air inside the fitted cylinder by its cross-sectional area. This leads to 8 = 0.1 and
I =20, which are the parameter values we use in all our simulations of the nonlinear
equations (2.14)—(2.19). The results, shown in figure 3 indicate the trends for the
position, orientation and velocity of the gliding, tumbling ellipse. To derive analytical
estimates for these quantities, we consider separately the two main kinds.

3.1. Fixed point motion and fluttering

We start with a consideration of the slow fluttering motion which can be seen as
a perturbation of steady descent. Therefore, approximate expressions for vertical and
horizontal velocities can be derived by a fixed point analysis. Steady-state conditions
are obtained by considering fixed points of (2.14)—(2.16) and (2.19) and lead to

O0=U+ Dvw—Tv—sinf — F, 3.1
0=—({+BHuw+ I'u —cosh — G, (3.2)
0=(B*—Duv+1t—-M, (3.3)
0=w. (3.4)

In the uncontrolled case, i.e. when 7 =0, the last two equations imply w =0 and
uv = 0 so that two subcases can occur:

(a) u=0: (3.1) yields sin6 = 0, i.e. the motion is broadside-on, and thus

T
mcos b A+ B

v,fsign (v) =— AT B = U= = 3.5
—y/ 6 =0,
A+ B

which follows from (3.2), and corresponds to stable motion.

(b) v=20: (3.2) implies cos @ = 0, i.e. the descent is edge-on, so that

T 9 31
7sin @ _ =5
N A—B 3-52

2. _ _
u,sign (u) = 15 U, = i - ) (3.6)
A-B 2

which follows from (3.1), where the relation A > B has been exploited, in
accordance with (2.24).

By plugging these relations in (2.17) and (2.18) we estimate the average velocities in
the laboratory frame as

() =0 (3.7)
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(3.8)

These estimates are useful for evaluating, for example, the time of landing given the
initial altitude y(0). We note that no net horizontal displacement can be achieved with
fixed-point motion if v =0.

For stable broadside-on descent when u, =0 and v, = +./t/(A + B), to estimate
the time to achieve steady fluttering we note that the dynamics of the system is
greatly simplified because the circulation terms vanish and the drag forces are purely
quadratic. Then, (2.15) reduces to

(I+ 1)) =—cost — i(A + B)v?sign(v), (3.9)

where v > 0 if 6 =m and v < 0 if & = 0. Focusing on the case 6 ~ 0 (the case 6 ~x
can be easily recovered by symmetry), (3.9) admits the analytical solution

|

el

P4+ 1) ——t, =2 3.11)
7= , = —. )
A+B Uy

Thus, the time T, to reach this steady velocity can be estimated by imposing the
condition ¥(Zy) = (1 — §); when the parameter § < 1 the time taken is

1
.Exs =—=1In <8> ) (3]2)

v(7) = (3.10)

where

2 2-96

T+1 25
T, =1t " . (3.13)
2 VarsB 5

We can also find the travelled distance y,; by integrating (3.9) once more to find

___ T 2Ty 7 _
Vs = A+B(1+1)[1n(e +1) =T, —1n2]. (3.14)

When the controller is switched on, 7 # 0, and the position of the fixed points can
only be calculated by numerically solving (3.1)—(3.4) due to the nonlinear coupling
between them. In figure 2 the location of these fixed points in the state space as
a function of t is reported together with the real part of the largest eigenvalue of
the dynamics (2.14)—(2.19) linearized around the fixed points. We note that all of
the fixed points are linearly unstable, as expected; however, large horizontal velocities
can be achieved with this kind of motion, a fact that will be useful in understanding
time-optimal trajectories.
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FIGURE 2. Fixed points and linear stability as a function of t showing: (a) velocities in
the rotating frame, (b) orientation, (c) velocities in the laboratory frame and (d) real part of
the largest eigenvalue of the dynamics (2.14)—(2.19) linearized around the fixed points. The
results correspond to the solution of (3.1)—(3.4) with 8 =0.1, I =20, Cr = 1.2, Cx = m,
A=14,B=1.0 and pu, = v, =0.2. Only positive values of 7 are displayed; when 7 < 0
they are related to these results via symmetry. The subscripts ‘b’ and ‘e’ indicate, respectively
broadside-on and edge-on motion, as defined in the text.
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FIGURE 3. Comparison of (a) rotational velocities, (b) velocities in the moving frame, (c)
glide angle and (d) velocities in the laboratory frame obtained via the numerical simulation
of (2.14)-(2.19) and the HB theory given by (3.34)—(3.40). The circles in the lower right
plot represents results of the uncontrolled slowly fluttering mode. The parameters used are
B=01,1=20,Cr=12,Cr=n,A=14,B=1.0 and p, = v, = 0.2. We note the good
agreement between our analytical estimates and numerical results even fairly close to the
transition between fluttering and tumbling, which occurs when 7y = 0.1.

3.2. Tumbling motion

In contrast with the steady descent just described, the additional degree of freedom
provided by the torque 7 can be used to induce tumbling motion, where rotational
lift and drag forces are exploited to obtain net horizontal displacement with greater
efficiency, robustness and stability.

In the limit of rapid tumbling, a simplified analysis can be carried out by averaging
over the fast oscillations in the system dynamics. Considering only the first harmonic
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of u, v and 6, we assume that

u > uy + u cos (£2"t) + uj sin (£2"1) , (3.15)
v 2 vy + v cos (£2°1) 4 v} sin (£2°1) , (3.16)
w2 wy 4w cos (§£2"t) + wi sin (£2"1) , (3.17)
Wi oun W w
0 ~ 60y + wot + ov sin (£2"t) — ow cos (£2"1) . (3.18)

On using this approximations in the differential equations (2.14)—(2.19), at leading
order we are left with an algebraic system of equations in the 13 unknowns

[ug, ui, uj, £2“, vy, vy, vy, 27, wo, wi, wj, 2", 6] (3.19)

for which an exact solution seems unlikely. However, geometry and symmetry
considerations allow for further simplification. First, the oscillation frequencies are
not independent because the symmetry of the system imposes the following relations

'=802"=wy,, "=20" (3.20)

so that only one of them needs to be evaluated. In addition, by noting that the
dynamics is time-invariant, the time axis can be chosen such that one of the
coefficients u{, uj, v{, v] vanishes and, therefore, u; =0 can be set to zero. In the

fast tumbling limit, wy > \/w‘,‘2 + w{z so that w and 6 read

W wy, (3.21)
0~ 90 =+ wol. (322)

This latter hypothesis is valid only far from the bifurcation threshold that separates
the fluttering and tumbling phases; indeed, the validity (or not) of this assumption
represents the main source of error in the following results. Finally, noting, as
in Andersen et al. (2005b), that during tumbling motion the rotational term in
the circulation (2.20) is dominant, we neglect the translational contribution to the
circulation in our approximate analysis.

