
26 October 2011
 first published online, doi: 10.1098/rspa.2011.0247468 2012 Proc. R. Soc. A

 
L. Giomi and L. Mahadevan
 
anisotropic strips
Multi-stability of free spontaneously curved
 
 

References
ml#ref-list-1
http://rspa.royalsocietypublishing.org/content/468/2138/511.full.ht

 This article cites 16 articles, 5 of which can be accessed free

Subject collections

 (94 articles)mechanics   �
 (252 articles)applied mathematics   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

 on January 21, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/468/2138/511.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/cgi/collection/applied_mathematics
http://rspa.royalsocietypublishing.org/cgi/collection/mechanics
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;468/2138/511&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/468/2138/511.full.pdf
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


Proc. R. Soc. A (2012) 468, 511–530
doi:10.1098/rspa.2011.0247

Published online 26 October 2011

Multi-stability of free spontaneously curved
anisotropic strips

BY L. GIOMI* AND L. MAHADEVAN

Department of Physics, School of Engineering and Applied Sciences,
Harvard University, Pierce Hall 29 Oxford Street, Cambridge,

MA 02138, USA

Multi-stable structures are objects with more than one stable conformation, exemplified
by the simple switch. Continuum versions are often elastic composite plates or shells,
such as the common measuring tape or the slap bracelet, both of which exhibit two
stable configurations: rolled and unrolled. Here, we consider the energy landscape of a
general class of multi-stable anisotropic strips with spontaneous Gaussian curvature. We
show that while strips with non-zero Gaussian curvature can be bistable, and strips
with positive spontaneous curvature are always bistable, independent of the elastic
moduli, strips of spontaneous negative curvature are bistable only in the presence
of spontaneous twist and when certain conditions on the relative stiffness of the
strip in tension and shear are satisfied. Furthermore, anisotropic strips can become
tristable when their bending rigidity is small. Our study complements and extends the
theory of multi-stability in anisotropic shells and suggests new design criteria for these
structures.

Keywords: bistable shells; morphing structures; Gaussian curvature

1. Introduction

The notion of elastic multi-stability has drawn considerable attention in the past
few years owing to the potential for the design of smart structures. A multi-
stable structure is an elastic object (typically a fibre-reinforced composite) that
exhibits more than one equilibrium conformation and can thus be arranged
in a variety of shapes without inducing permanent deformations and with no
need of mechanical hinges. Everyday examples of these include snapping hair-
clips, the slap-bracelet and various jumping toys. Unlike more conventional
engineering structures, where large deformations must be accompanied by
large forces, multi-stable objects can switch between shapes using a small
actuation force. This latter feature has made multi-stable structures promising
candidates for the realization of a new generation of adaptive devices, in
which these ‘morphing’ capabilities, combined with limited actuation, allow
for switchable, controllable conformational changes. Examples of this new
generation of devices are shape-changing mirrors for adaptive focusing in optical
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systems or morphing aircraft structures that can continuously readjust their
shape to optimize aerodynamic function (Abdulrahim et al. 2005; Mattioni
et al. 2007).

The quest for a theoretical description of elastic multi-stability dates back
to the 1920s when deployable devices, such as the measuring tape, first made
their appearance. In this context, it is amusing to note that A. E. H. Love, the
author of the classical treatise on elasticity (Love 1927), was once challenged
to explain why the longitudinal curvature of a spring-steel measuring tape
appears to match exactly its transverse curvature (Petroski 2004). He did not;
indeed such an explanation was offered only decades later by Rimrott (1965)
and reviewed and distilled into an elegant solution by Calladine (1988). Over
the last decade, the work of Iqbal et al. (2000), Galletly & Guest (2004a,b)
and Guest & Pellegrino (2006) simplified and clarified the elasticity of bistable
objects, unravelling the interplay between anisotropy and spontaneous curvature
in determining the shape of bistable plates. Guest & Pellegrino (2006) used a
beam model of a strip of infinite length and finite width endowed with constant
spontaneous curvature along the transverse direction. Assuming inextensibility,
these authors showed that orthotropic strips exhibit a secondary equilibrium
conformation in addition to the base configuration. The stability of such a
secondary minimum of the elastic energy depends on the relative magnitude
of the bending stiffness in the longitudinal and transverse directions as well as
the twisting stiffness of the strip. Later, Seffen (2007) considered an extensible
elliptical plate with free boundaries and non-zero, constant spontaneous principal
curvatures and showed that even isotropic shells might be bistable. More
recently, Vidoli & Maurini (2009) extended Seffen’s uniform curvature model
and showed that two-dimensional orthotropic plates with initial shallow double
curvature are in fact tristable in some range of elastic moduli and spontaneous
curvatures, while a one-parameter family of continuously variable neutrally
stable shapes was reported by Seffen & Guest (2011) in the context of
prestressed shells.