Using the approximate relations (3.15)—(3.16) and (3.21)-(3.22) in the dynamical
equations (2.14)—(2.16) and balancing the average and the first harmonic terms yields
the following system of algebraic equations

2
(I + I)Wouo - *CRWOU() — F() = O, (323)
T
2
( + BHwou; + (I + Dwov} — —Crwov} — cos by — F} =0, (3.24)
2
(I + Dwov] — =Cgrwov| —sinfy — F| =0, (3.25)
T
2
—( + BP)wouy + ;CRWOMO —Gy=0, (3.26)
(I + DHwovS +siny — G} =0, (3.27)
2
—( + Dwov} — (I + BHwout + =Crwou§, — cosy — G =0, (3.28)
TT
(B> = D™ 41y — wowy — vewdsign(wg) =0, (3.29)

2
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where the nonlinearities in the drag forces and torque (2.21)—(2.23) have been
approximated by the first terms of the respective Fourier’s expansions, i.e.

F >~ Fy + Fy cos (wot) + F} sin (wot) , (3.30)
G = Gy + G cos (wpt) + G sin (wot) , (3.31)
M >~ M, + F; cos (wyt) + F} sin (wt) . (3.32)

The presence of the average torque 7, in (3.29) suggests the use of a constant control
torque since oscillations in it will not have effect on wy = (w). While this may not
always be viable, in ants for example, it is certainly plausible in bristletails or in
artificial systems. To evaluate how other forms of the torque t influences the system
dynamics, we also analysed the response to an impulsive periodic torque of varying
maximum amplitude, period and impulse duration (see appendix A). Again, only the
average value is relevant for the dynamics, with all higher harmonic effects having a
very small influence (see appendix A). In light of this, from now on, we assume that
torque is constant, with

T=T1, (3.33)

noting that it actually represents the average torque. Then, the dynamics of torque
actuation (2.25) can be completely neglected since J(f) = 0 throughout the trajectory.

As suggested by our numerical simulations (3.23) and (3.26) can be easily satisfied
by imposing uy = vy = 0. Then, the remaining equations can be solved in a self-
consistent manner if we consider the phase shift of m/2 between u and v given by
geometrical constraints. In this case, uj = 0 implies v{ = 0 too, (3.29) decouples from
the other equations, and an estimate of the average angular velocity follows from
(3.29) as

e £ /12 4 dov,sign (wo)
B —2v,sign (wy)

Mz — V /Jv% + 41—0”1 (> 0)

Wo

> >0
- (3.34)
_ 2 _—a
o 5‘ W20y r<0.
v,

Moreover, if the aspect ratio 8 > py/p, then I > 1 while Cgr/mt ~ O (1) so that (3.24),
or equivalently (3.28), gives at leading order

2 c s ¢ I+ 1 s s
(1+B)u;=—U+ v} = u =T gl =R (3.35)
while the remaining terms provide
2 s . T Cos b
——Cgwov) —costp =0 = vj=— . (3.36)
TT 2CRWQ

Note that this latter relation corresponds to the situation in which most of the weight
is supported by the rotational lift, while (3.35) implies that the oscillation in # and v
velocities are only due to the rotating frame. The only remaining unknown is 6. An
estimate for this quantity can be derived from (3.25), or equivalently from (3.27), by
approximating the term F{ so that (3.25) reduces to a second-order equation in the
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unknown sin 6, (see appendix B). Thus, 6, can be derived as

|1+ V14462

sin Yy (<0) wy>0,
Oy = ) ] (3.37)
.| -1+ V1+402
sin (>0 wy<0,
20
where
5 3 3 11 K>
O=|-Alz+z® | +B|——+ —=«*)| —=— 0). 3.38
{ <8+8K)+ ( 16+16K>}4C§w5 >0 (3:38)

Using the relations (3.37) and (3.34) the desired quantities 6, and w, can be
estimated and substituted in (3.36) and (3.35); this allows us to solve the algebraic
system (3.23)—(3.29) derived from harmonic balance (HB).

Finally, given u{, v{ and 6, we can estimate the reachable set for tumbling motion.
In fact, from (2.17)—(2.18) we estimate the average horizontal and vertical velocities as

. . uy vy
(x) =(ucosfd —vsinf) = > cos 6y — > cos 6y, (3.39)

Cc s

(y) = (usinf + vcosf) = % sinfy — % sin 6. (3.40)

In figure 3, we show a comparison between the predictions of the harmonic balance
theory (3.34)—(3.40) and numerical simulations of the full equations (2.14)—(2.19).
We note that, as expected, when t, is large, and thus w, is sufficiently large, the
approximate solutions given by the harmonic balance match the full model results very
accurately.

Having analysed the reachable set for the two steady regimes, we now turn to the
transition between flutter and tumble. In this regime the model is likely to be less
accurate; furthermore the harmonic balance method fails for small values of 1, because
the relation between the angular frequencies is 2% = 2" = (1/2)£2" instead of (3.20)

and moreover the condition wy > \/wfz + w‘}z is clearly not satisfied because wy = 0.
In the ‘slow tumbling’ regime, i.e. just above the critical value of 7, the state variables
present significant harmonic distortion with respect to the pure sinusoidal behaviour,
see for example figure 4 for a comparison between u and v in the ‘slow’ and ‘fast’
tumbling regime. This introduces additional errors in the harmonic balance because in
(3.15)—(3.18) we completely neglect contributions from higher harmonics.