In this paper, we complement these different results to understand the
phase space for multi-stability in spontaneously curved elastic strips, but lift
the assumptions of inextensibility and uniform curvature, with the goal of
analysing an entire range of morphing scenarios (including tristability) without
compromising the simplicity of the analytical treatment. Our system consists
of a free anisotropic elastic strip with spontaneous double curvature and, in
general, spontaneous twist. In this setting, we look for a general solution without
assuming deformations to be inextensible or the curvature to be constant across
the strip. This latter feature, in particular, is what makes tristability possible,
even in the reduced dimensionality of strip-like plates and allows us to map a
‘phase diagram’ for the existence of bi- and tristability. In §2, we present the
fundamental equations describing general anisotropic elastic strips following the
approach of Mansfield (1973), Reissner (1992) and most recently, Galletly &
Guest (2004b), who considered the specific case of composite bistable tubes.
In §3, we specialize our analysis to the case of orthotropic strips and discuss
the associated energy landscape. In §4, we briefly discuss the case of strips
with coupling between stretching and bending, highlighting the differences and
similarities with orthotropic strips. Section 5 concludes the paper with a focus on
open problems and applications.
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Figure 1. Schematic of a two-dimensional strip of thickness t and width 2a. The transverse and
longitudinal directions are labelled as x and y, respectively. For strips that are six times longer
than they are wider, it is sufficient to consider them as effectively infinite along the y direction.
(Online version in colour.)

2. Elasticity of anisotropic strips

(a) Formulation

We start by considering a long rectangular plate whose length is much larger
than its width 2a, with x being the coordinate along the direction parallel to
the short edge and y the coordinate along the direction parallel to the long edge
(figure 1). In practice, we can consider the strip infinite along the y direction
to avoid dealing with end conditions. As noted by Mansfield (1973), strips with
aspect ratio five or more are already well described by this approximation.

The general constitutive equations for anisotropic plates can be expressed in
terms of the ABD matrix (Ashton & Whitney 1970; Jones 1999), that relates the
in-plane stresses N = (Nx , Ny , Nxy) and out-of-plane moments M = (Mx , My , Mxy)
with the strain e = (ex , ey , exy) and the difference c = k − c between the middle-
surface curvatures1 k = (kx , ky , kxy) and their preferred (spontaneous) values
c = (cx , cy , cxy), so that (

N
M

)
=

(
A B
B D

) (
e
c

)
, (2.1)

where A represents the extensional stiffness matrix, D is the bending stiffness
matrix and B embodies the possible coupling between stretching and bending
owing to material anisotropy.

In terms of the strain, curvature and the material properties of the shell, the
elastic energy density of a general anisotropic plate is given by Mansfield (1989),

u = 1
2(Aijeiej + 2Bijciej + Dijcicj), (2.2)

where the Einstein convention on repeated indices has been used, and the first
and third terms are the stretching and bending energy densities, while the second
term characterizes the energy associated with the coupling between bending and

1We use Reissner’s notation for the twisting curvature, kxy = −2v2w/vxvy, where w is the height
of the middle-surface above the xy plane.
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stretching. Because it is often useful to know the constitutive equations (2.1) in
their semi-inverted form, we write them as(

e
M

)
=

(
a b

−bT d

) (
N
c

)
, (2.3)

where
a = A−1, b = −A−1B and d = D − BA−1B, (2.4)

so the energy density (2.2) can be expressed in terms of N and c as

u = 1
2(aijNiNj + dijcicj). (2.5)

In the absence of body forces or external loads, the conditions for kinematical
compatibility and mechanical equilibrium translate, respectively, into the
following partial differential equations (Calladine 1993):

v2ex

vy2
− v2exy

vxvy
+ v2ey

vx2
= −dK (2.6a)

and
v2Mx

vx2
+ 2

v2Mxy

vxvy
+ v2My

vy2
= kxNx + kxyNxy + kyNy , (2.6b)

where dK = K − K0 is the difference between the Gaussian curvature of the
deformed plate, K = kxky − k2

xy , and its spontaneous Gaussian curvature, K0 =
cxcy − c2

xy . The radius of curvature of the strip is assumed to be much smaller than
the typical length scale of the deformations (i.e. shallow shell approximation).
This allows us to simplify the differential structure of the theory by transforming
covariant derivatives into standard partial derivatives. Equations (2.6) are then
the classic Föppl–von Kármán plate equations expressed in terms of stress and
curvature. Because the strip is assumed to be infinitely long in the y direction,
all physical quantities should be invariant with respect to translations along y.
Mechanical equilibrium requires V·N = 0, which, together with the condition
of translational invariance along y, yields

vNx

vx
= vNxy

vx
= 0.