Nevertheless, the estimates for the falling body translational velocities (3.39)—(3.40)
allow for an estimate of the reachable set based on first harmonic effects that
neglects transients. Then, given an initial position (xo, yo) in the laboratory frame, the
maximum reachable distance can be estimated by the following two steps procedure:

(a) find the value of the torque that provides the maximum ratio between horizontal
and vertical velocity, i.e.
. X
Ty = arg max Q 3.41)
|T()|§Tmax ()’)

o~ o~

and denote by (x) and (y) the corresponding velocities;
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Time

FIGURE 4. Comparison of the velocity components u, v in the (a) slow and (b) fast tumbling
regimes obtained using numerical simulations of (2.14)—(2.19). The parameters used are
B=01,1=20,Cr=12,Cg=mn,A=14, B=1.0 and p, = v, = 0.2. Note the larger
harmonic distortion of the quantities in the slow tumbling regime.

(b) estimate the maximum horizontal distance that can be covered as

A = X0 + 22 7). (3.42)

0
These results can be exploited for designing a control law capable of steering the
system from its initial position to a given final position, by designing a two-phase
strategy where the body first tumbles and then switches to fluttering motion. The
time spent in the tumbling phase can be estimated by (3.39) by T = (X — X0)/(X)
after which the system is forced to switch to fluttering with no average horizontal
velocity. We observe that the control law is not unique but characterized by a family
parametrized by the value of tp used during the tumbling phase. In this approximation,
the landing position is thus also controlled only approximately because all of the
transient phases have been neglected. However, these problems can be overcome by
using optimal control techniques to obtain a unique control law capable of exactly

steering the system to a desired final configuration.

4. Optimal control for landing and perching

The approximate control design described in the previous section assumes steady-
state estimates without imposing any condition on the final orientation. Thus, it is
not very useful for perching problems where the orientation at landing is crucial.
Furthermore, since no optimality criterion was considered, there is no unique solution
for the problem of descent. To overcome these problems we consider the perching
task in the framework of optimal control theory. We note that due to the lack of
complete controllability, i.e. not all of the values of the state vector [x,y, 6, u, v, w]
can be reached from any initial condition, we cannot impose arbitrary constraints
on the final position and orientation. However, using the results from §3 we can
obtain estimates of the reachable set, and thus avoid imposing unattainable final
conditions. Our optimal trajectories are determined under the implicit assumption of
open-loop control, where no feedback from sensory information is used to dynamically
compensate for disturbances and potential model mismatch due, for example, to the
presence of wind. This raises the important question about how it is possible to
implement such strategies in closed-loop form. Unfortunately, the search space for
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closed-loop optimal control strategies in high dimensions, as here, is so large that
we are unable to get any useful analytical results to validate the numerics. From a
biological perspective, we do not know exactly what quantities an animal is capable
of measuring during gliding, and the noise in such measurements, and therefore any
model would require ad hoc hypotheses. For these reasons we limit our analyses to
open-loop optimal strategies.

To formulate the optimal control problem we define a performance index that has to
be minimized along optimal trajectories. Two commonly used performance indexes are
the total time necessary to reach the final position and the total energy spent for the
control action. This allows us to define a performance index % as

T T
%:/ [1+n(r2+oz12)]dt:T+n/ (r? + aJ?) dt, 4.1)
0 0

where 72 is a proxy for the instantaneous input power and n > 0 represents the relative
weight between energy-optimality and time-optimality. We note that the rigorous
expression for the input power is T - w. Since the quadratic drag law in (2.16) and
(2.23) implies that the average value of w scales as w ~ t!/2, we have 7 - w ~ 7°/2. We
choose the form 72 with a stronger dependence mainly because it allows for simpler
calculations. As n — 0 the problem reduces to time-optimal control, while as n — oo
the total energy is minimized. A weight « is included to account for eventual costs
associated with the control action J, but as discussed later it will not have a great
impact on the structure of the optimal trajectories. Here, we let the final time T be
free; it will be determined as part of the problem solution. Formally, the optimal
perching problem can be stated as

T

m}n% = min /0 (14 n(z? +aJ?)]dt 4.2)
X=GyX)+GJ 4.3)
X(0) =X, (4.4)
X(T)eZ 4.5)

F ={X(T) eR": x(T) = x;, y(T) = yy, 0(T) = 6; (mod 27)
X(D)| < Fomars YD < Yimaws WD) < Wina} (4.6)
17| < Tonar 4.7
V1 < (4.8)

where X = [u,v,w, x,y,0, 7] is the (extended) state of the system and (4.3) is a
concise way of writing the system dynamics (2.14)—(2.19) together with the torque
dynamics (2.25) (see appendix C). The set of desired final configurations is defined by
#. We note that the final position and orientation are strictly enforced, whereas only
upper bounds on the magnitude of final velocities are included. Furthermore, both the
applied torque t and its derivative J have to satisfy magnitude constraints along the
whole trajectory.

Necessary conditions that have to be satisfied by optimal trajectories are given by
the Pontryagin maximum principle, see for example Pontryagin et al. (1962) and
Kirk (2004) for a description of these conditions. However, the high dimension of
the state space of the system, together with its nonlinear nature, does not allow
for the analytical description of optimal trajectories and therefore solutions must be
obtained by means of numerical algorithms. These problems become even worse since
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algorithms for finding a trajectory that satisfies the necessary conditions can also suffer
from the curse of (high) dimensionality of the system, so that the computational time
can easily be so large that the problem is intractable in practice if good guesses are
not available. To overcome these problems we use the following three-step procedure:

(a) start with the approximate solution of §3 to find a good initial guess for the
optimal trajectory;

(b) use these to find trajectories that satisfy optimality conditions at least at a finite
number of points using a numerical algorithm;

(c) check the quality of the resulting trajectories analytically using the necessary
optimality conditions provided by the Pontryagin maximum principle.

The trajectory used as an initial guess is composed of two phases, a tumbling phase
and a fluttering phase, based on the reachable set estimates in § 3. Then the control
action for the initial guess is defined as in (3.33) for the tumbling phase and the
determination of the exact form of J (and consequently 7) is carried out numerically in
the second step of the procedure, as described in the following.

We first consider an energy-optimal trajectory, for which the performance index can
be written as

(g T Ton
U=—= / (? + aJ?) dt ~ / 1, dt =15 T,, (4.9)
n 0 0
where T,, represents the total duration of the tumbling phase, during which time the
control is active, and all of the transients have been neglected. Here the jerk J does
not enter in the calculations because T = 13 = constant implies J = 0 except during the
transients. From the reachable set analysis of § 3 one obtains

2
argmin U >~ arg min rgT(m 2~ arg min 102 x—f 2~ arg min Tfo, 4.10)
0 0 70 (x) 0 (X)

where 7y and (x) are related as shown in figure 3. In figure 5, we show 7i/(x) as

a function of 75, and see that a good initial guess for energy-optimal trajectories

can be obtained by choosing the smallest value of 7, that allows the body to

land at the desired final position. We can explain the qualitative behaviour of

U as a function of 7y by noting that when 75 > ,u%/4v, = 0.05 (3.34) implies

wo 22 — (U /2v;) + /T0o/v: ~ /Ty and, therefore, by plugging (3.36) and (3.39) in
(4.10), we obtain

» 2Cgrwy ~ 32

U~rt,
% 71 cos26,

4.11)

or, in dimensional units,

5/2 20, Crxy
7T (,os - pf) abg cos?0y /T psV; ’

where we have used cos?f, >~ 1 because 6, quickly converges to values close to zero,
see figure 3. We also note that if the rigorous expression for input power were used in
(4.1) then (4.11) would read U ~ 7} and the qualitative behaviour reported in figure 3
is preserved. Finally, the minimum torque that allows the body to land at the desired
location is given by the implicit relation

4.12)

tan 6y (7o) < )ny (4.13)
f



Controlled gliding and tumbling 503

4 T T T
—Energy - U
---Time - T

3 -

2 L

l L

0

70

FIGURE 5. The energy U for energy-optimal trajectories as given by (4.10) and the time
T for time-optimal trajectories estimates as given by (4.14) as a function of the control
torque 7. Parameter choices are § =0.1, [ =20, C; =12, Ck =xn, A=14, B=1.0 and
u. = v, = 0.2. We note the presence of a distinct minimum for 7" and none for U.

obtained by imposing y; = (y)7T,, with T,, =x;/(x) and (x), (y) as in (3.39)—(3.40).

By following a similar procedure a good guess for time-optimal trajectories can also
be obtained. In fact, let us now consider a trajectory composed by an initial tumbling
phase of duration 7, followed by a fluttering phase of duration 7%. In such a situation

yf -y (Tt) yf - Tl (j}tumble)
<.)./ﬂutter> <yﬂutter>

<y tumble ) Yr (y tumble ) X Yr
~T,(1-2 RN SO (. 414
! < <yﬂutter > ) <yﬂutter > ( <yﬂuzter > > (xtumb/e> <yﬂutter > ( )

where the approximations y(77) > T, (Yumpie) and T; 22 xp/ (Xumpe) have been introduced.
Figure 5 shows the total time 7 as a function of 7y; it is evident that a good
initial guess will be a trajectory with the smallest 7y, without exceeding the minimum
7 >~ 0.02. Again, we can obtain an approximate solution for 7" as a function of 1
by noting that the last term in (4.14) does not depend on 7, and that the remaining
expression can be rewritten as

C=T,+T;~T + ~T, +

1 Viumble 2C tan
T~ . (Vuumble) N RWo  lantp (4.15)

<).Ctumble> (xlumble> (yﬂutler ) N J13008290 (yﬂuller )

or, in dimensional units,

2prRXfW0 X tan 90
7T (ps — ,Of) abg005290 O.}ﬂutter) .

T ~ (4.16)

Far from 1o = 0, where the second term is negligible and cos?0, =~ 1, we still have
T ~ /7 as in the energy-optimal case, but as 7y goes to zero, the first term diverges
faster than the second term and the total time goes to infinity as 7 ~ 1/ty. According
to this analysis a global minimum is then always expected, regardless of the actual
choice of the parameter values. Moreover, the position of such minimum must lie in a
neighbourood of the crossover value T = u?/4v, 2~ 0.05 that separates the regions of
validity of the approximations wy ~ /7o and wy ~ 1/1.

To summarize, in the process of building good initial guesses, we neglect all
information about final orientation and terminal velocities defined in (4.6). In the
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second step these constraints are taken into account and thus the resulting trajectory
approximations will satisfy all of the conditions in (4.2)—(4.8), at least at a finite
number of points. All our numerical results have been obtained using the GPOPS
package that implements a direct pseudospectral transcription method to solve optimal
control problems. In particular, the optimal control problem is converted into a finite-
dimensional optimization problem by discretizing time into a finite subset of points
and solving the problem only on this subset. The number N of mesh point is
chosen so that the solution satisfies the necessary optimality conditions with good
accuracy (see appendix C). The resulting optimization problem is then solved by
the sequential quadratic programming solver SNOPT described in Gill, Murray &
Saunders (2005) to obtain an approximate optimal trajectory. For a detailed description
of the algorithm implemented in GPOPS please refer to Benson (2004), Benson et al.
(2006), Huntington (2007), Huntington & Rao (2008), Huntington, Benson & Rao
(2007a) and Huntington et al. (2007b), Garg et al. (2010) and Rao et al. (2010). The
local nature of the optimization algorithm requires a good guess to skip local minima
and numerical problems and therefore the guesses obtained by the just described
procedure will be used for this purpose. A multistart optimization procedure was
performed on a restricted set of trajectories to confirm that the guesses obtained via
harmonic balance actually lead to the global minimum. An accuracy check for these
trajectories via comparison with the analytically necessary optimality conditions is
reported in appendix C.