In the absence of applied forces along the edges, this implies Nx = Nxy = 0. In
addition, the Mainardi–Codazzi compatibility equations Vikjk = Vkkij yield

vkx

vy
− vkxy

vx
= 0 and

vky

vx
− vkxy

vy
= 0,

which, together with the condition of translational invariance along y, imply that
both ky and kxy are constants. Thus, equations (2.6) simplify to

v2ey

vx2
= −dK (2.7a)

and
v2Mx

vx2
= kyNy . (2.7b)

Proc. R. Soc. A (2012)
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Using the semi-inverted constitutive equations (2.3), one can easily rewrite (2.7)
in the form of a single differential equation for the transverse moment Mx . To do
this, we start by writing

ey = a22Ny + b21cx + b22cy + b26cxy (2.8a)

and
Mx = −b21Ny + d11cx + d12cy + d16cxy . (2.8b)

Then, inverting (2.8b) and using (2.7b), we get

kx = cx + 1
d11

(
Mx + b21

ky

v2Mx

vx2
− d12cy − d16cxy

)
(2.9a)

and
v2kx

vx2
= 1

d11

(
v2Mx

vx2
+ b21

ky

v4Mx

vx4

)
. (2.9b)

Combining these two equations with (2.7), we finally obtain

(a22d11 + b2
21)

v4Mx

vx4
+ 2b21ky

v2 Mx

vx2
+ k2

yMx

= ky{d11(cxcy − c2
xy + k2

xy) + ky[d12(ky − cy) + d16(kxy − cxy) − d11cx ]}. (2.10)

The boundary conditions associated with equations (2.7) for a strip with no
applied forces and torques at the lateral edges have been discussed by Reissner
(1992) and translate into the requirement

Mx = vMx

vx
= 0, x = ±a. (2.11)

Together, (2.10) and (2.11) complete the formulation of the boundary-value
problem for the behaviour of a long anisotropic strip with spontaneous curvature
and twist.

(b) Anisotropy classes

Before we go further, it is useful to review the different form of elastic
anisotropy, following the theory of laminates (Jones 1999). Various forms of
matrix coupling the in-plane strain to the out-of-plane curvature B can be
obtained by controlling the relative orientation of the laminae forming the layers
of a composite plate. Thus, in a cross-ply fibre-reinforced composite, in which the
fibres in each layer are alternatively oriented at 0◦ and 90◦ with respect to the
y-axis of the strip, one has

B =
(B11 0 0

0 −B11 0
0 0 0

)
, (2.12)

with B11 = E⊥h2(E‖/E⊥ − 1)/4P, where E‖ and E⊥ are the Young moduli in the
parallel and transverse directions of the fibre and P is the number of layers of the
laminate. Antisymmetric angle-ply laminates, on the other hand, have laminae
oriented as same angle q with respect to the laminate coordinate axis on the one

Proc. R. Soc. A (2012)
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side of the middle-surface and the corresponding equal thickness laminae oriented
at −q on the other side at the same distance form the middle-surface. In this case,

B =
( 0 0 B16

0 0 B26
B16 B26 0

)
. (2.13)

General asymmetric laminates obtained by the asymmetric stacking of isotropic
layers with different material properties about the middle-surface have finally

B =
(B11 B12 0

B12 B22 0
0 0 B66

)
. (2.14)

In §2c, we start with a focus on the case of orthotropic strips for which
Bij = 0, while the case of angle-ply laminates is discussed in §4 in the context
of tristable strips.

(c) Equilibrium conformations

In the case of naturally flat strips with no coupling between stretching and
bending (i.e. Bij = 0 and dij = Dij), equation (2.10) reduces to the equation given
by Reissner (1992) for the case of an inhomogeneous anisotropic strip,

a22
v4Mx

vx4
+ ky

D11
Mx = ky

D12k2
y + D16kykxy + D11k2

xy

D11
.

Now, letting

41 = − b21ky

a22d11 + b2
21

, 42 = k2
y

a22d11 + b2
21

and

43 = ky{d11(cxcy − c2
xy + k2

xy) + ky[d12(ky − cy) + d16(kxy − cxy) − d11cx ]}
a22d11 + b2

21

,

the solution of equation (2.10) that satisfies the homogeneous boundary
conditions (2.11) is given by

Mx = −d11(k − k0) + d11C1 cosh k1x cos k2x + d11C2 sinh k1x sin k2x , (2.15)

where

k0 = (cxcy − c2
xy) + k2

xy

ky
(2.16a)

and
k = cx + d12

d11
(cy − ky) + d16

d11
(cxy − kxy); (2.16b)

C1 = (k − k0)
(

k1 cosh ak1 sin ak2 + k2 sinh ak1 cos ak2

k1 sin ak2 cos ak2 + k2 sinh ak1 cosh ak1

)
(2.17a)

and

C2 = (k − k0)
(

k2 cosh ak1 sin ak2 − k1 sinh ak1 cos ak2

k1 sin ak2 cos ak2 + k2 sinh ak1 cosh ak1

)
, (2.17b)

Proc. R. Soc. A (2012)
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with

k1 =
(√

42 + 41

2

)1/2

and k2 =
(√

42 − 41

2

)1/2

.