Assuming that the body starts out at rest, we consider optimal control problems
where the initial state X, = [00000000], and the final state is defined by
x; =100, y, = =50, 6y = 45°, along with constraints on the dimensionless maximum
torque and the rate of change of torque 7,., =1, J,.. =1 to calculate representative
time- and energy-optimal trajectories. In this setting the trajectory starts with the
object having zero velocity and the control torque is turned on immediately, when
drag and lift forces are still very small. An alternative strategy would be to delay the
activation of the controller until the vertical velocity reaches the steady-state value, to
exploit the effects of finite drag and lift. However, the performance losses associated
with the time to reach the state and the energy needed to switch from steady fluttering
to tumbling make the first strategy favourable. Although the fine details of the
trajectories clearly depend on the chosen values of the control constraint parameters,
the qualitative structure of the trajectories is robust with respect to variations of T,
and J,,, in the range 7,,, € [.5, 2] and J,,,. € [0.1, 10].

The energy-optimal trajectory is reported in figure 6(a,b), whereas the time-optimal
trajectory is plotted in figure 7(a,b). In both cases no bounds on final velocities were
imposed, i.e. X = Vmax = Whax — +00 in (4.6). We assess the (local) optimality
of these trajectories by comparing them with the necessary conditions for optimality
given by the Pontryagin maximum principle (see appendix C).

Energy-optimal strategies consist of using the minimum, almost constant, torque
capable of generating enough lift to reach the desired final position, as expected. On
the other hand, as usual in time-optimal control problems, time-optimal trajectories are
of ‘bang—coast-bang’ type, i.e. the control switches to one of its bounds until the path
constraint become active and it is zero on constrained arcs. Moreover, we see that
a weight o # 0 does not change the structure of the energy-optimal trajectory a lot
because J ~ 0 almost everywhere.

It is worth noting that the time-optimal trajectory is composed of a succession of
tumbling and gliding phases that correspond, respectively, to active lift generation and
passive gliding. This behaviour is reminiscent of bounding flight strategies proposed
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FIGURE 6. (a) Energy-optimal trajectory of the body without bounds on final velocities
(Kmax = Ymax = Wmax — +00), also showing the orientation of the body. () Optimal torque
T and the angular velocity w. Note the oscillatory form of the torque with a non-zero mean
(r) ~0.13 (HB predlctlon 79 = 0.19). (¢) Energy-optimal trajectory with bounds on final
velocities X, = Vimax = Wimax = 0.5 also showing the orientation of the body. (d) Optimal
torque T and the angular velocity w. We note that the final velocity constraints satisfaction
induces a lift loss at the very end of the trajectory and therefore the torque t presents a
secondary peak to compensate that loss. All simulations used the parameter values g = 0.1,
1=20,Cr=12,Cr=m,A=14, B=1.0 and u, = v, = 0.2. The relative location and
orientation of the ‘perch’ are x; = 100 ¥y = —50, 6y = 45° and the constraints on the control
variables are set to T, = 1 and J,,,, = 1.
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FIGURE 7. (a) Time-optimal trajectory without bounds on final velocities (X = Vyaxr =
Wmar — +00) also showing the orientation of the body. (b) Optimal torque = and the angular
velocity w. We note that the torque is bang—coast-bang with a non-zero mean (7) = 0.26
(HB predlctlon 7o = 0.19). (¢) Time-optimal trajectory with bounds on final velocities
Xmax = VYmax = Wmar = 0.5 also showing the orientation of the body. (d) Optimal torque t and
the angular velocity w. All simulations used the parameter values g = 0.1, I =20, C; = 1.2,
Cr=mn,A=14, B=1.0 and p, = v, = 0.2. The relative location and orientation of the
‘perch’ are x; = 100, y; = —50, 6, = 45° and the constraints on the control variables are set to
Tnax = 1 and Jyee = 1.
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in Rayner (1985) and Tobalske (2010) as a mean to optimize energy in small birds,
but we observe it here in the opposite extreme, where the energy does not enter in
the performance index at all. We can qualitatively explain this behaviour by looking
at the location of the fixed points reported in figure 2; all gliding phases occur in the
proximity of the orientation 6 corresponding to the steady-state motion with 7 ~ 1 and
this observation suggests that the time-optimal trajectory exploits the high horizontal
velocity of this (unstable) steady motion, but during this phase the system loses lift, so
that this must eventually be recovered by temporarily inducing tumbling. Such strategy
then allows combining the large horizontal velocities typical of steady angle gliding to
the small vertical velocities achieved during tumbling.

When there are bounds on the final velocities, such that X, = Vmax = Wiar = 0.5,
the energy- and time-optimal trajectories are shown in figures 6(c,d) and 7(c,d). We
note that the overall structure of the solution is preserved and the optimal control
strategy is affected only in a ‘boundary’ layer at the end of the trajectory.

5. Discussion

We have analysed a simple planar model for the controlled descent of a thin solid
body subjected to gravity in a quiescent fluid, inspired by the behaviour of gliding
canopy and African ants and bristletails, and gained insight on strategies perching
optimally. In particular, by exploiting harmonic balance techniques we first obtained
an analytical estimate of the reachable set from a given initial height. We then solved
the problem of optimal perching in the framework of optimal control theory and
determined trajectories that minimize either the time or the energy for reaching a
desired position and orientation. Although the underlying model average over the
complex vortical fluid dynamics associated with falling bodies, our results should
nevertheless provide a qualitative guide to the phenomena at play.

Our minimal theoretical results based on harmonic balance analysis complement the
results obtained using numerical optimal control and show that tumbling motion and
rotational lift can be successfully exploited to control the descent of the body and
achieve smaller glide angles than simple gliding via fixed point motion associated with
simple flutter or tumble, where we have defined the glide angle as the ratio between
vertical and horizontal velocities. Interestingly, with some reasonable bounds on the
maximum torque |7| < Tu = (o5 — p)a’bg, corresponding to shifting the centre of
mass to the extremities of the body, further from the geometric centre, we show that
it is possible to achieve very shallow glide angles of about 6, >~ 10°, which are far
better than those seen in canopy ants (6, >~ 75° as in Yanoviak et al. 2009), or sugar
gliders (6y >~ 29° as in Jackson 2000) and close to a recently designed artificial glider
(6p ~ 15° as in Cory & Tedrake 2008).