The longitudinal stress Ny and the transverse curvature kx can be readily
calculated by replacing Mx in equations (2.7b) and (2.9a). This yields

Ny = d11C ′
2 cosh k1x cos k2x − d11C ′

1 sinh k1x sin k2x , (2.18)

with

C ′
1 = (a22d11)1/2C1 + b21C2

a22d11 + b2
21

and C ′
2 = (a22d11)1/2C2 − b21C1

a22d11 + b2
21

,

and finally

kx = k0 + (C1 + b21C ′
2) cosh k1x cos k2x + (C2 − b21C ′

1) sinh k1x sin k2x . (2.19)

Equation (2.19) is equivalent to an expression given by Galletly & Guest (2004b)
for the case of a bistable composite slit tube. We will now examine the effect
of spontaneous curvature and elastic anisotropy on the energy landscape of
elastic strips.

3. Multi-stable configurations of orthotropic strips

As a starting point in our analysis, we consider the case of orthotropic strips.
For this class of materials, there is no coupling between stretching and bending;
hence Bij = 0, and the A and D matrices can be expressed in the following form:

A = tE0

⎡
⎢⎢⎣

1 n 0
n b 0

0 0 r

(
1 − n2

b

)
⎤
⎥⎥⎦ and D = t3E0

12

⎡
⎢⎢⎣

1 n 0
n b 0

0 0 r

(
1 − n2

b

)
⎤
⎥⎥⎦,

where E0 = E/(1 − n2/b) and, following Seffen (2007), we have called

Ex = E , Ey = bE , G = rE , nyx = n and nxy = n

b
,

where Ex and Ey are the Young moduli in the x and y directions, G is the shear
modulus, and nxy and nyx are the Poisson ratios. The conditions for the matrices
A and D to be positive definite translate into the requirement b > n2 and r > 0
(Vidoli & Maurini 2009). The transverse curvature (2.19) and the longitudinal
stress (2.18) then simplify to yield

kx = k0 + C1 cosh kx cos kx + C2 sinh kx sin kx (3.1a)

and
Ny = (tbED)1/2(C2 cosh kx cos kx − C1 sinh kx sin kx), (3.1b)

where D = t3E/12(1 − n2/b), k1 = k2 = k and

k =
(

tbE
4D

k2
y

)1/4

.

Proc. R. Soc. A (2012)
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The stretching energy density us and the bending energy density ub are obtained
by substituting (3.1) into (2.5) and yield

us = 1
2tbE

N 2
y (3.2a)

and

ub = 1
2D

[
c2

x + bc2
y + 2ncxcy + r

(
1 − n2

b

)
c2

xy

]
. (3.2b)

Integrating (3.2) along the width of the strips, we obtain the total stretching
energy per unit length

us = 1
2
D(k − k0)2

(
J

2k
− 2aF

)
, (3.3)

where

J = cosh 2ka − cos 2ka
sinh 2ka + sin 2ka

and F = sinh 2ka sin 2ka
(sinh 2ka + sin 2ka)2

,

and the bending energy

ub = aD
[
(k0 − cx)2 + b(ky − cy)2 + 2n(k0 − cx)(ky − cy)

+ r

(
1 − n2

b

)
(kxy − cxy)2 + h

2ka
(k − k0)J + (k − k0)2F

]
, (3.4)

where
h = 5

2ky
[(ky − cy)(nky − cx) + (k2

xy − c2
xy)]. (3.5)

Before proceeding with the analysis, it is useful to introduce a set of dimensionless
quantities defined by

x̂ = x
a

, t̂ = t
a

, ĉi = aci and k̂i = aki (i = x , y, xy),

so that the dimensionless stresses and energies per unit length are given by

N̂ y = Ny

aE
, Û s = us

taE
, Û b = ub

taE
and Û = Û s + Û b.

Û is thus the total elastic energy of a strip that accounts for both stretching
and bending. In the following sections, we will analyse the ‘energy landscape’
embodied in Û and given by (3.3) and (3.4) in a variety of scenarios. We will
start by considering configurations of constant transverse curvature k̂x and then
move on to the more general case in which k̂x is allowed to vary across the strip.
In §3c, we will examine the limit of vanishing bending stiffness and show how
tristability arises in this setting for a broad range of spontaneous curvatures.

(a) Uniform curvature configurations

To understand the energy landscape of the strip, we analyse the total elastic
energy Û given by (3.3) and (3.4). We first focus on configurations having constant

Proc. R. Soc. A (2012)
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transverse curvature k̂x : if k̂y is non-zero; from equations (2.17) and (3.1a), it
follows that C1 = C2 = 0 and k̂ = k̂0. This solution has zero longitudinal stress
and, as a consequence, is an isometry of the base configuration: a deformation
that preserves the local metric of the shell so that e = 0. The latter statement
can be also verified by calculating the Gaussian curvature of the deformed strip.
Because k̂x = k̂ = k̂0, equation (2.16a) yields

k̂x = (ĉx ĉy − ĉ2
xy) + k̂2

xy

k̂y
, (3.6)

which implies that k̂x k̂y − k̂2
xy = ĉx ĉy − ĉ2

xy as required by Gauss’ theorema egregium
(Kreyszig 1991). The corresponding total elastic energy per unit length Û is
given by

Û = t̂2

12
[b(k̂y − ĉy)2 + r(k̂xy − ĉxy)2]. (3.7)

The condition k̂ = k̂0 used to obtain the isometric solution (3.6) describes, in the
plane (k̂y , k̂xy), a continuous set of configurations of zero stretching energy. The
explicit form of this geometrical locus is given by

nk̂2
y + k̂2

xy − (ĉx + nĉy)k̂y = ĉ2
xy − ĉx ĉy , (3.8)

which corresponds to an ellipse with focii at

k̂y,0 = 1
2n

(ĉx + nĉy) and k̂xy,0 = 0,

and semi-axes ay = 1/�
√

n and axy = 1/�, with �−2 = (1/4n)(ĉx − nĉy)2 + ĉ2
xy .

The bending energy, however, suppresses this soft mode by selecting a minimum
in this class of isometric deformations: the base configuration having k̂y = ĉy
and k̂xy = ĉxy .

A special but not necessarily isometric solution with constant curvature can
be found by taking the limit k̂y → 0 of equation (3.1a), which gives

k̂x = ĉx + nĉy . (3.9)

The corresponding longitudinal stress is given then by

N̂y = t̂
6

b(3x̂2 − 1)[(ĉx ĉy − ĉ2
xy) + k̂2

xy], (3.10)

using which we can calculate the total elastic energy as

Û = b

{
1
45

[(ĉx ĉy − ĉ2
xy) + k̂2

xy]2 + t̂2

12

[
ĉ2

y + r

b
(k̂xy − ĉxy)2

]}
. (3.11)

This class of deformations belongs to the set of isometries only when the first
term on the left-hand side of equation (3.11) vanishes, namely when

k̂2
xy = ĉ2

xy − ĉx ĉy = −K̂0. (3.12)

Proc. R. Soc. A (2012)
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0

Figure 2. Contour plot of the total elastic energy per unit length Û from (3.3) and (3.4) in the
plane (k̂y , k̂xy). The labels P and S indicate the primary and secondary minima. (a) ĉx = ĉy = 0 and
ĉxy = 2. The strip has a secondary minimum at k̂xy ≈ −ĉxy . (b) ĉx = ĉxy = 0 and ĉy = 2. The strip
has a single equilibrium configuration. The other relevant parameters are b = 10, r = 1, n = 1/3 and
t̂ = 10−2. (Online version in colour.)

Clearly, this is possible only when the initial Gaussian curvature K̂0 is negative
or zero. In the latter case, the strip has only one minimum corresponding to the
base configuration (figure 2b).

However, a secondary equilibrium configuration of constant curvature is
obtained if ĉx = ĉy = 0 and ĉxy 	= 0, when equation (3.11) reads

Û = b

{
1
45

(k̂2
xy − ĉ2

xy)
2 + t̂2

12
r

b
(k̂xy − ĉxy)2)

}
. (3.13)

Then, in addition to the base configuration k̂xy = ĉxy , the energy has a secondary
minimum corresponding to the twisting curvature

k̂xy = −1
2

{
ĉxy +

√
ĉ2

xy − 15
2

(
r

b

)
t̂2

}
, (3.14)

which is approximately k̂xy ≈ −ĉxy (figure 2a). The stability of the secondary
minimum depends on r and b, as well as the Poisson ratio n. To assess this,
we calculate the components of the Hessian matrix,

v2Û
vk̂2

y
= b

{
t̂2

6
+ 4

45
n (k̂2

xy − ĉ2
xy) + 16

945
(n2 − b)

t̂2
(k̂2

xy − ĉ2
xy)

2

}
,

v2Û
vk̂yvk̂xy

= 0 and
v2Û
vk̂2

xy
= − 4

45
b(ĉ2

xy − 3k2
xy) + t̂2

6
r,

where k̂xy is given by equation (3.14). In order for the secondary minimum to be
stable, the eigenvalues of the Hessian matrix must be positive. Upon expanding
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v2Û /vk̂2
y at the second order in t̂, this condition reduces to the following

inequality:

b − 2nr − 10
7

(
1 − n2

b

)
r2 > 0.

This implies the following requirement on r:

r <
b

n + √
(10b − 3n2)/7

. (3.15)

In summary, strips having zero spontaneous principal curvatures ĉx = ĉy = 0
and non-zero spontaneous twist ĉxy admit a secondary equilibrium configuration
where the principal curvatures vanish, i.e. k̂x = k̂y = 0, while the twisting
curvature is reversed k̂xy ≈ −ĉxy . The secondary minimum is stable for low enough
shear modulus, a scenario previously discussed by Seffen (2007) for the case
of an elliptical plate endowed with pure twist. The most important difference
between the two cases is that here the strip has zero bending moment along the
lateral edges, unlike the plate investigated by Seffen, which can support a finite
bending moment at the boundary. As a consequence, the transverse curvature k̂x ,
which is a free parameter in uniform curvature models, is here adjusted in order
to maintain the boundary moment-free, and this severely restricts the space of
possible uniform curvature configurations.