Furthermore, we see that it is possible to determine an energy-optimal control
strategy that follows by using the smallest constant value of the torque allowable to
reach the final target. Our results also show that minimum time trajectories exploit
unsteady effects to combine large horizontal velocities and relatively small vertical
velocities and resemble bounding flight; perhaps they ought to be termed ‘bounding
gliding’. In a biological context, these two optimal strategies may characterize the
limits of performance that the animal is limited by; for example, time-optimality may
be better suited for escape while energy-optimality may be better suited for foraging.
Our results also suggest the use of steady tumbling motion for artificial glider systems,
as alternatives to the classical approach based on fixed point motion stabilization as,
for example, in Woolsey & Leonard (2002) and Roberts, Cory & Tedrake (2009). This
is borne out by both the fact that insects have pursued such strategies for hundreds of
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millions of years and our study that shows that it may be possible to increase flight
performance using rotational lift.

From the perspective of the evolution of flight, our study shows that fairly simple
controllers with reasonable constraints can lead to effective, efficient controlled gliding
descent. An important quantitative question that our study raises is the role of
body morphology and neural dynamics that directly relate to constraints on torque
generation as these might have allowed for the development of controlled gliding as a
precursor for flight in a variety of organisms.

Appendix A. Gaussian impulsive control

Through all of the analysis described in this paper, the control action has been
identified by a torque applied to the system centre of mass via an internal rotor. Of
course, this hypothesis will apparently fail if one observes that animals cannot apply
torque in the same way that an internal rotor does. In particular, animals such as
gliding ants can only apply impulsive torque, for example by moving their legs. This
is clearly in contrast to the ‘constant torque control’ used in §§3 and 4 and thus it is
crucial to analyse the limit of the described analysis.

In particular, the relative weight between the exact ‘shape’ of the torque with respect
to its average value has to be evaluated. To this end, a periodic Gaussian torque has
been applied to the system. Each impulse is described by the function

1(f) = te (17 1207 (A1)

where o sets the width, the peak torque is identified by 7 and the forcing period is
indicated by T,. Moreover, a time shift z; has been introduced to maximize the control
efficiency, as discussed in the following.

By keeping the average torque

! / " dr~ - ams (A2)
To — — T >~ — To
° T‘L’ 0 Tr

constant, we analyse the dependence of (w) on 7 and T,. Note that ¢ and T, are
related by (A 2) where the last equality holds if the Gaussian impulses do not overlap,
ie. if

6o <7, = N7 o 7 (1 on ) 0 (A3)
o < T, ~ < T, 1= -] >0,
27T V21T
thus we will limit our analysis only for these cases. On the other hand, if
61’0
T: | 1— -] <0 (A4)
< A2nT )

the Gaussian impulses overlap, therefore the torque has a predominant DC component
and the analysis of §3 holds. The additional degree of freedom provided by the
relative phasing #, between the angular position of the ellipse and the impulse can be
exploited to maximize the control efficiency by synchronizing the impulse with the
rotation of the body.

The dependence of (w) =w, on 7 and T, with 7, =1 is reported in figure 8. For
plotting purposes we report the value of w, given by the most efficient ¢, for every
point (7, T;). Note that, although the period of excitation can be as large as twice the
period of rotation of the ellipse and the maximum torque amplitude spans an order of
magnitude, the resulting rotational velocity wy changes by only about 5 %. Thus, the
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FIGURE 8. Dependence of wy on 7 and T, (o = 1).

hypothesis that only the average torque influences the system dynamics is appropriate
for this system.

Appendix B. Drag force nonlinearities

The estimation of 6, from (3.25) requires us to calculate an expression for the first
harmonic approximation F{ of the drag force nonlinearities, i.e. what is known in
control theory as the describing function of those nonlinearities. For large /, i.e. when
the aspect ratio is bigger than the density ratio por/p;, ¥ 2 —1 and thus uf >~ —vj.
Within this assumption the drag force nonlinearities can then be approximated as

ViR +1v2u= \/ u§200s2 (wol) + v‘fz sin® (wo?) S cos (wot)

2 2 .
K203 cos? (wot) + v} sin® (wo) (—K vf) cos (wyl)

= —\/1 + (€2 + 2€) cos? (wot) |v}| K v} cos (woi)

s s s 562 2e 2
~ —K |v1| V) cos (Wot) — K |v1| V) cos” (wot) cos (wy)

2
3e242 le?+2
:—K’v‘f’v‘f{<l+46 ; 6>cos(wot)—|—46 -12- 6Cos(3wot)}
o s 5 3, —1 4 «?

= —« |v}| v} g gk ) cos (wot)+Tcos (Bwot) (B1)
22 ) — t
u2 vz\/mu: u1 cos? (wot) v1 sin’ (wo)’ 1|
u+v us ?cos2 (wol) + v1 sin® (wot)

€+ 2e
X <1 + 42- cos’ (wot)> cos (wot)

Kk2cos? (wot) — sin’ (wot) ot s
=— - PECHE"
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x (14 > cos” (wot) | cos (wyt)
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Controlled gliding and tumbling 509

s K 62 + 2e 2
Xk (vy|vy [ 1+ > cos” (wot) | cos (wyt)
2cos? (wot) — 1 (€2 + 2¢) cos? (wot) o
=— K|vl|lv
1+ (62 + 26) cos? (wyt) H

242
X (l + € _‘2_ ecos2 (wot)> cos (wot)

€2 +2¢ €242
> +

>~ — {l + cos 2wpt) — 1 + cos (ZWOI)}

242
X K ‘vﬂ vy <1 € -12- 6cos2 (wot)> cos (wot)

+
1 2 1 22
= _{ ‘;K + <1 + +KZ> Ccos (2W0t)}l( ’v” v}
2

1 -2 1 22
x {1+ TK + +K2 cos(2w0t)}cos(w0t)

3 1, s
=—q——+—«" Kk {vj| v} cos (wot)
3 + ix“ k [v}] v} cos Bwyr) (B2)
16 ' 16 He ’
where € = —1 — k and the approximate relation /1 + x>~ 1+ (x/2) when x <« 1 has
been exploited.