The previous situation is an example of bistability in a strip with a negative
spontaneous Gaussian curvature K̂0 = −ĉ2

xy , where the principal curvatures ĉx and
ĉy vanish identically, while the surface is purely twisted. However, when ĉx ĉy 	= 0
and K̂0 < 0, the strip also exhibits a secondary equilibrium configuration, albeit
with a variable transverse curvature k̂x discussed in §3b.

(b) Non-uniform curvature configurations

When the constraint of constant curvature is lifted, new minima appear in the
energy landscape. Figure 3 shows a contour plot of the total elastic energy in
the plane (k̂x , k̂xy) for the two cases ĉx ĉy > 0 (figure 3a), ĉx ĉy < 0 (figure 3b) and
ĉxy = 0 in both cases. For positive spontaneous Gaussian curvatures, the energy
minima are those described in §3b, when k̂xy = 0. The transverse curvature k̂x
associated with the secondary minimum at k̂y < 0 is mostly constant across the
width of the strip and equal to

k̂0 = (ĉx ĉy − ĉ2
xy) + k̂2

xy

k̂y
,

with exception for a boundary layer (figure 4). This phenomenon, first noted by
Lamb (1891), is due to the rapid build-up of the bending moment Mx from zero at
the edges to a non-zero value that inevitably develops in any configuration other
than the base state (see Mansfield 1989 for a detailed explanation). An estimate
of the size of the boundary layer is given by 1/k ≈ (t/|ky |)1/2; however, it vanishes
in a strip of lenticular cross section whose thickness (hence the bending moment)
smoothly tapers and vanishes at the edges.
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Figure 3. Contour plot of the total elastic energy per unit length Û from (3.3) and (3.4) in the
plane (k̂y , k̂xy). The labels P and S indicate the primary and secondary minima. (a) ĉx = ĉy = 2 and
ĉxy = 0. In addition to the base configuration, the strip has a second equilibrium at k̂y ≈ −(ĉx ĉy)1/2.
(b) ĉx = −2, ĉy = 2 and ĉxy = 0. In this case, the strip has only one equilibrium configuration. Note
that the region k̂y < 0 in the previous example was separated from the region k̂y > 0 by an energy
barrier of height Û 0 ∼ K̂ 2

0 is now connected by two ‘passes’ located at k̂2
xy = ±(ĉx ĉy)1/2. The other

relevant parameters are b = 10, r = 1, n = 1/3 and t̂ = 10−2. (Online version in colour.)
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Figure 4. (a) The dimensionless transverse curvature k̂x associated with the secondary equilibrium
configuration of a strip with spontaneous positive Gaussian curvature as a function of the
dimensionless distance x̂ from the centreline. The relevant parameters are ĉx = 2, ĉy = 1, ĉxy = 0,
b = 10, r = 1 and t̂ = 10−2. The transverse curvature is constant and equal to k0, with exception
for a boundary layer. In the inset, a schematic of the primary (P) and secondary (S) equilibria
is shown. (b) Monostability/bistability (M/B) phase diagram in the plane (b, ĉxy) for a strip of
negative Gaussian curvature and different values of the Poisson ratio n. The spontaneous principal
curvatures are ĉx = 2 and ĉy = 1. The other relevant parameters are r = 1 and t̂ = 10−2. (Online
version in colour.)

On the other hand, for negative Gaussian curvature ĉx ĉy < 0 and ĉxy = 0,
the secondary minimum becomes a saddle point and the elastic energy has
only one minimum corresponding to the base configuration. It is interesting to
notice, in this latter case, that the regions of positive and negative k̂y of the
energy landscape are separated by a barrier of height Û (k̂y = 0) ∼ K̂ 2

0 that is
large everywhere with exception for two ‘passes’ at k̂xy = ±(−ĉx ĉy)1/2 (figure 5).
The existence of these passes along the energy barrier at k̂y = 0 is the reason
for the non-existence of a secondary equilibrium configuration in strips with
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S

(a) (b)U

Figure 5. The elastic energy given by (3.3) and (3.4) as function of k̂y and k̂xy for a strip of
spontaneous positive Gaussian curvature ((a) ĉx = ĉy = 1) and a strip of spontaneous negative
Gaussian curvature ((b) ĉx = −ĉy = 0). In the former, the k̂y < 0 portion of the energy landscape is
separated from the k̂y > 0 region by a large energy barrier of height Û (k̂y = 0) ∼ K̂ 2

0 . This implies
the existence of a secondary minimum (labelled S). In the case of strips of negative spontaneous
Gaussian curvature, on the other hand, the energy barrier has two passes at k̂y = 0 and k̂xy =
±(−K̂0)1/2, and the secondary minimum is replaced by a saddle point. The flat plateau in the
energy barriers is a graphical artefact owing to the limited range of Û shown. (Online version in
colour.)

spontaneous negative Gaussian curvature. As explained in §3a and summarized
in equation (3.12), the stretching energy associated with the barrier at k̂y = 0
scales like Û s ∼ (K̂0 + k̂2

xy)
2 and, in the presence of spontaneous negative Gaussian

curvature, it can be relieved through twist. This leads to the formation of passes
at k̂xy = ±(−K̂0)1/2, shown in figures 3 and 5, which allow the transverse curvature
k̂y to be switched from positive to negative (and vice versa) isometrically. Positive
spontaneous Gaussian curvatures, on the other hand, cannot be accommodated
through twist and thus there are no passages across the energy barrier at k̂y = 0;
consequently, there is a secondary minimum.

To get an intuitive sense of these passes in the energy landscape, imagine a strip
of positive spontaneous Gaussian curvature (figure 6a). To evert the strip, one
choice is to flatten the strip and then reverse its curvature. Because the strip is
naturally curved, the intermediate flat conformation will suffer a large strain, and
this corresponds to the large energy barrier shown in figure 5. On the other hand,
if the strip is naturally shaped like a saddle (figure 6b), turning the strip inside-
out can be achieved by pulling apart two opposite corners until the strip is fully
extended and maximally twisted, and then bend it into the new configuration.
The latter deformation can be performed without stretching the surface and thus
with no energy cost other than bending, in contrast with the case of a strip with
positive K̂0. Similar deformation pathways have been analysed by Fernandes et al.
(2010) as possible strategies to achieve shape control of bistable composite plates
using embedded actuators.

However, when strips with negative spontaneous Gaussian curvature K̂0 < 0
have a non-zero spontaneous twist ĉxy , they admit bistable configurations. In
addition to the configuration with constant curvature described in §3a in the
special case ĉx = ĉy = 0 and ĉxy 	= 0, another configuration can be obtained by
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(a)

(b)

Figure 6. Sequence of deformations of a strip of spontaneous (a) positive and (b) negative Gaussian
curvature associated with curvature reversal. While the former sequence requires the strip to
become temporarily flat and thus produces large strains, the latter can be performed isometrically
at zero stretching energy cost. The existence of this low-energy deformation in strips of spontaneous
negative curvature is responsible for the formation of the passes shown in figure 5, hence the lack
of a secondary minimum. (Online version in colour.)
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Figure 7. Contour plot of the total elastic energy per unit length Û from (3.3) and (3.4) in the
plane (k̂y , k̂xy). The labels P and S indicate the primary and secondary minima. In both plots,
the spontaneous curvatures are set at ĉx = 2, ĉy = 1 and ĉxy = 2. (a) The case b = 10, in addition
to the base configuration, the strip as a secondary minimum in proximity of the point (k̂y , k̂xy) =
(ĉy , −ĉxy). Such a minimum disappears when b = 1 (b). The other relevant parameters are r = 1,
n = 1/3 and t̂ = 10−2. (Online version in colour.)

setting ĉx ĉy 	= 0 with K̂0 < 0. Figure 7 shows a contour plot of the total elastic
energy (3.3) and (3.4) of a strip with ĉx = 2, ĉy = 1 and ĉxy = 2, thus K̂0 = −2.
Figure 7a (in which b = 10) shows a secondary minimum in the proximity of
the point (k̂y , k̂xy) = (ĉy , −ĉxy). When the anisotropy parameter b is decreased,
however, the secondary minimum disappears and the energy landscape is again
characterized by a unique minimum corresponding to the base configuration.

Such a configuration has energy Û ≈ (r/b)ĉ2
xy , and has a minimum for large

values of b/r. One might expect that the value of b/r necessary to have
a secondary minimum of this kind would increase monotonically with ĉxy ;
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however, this is incorrect. In figure 4, we show the ‘phase diagram’ of the
monostability/bistability region for a strip with spontaneous curvatures ĉx = 2
and ĉy = 1 in the plane (b/r, ĉxy). Upon fixing the spontaneous twist ĉxy , the
bistability region can be accessed by increasing b/r, as expected. However, for
fixed b/r, the bistable region is accessed by increasing the spontaneous twist.
The origin of this behaviour is related to the height of the energy barrier at
k̂y = 0 separating the secondary minimum from the basin of attraction of the
base configuration at k̂y < 0. From equation (3.11), we see that the height of such
a barrier Û ≈ bK̂ 2

0 . For fixed b/r, decreasing ĉxy (or equivalently |K̂0|) will lower
the height of the barrier until the basin of attraction associated with the portion
where k̂y < 0 of the base configuration will merge with that of the secondary
minimum. For values of ĉxy smaller than this critical value, the energy landscape is
then characterized by a unique minimum (i.e. the base configuration) surrounded
by a large C -shaped basin of attraction that starts from the base configuration
and extends in the region k̂y < 0 penetrating the barrier at k̂y = 0 through the
passes located at k̂xy = ±(−K̂0)1/2 (figure 7b). Once again, the presence of two
regions across the barrier at k̂y = 0 where the stretching energy drops, plays a
crucial role in assuring the existence of bistable configurations.