By using these approximate expressions in the harmonic balance equation one
obtains the following equation for sin 6,

[—A <5 + 3,<2> +B (_3 + “K“)} KT g (COS 9")
8 ' 8 16 ' 16 4C2W2 Wo
— [—A (5 + 3/<2> +B <—3 + HK4>:|
8 ' 8 16 ' 16

2 0,
ign <C(iio 0> sin6y + sin 6, = 0. B3)

KTt
X S
4Cw}
Moreover, thanks to the symmetry of the system, 6, can be chosen such that cos 6, is
always positive and therefore we can write the unique solution of (B 3) as in (3.37).

Appendix C. Optimality test

In order to test the quality of the optimal trajectories obtained by the numerical
algorithm, we compare them with the optimality necessary conditions provided by
the Pontryagin maximum principle. To this end, an analytical expression of such
conditions is derived and a comparison between them and the obtained trajectories is
reported.

First of all, note that the symmetry of the system implies that the constraint
about final orientation can be imposed only mod(2m), however the ‘mod’ function
introduces a discontinuity around 2m that can cause numerical problems during the
optimization process. In order to overcome this problem and noting that 6 appears
only as an argument of trigonometric functions, we define an auxiliary system with



510 P, Paoletti and L. Mahadevan

(extended) state X = [u, v, w, x, v, X, 0, T] where x(t) =cosO(t) and o (t) = sin6 (7).
The auxiliary system dynamics can then be written as, on dropping the tilde and with
a little abuse of notation,

X =Gy(X) +JG(X) (CI)
"+ Dow—Tv—0—F) I+ )" :
(—d+ P uw+Tu—x -G I+

2 1 2 1 242 -
(B —l)uv+‘1:—M)<4 (I(1+ﬂ)+2(l—ﬂ)>>

Go(X) = |ux —vo (C2)
Uo + vy
—Oow
Xw
L0 J
T
612[00000001]. (C3)

Note that the dimension of the state space for the auxiliary system is increased by one
with respect to the original system, but now the boundary conditions can be imposed
by means of smooth functions. The related optimal control problem can now be stated
as

T

mJin%:mJin/0 (147 (2 +as?)] dr (C4)
X =Go(X) + GiJ (C5)
X(0) =X (C6)
X(T)eZ (C7

F ={X(T) eR*: x(T) =x;, y(T) =y, x(I) = s, o(T) =0y,
X(D)| < Zmars YD < Imars WD) < Wiar } (C8)
1] < T (C9)
V1 < Jmax- (C 10)

To check the quality of the solutions provided by the numerical algorithm we
compare them with the optimality necessary conditions given by the Pontryagin
maximum principle. It is known that for N — +o00 the approximate solutions satisfy
the Pontryagin conditions, but in practice one cannot increase N too much due to
computational complexity issues and therefore it is useful to check how far the
candidate trajectories are from satisfying the analytical optimality conditions.

Let us now use the Pontryagin maximum principle to derive such necessary
conditions for optimality. The first step consists of defining the so-called Pontryagin
Hamiltonian

HX, AN =A[1+n (> +al?)] + A-[Go(X) + GJ] — - c(x,u, 1) (C11)
or, more explicitly,
H=Ag[l+n (7> +a)?)]
A+ Dvw—Tv—0—F) (I+ )"
+ M {(-1=B)uw+Tu—x —G}d+ 1"
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(BP=Duv+t-M
"4 (14 B2) + 1/8(1 - p2)°
—|—A5(ua—|—vx)—A6ow+A7xw+A8J—M(r2—t2 ) (C12)

max

+A

+ Ay (uy —vo)

where Ay € Rt and A :[0,T] — R® are called adjoint variables or costates,
clx,ut) =1* — r,fmx < 0 represents the path constraints and @ : [0, 7] - R is a
Lagrange multiplier associated with these constraints. The Pontryagin maximum
principle states that the optimal trajectory (X*, A*) is associated with the vector
field H* such that the following conditions hold:

(a) minimality condition:

H'=H(X'. A% J) = min HX' A%J) (C13)

1< max

(b) free final time condition:

H*=0 Vrel0,T] (C14)

(c) non-triviality of solution:
|[A()|#£0 Vrel0,T] (C15)

(d) path constraint condition:
nw=0 ifc(x,u,t)<0 (C1e6)
nw<0 ifctx,u,t)=0 c17

(e) transversality condition:

V8 eTxqn#F AT)-8=0 (C18)

where Ty)-# represents the tangent space of .# at the point X(7).

Owing to the particular structure of G; and of the performance index %, the
minimality condition (C 13) reduces to

J* =arg min {Aonozl2 + Ag.]} (C19)

V1< max

and therefore the optimal control J* can be written as

As A 5o A £0
- — JYmax - max s (04
2 Agna = 2 Agna = ort
T =8 ~Jyae = 5 < —Jyar, OF A =0, Ag > 0 (C20)
2Agna
Ag
Jmax — > Jonax, OF Agna =0, Ag < 0.

2Aona

Note that if Ag # 0, the adjoint variables can always be normalized such that Ay =1
due to the homogeneous nature of the Hamiltonian H. Trajectories with Ay, =0 are
called abnormal trajectories and represent quite pathological situations because their
optimality does not depend on the performance index. In the following we focus only
on normal trajectories, i.e. we always consider Ay = 1.

As na — 0 and Ag # 0, (C20) implies bang—bang trajectories, as usual in time-
minimum problems with affine-in-control dynamics. However, in our model bang—bang
trajectories could also arise in the energy-optimal perching problem with o = 0.
Trajectories with Ag =0, na =0 on a finite time interval [t,,#,] are called singular
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trajectories and an alternative expression for the input is needed. Necessary conditions
for the existence of singular trajectories are, by definition,

Ag() =0, Ag()=Ag=---=0, telt,t]. (C21)
By exploiting the relation

dA oH
e it (C22)
dr 0X
we can rewrite conditions (C 21) in the energy-optimal case as
. Az
Ag = —2A()7]'L' — 1 1 5 = O, (C 23)
“T(1+p)+=-(1-p°
HHB) + (-8
) As
Ae=24017 — 5 1 - =0, (C24)
“I(1+B8)+-(1-p
TR (-8
4s
=J==— . (C25)
1 ) 1 2
2401 Z1(1+,6 )+§(1—,3 )

The analysis of singular trajectories in the time-optimal case is much more involved
due to the lack of the first term (7 = 0) and requires considering all of the derivatives
of Ag up to the fourth. However, note that in the time-optimal trajectories obtained
by numerical algorithm J is different from =+J,,, only when the path constraints are
active, i.e. T = +7,,,, and in this case the control must be zero thanks to the relation
T=J.

The transversality conditions (C 18) imply some constraints on the adjoint variables
final values. In fact, depending on which set of constraints is active, different
orthogonality conditions between the vector A and the tangent space Ty).# arise.
Then let us define

g (X(T) = (1) = 2. = (D) xy — v(Doy)”* = P (C26)
g (X(T)) = JA(T) = e = (D)0 + v(T) 35)" = P (C27)
g3 (X(T)) =W (T) — w2, (C28)

so that the final set .# can be expressed as
F = {X(T) eR*:g,<0,8 <0,g; <0,x(T) =x, y(T) =y,

X (1) =y, 0(T) =07} . (C29)
Note that g3 involves only one state variable, thus only two cases must be considered:
(a) g3 <0, then A3;(T) =0 as if w(T) was free;
(b) g3 =0, then w(T) is fixed at +w,,,, and Aj; is free.

On the other hand, g; and g, involve both u and v, therefore they will influence the
values of A;(T) and A,(T) and four subcases can occur:

(a) g1 <0, g, <0, then A(T) = Ax(T) =0 as if u, v were free;
(b) g1 =0, g, <0, then ’u(T)Xf — v(T)af‘ = Xnuar- When g, =0, then Vg, is a vector
orthogonal to the boundary of .# and reads

vgl = [:tjcmax)(f’ q:kmaxo'f’ 09 07 Oa 07 Oa 0] ) (C 30)
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FIGURE 9. Costate dynamics (a—c) and Pontryagm Hamiltonian (d) for energy- optimal
trajectory without bounds on final velocities reported in ﬁgure 6(a,b) Xmax = VYmax = Winax —>
400, N = 600). We note that A, (T) = A,(T) = A;(T) = 0 in agreement with the analysis in
the absence of final velocities constraints and that the trajectory is almost purely singular
because Ag(f) = 0 for t > 0.4. The number N of points has been chosen so that the
Hamiltonian magnitude is small throughout the trajectory.

thus A(T) and A,(T) have to satisfy the relation

=0 A(T) = xp Ao(T). (C31)
(c) g1 <0, g =0 then, by analogous reasoning, one obtains
A((T) = o7 Ax(T). (C32)

(d) g1 =g, =0, then u and v are fixed and therefore A; and A, are free.

The other constraints on the final state of the system are more simple to handle and
imply

Asg(T) =0, (C33)

Ay(T), As(T), Ag(T), A9(T) free. (C34)

The relevant adjoint variables and Pontryagin Hamiltonian for the trajectories
without final velocities constraints reported in the paper are plotted, respectively, in
figures 9 and 10.

All of the transversality conditions are correctly satisfied, in fact A;(T) = Ax(T) =
A3(T) = Ag(T) =0 in both cases. Moreover, A; and As are both constant in both
cases as requested (data not shown). From these plots it also becomes evident that
the energy-optimal trajectory is a purely singular trajectory because Ag = 0 during
the whole trajectory. The approximate nature of the solutions becomes evident by
inspecting the behaviour of the Pontryagin Hamiltonian. In fact, according to the
Pontryagin maximum principle, the Hamiltonian should be constant and equal to
zero during the whole trajectory, but the results from the GPOPS algorithm do not
exactly satisfy this condition. Increasing the number of grid points N can mitigate
this problem but the computational time quickly increases. The number of points N
has thus been chosen such that the Hamiltonian magnitude is close to zero along the
whole trajectory and, moreover, the trajectory itself does not differ substantially from
that obtained on the coarser grid used in the previous step. Note that the magnitude
of deviations from zero of the Hamiltonian is larger for time-optimal trajectories, but
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FIGURE 10. Costate dynamics (a—c) and Pontryagin Hamiltonian (d) for time-optimal
trajectory without bounds on final velocities reported in figure 7(a,0) (Xpax = Yimax = Winax —>
400, N =3500). We note that A, (T) = A,(T) = A;(T) =0 in agreement with the analysis in
the absence of final velocities constraints. The number N of points has been chosen so that the
Hamiltonian magnitude is small throughout the trajectory.

() 5
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FIGURE 11. Costate dynamics (a—c) and Pontryagln Hamiltonian (d) for energy-optimal
trajectory with bounds on final velocities X,,c = Vmax = Wimax = 0.5 reported in figure 6(c—d)
(N = 600). We note that A(T) = —A,(T) and A;(T) = 0 in agreement with the analysis
in presence of final velocities constraints and that the trajectory is almost purely singular
because Ag(f) = 0 for f > 0.3. The number N of points has been chosen so that the
Hamiltonian magnitude is small throughout the trajectory.

this is due to the slower rate of convergence of the algorithm for bang—bang control
and the number of points could not be further increased due to computational time
constraints. However, also in the time-optimal case the actual trajectory of the system
nearly overlaps to that obtained on a coarser grid and thus we are very close to
complete convergence.

The adjoint variables and the Pontryagin Hamiltonian associated with energy- and
time-optimal trajectories in presence of bounds on final velocities are reported in
figures 11 and 12.
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(b) 2

~0 50 100 150 0 50 100 150

FIGURE 12. Costate dynamics (a—c) and Pontryagm Hamiltonian (d) for time- optlmal
trajectory without bounds on final velocities X, = Vmax = Wpnax = 0.5 reported in
figure 7(c—d) (N = 3500). We note that A;(T) = —A,(T) and A3;(T) = 0 in agreement with
the analysis in the absence of final velocities constraints. The number N of points has been
chosen so that the Hamiltonian magnitude is small throughout the trajectory.

The discussion reported for the unbounded final velocity trajectories still holds
with the exception of the transversality conditions that have to be modified to take
into account the presence of a bound on the final velocity. Note that in this case
A(T) = —Ay(T) as predicted by (C31) with oy = xr (0 =m/4).
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