In summary, orthotropic strips exhibit various forms of bistability depending
on their spontaneous curvature and elastic moduli. The simplest bistable
configurations have constant curvature throughout the width of the strip and
correspond to isometries of the base configuration. Non-isometric secondary
equilibria have, on the other hand, variable transverse curvature k̂x ; this is
approximately constant and equal to k̂0 = (K̂0 + k̂2

xy)/k̂y in the bulk of the strip,
but abruptly jumps to k̂ = ĉx + n(ĉy − k̂x) near the edges to relieve the bending
moment that forms in the bulk when the strip is in a configuration different
from the base one. For strips with positive spontaneous Gaussian curvature, in
particular, the secondary equilibrium configuration has transverse curvature of
opposite sign relative to the base configuration. Strips with negative spontaneous
Gaussian curvature, on the other hand, do not possess a secondary equilibrium
configuration unless they have sufficient spontaneous twist ĉxy . The existence of
bistability in this case also relies on the value of the ratio b/r between the Young
modulus along the longitudinal direction and the shear modulus. Figure 8 shows
a phase diagram of the monostability/bistability regions in the plane (ĉx , ĉy) for
strips of various spontaneous twist ĉxy .

(c) Tristable configurations

As we mentioned in the introduction of §3, the requirement for the matrices A
and D to be positive definite translates into the conditions b > n2 and r > 0. In this
section, we show that when the limit b → n2 is approached, a new stable minimum
appears in the energy landscape of the configurations allowing for tristability.
The presence of three minima in the reduced quasi-one-dimensional geometry
of elastic strips complements the appearance of such a landscape for corrugated
strips, where tristability arises as a consequence of the coupling between internal
prestresses created while imprinting the corrugation and nonlinear geometrical
changes during deformation (Norman et al. 2008).
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Figure 8. Phase diagram of the monostability (M, in white) and bistability region (B, light shaded,
K̂0 > 0; dark shaded, K̂0 < 0) in the plane (ĉx , ĉy) for strips of various spontaneous twist ĉxy .
Different shades correspond to positive (light) and negative (dark) spontaneous Gaussian curvature.
For zero spontaneous twist, the bistable configuration exists only in the region of positive Gaussian
curvature. For ĉxy 	= 0, on the other hand, bistability also occurs in a range of negative Gaussian
curvature. The relevant parameters are b = 10, r = 1, n = 1/3 and t̂ = 10−2. (Online version in
colour.)

Letting b = n2 + e and expanding equations (3.3) and (3.4) in powers of e gives

Û = n2
{

1
45

[
(k̂y − ĉy)(nk̂y − ĉx) + k̂2

xy − ĉ2
xy

]2

+ 1
12

t̂2
[
(k̂y − ĉy)2 + r

n2
(k̂2

xy − ĉ2
xy)

]}
+ o(e). (3.16)

Then, with k̂xy = ĉxy , it is easy to prove that vÛ /vk̂y = 0 when k̂y = ĉy and
also when

k̂±
y = 1

4

{
ĉy + 1

n

[
3ĉx ±

√
(ĉx − nĉy)2 − 30 t̂2

]}
. (3.17)

Thus, in addition to the base configuration and the secondary minimum at
k̂y < 0 discussed in §3b, the energy has a third minimum at k̂y = k̂+

y , while
k̂−

y is the location of the maximum separating the third minimum from the
base configuration. For relatively thin shells, t̂ � 1 so that one finds simply
k̂+

y ≈ ĉx/n and k̂−
y ≈ (ĉy + ĉx/n)/2. The energy of the third minimum is given

approximately by

Û (k̂+
y ) ≈ 1

12
t̂2n2

(
ĉy − ĉx

n

)2

. (3.18)

Figure 9 shows a contour plot of the total elastic energy per unit length Û from
(3.3) and (3.4) for ĉx = 1, ĉy = 2, ĉxy = 0 and b = n2 + 10−2, with n = 1/3 and
r = 1. The primary, secondary and tertiary minima are indicated by the letters
P, S and T, respectively.

In the limit b → n2, tristability has been noted by Vidoli & Maurini (2009)
in the case of plates with free boundaries and uniform curvature, although the
physical origins of this phenomenon were not discussed. In our simple setting,
consistent with the arguments in §3a, there is a continuous set of configurations
of zero stretching energy corresponding to the isometries of the base state. In the
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Figure 9. Contour plot of the total elastic energy per unit length Û from (3.3) and (3.4) in the
plane (k̂y , k̂xy) of a strip with b = n2 + 10−5 and spontaneous curvatures ĉx = 1, ĉy = 2 and ĉxy = 0.
The primary, secondary and tertiary minima are indicated by the letters P, S and T, respectively.
(b) Magnification of the region k̂y ∈ [1.8, 3.2], where the primary and tertiary minimum are located.
The other relevant parameters are r = 1, n = 1/3 and t̂ = 5 × 10−4. (Online version in colour.)

plane (k̂y , k̂xy), this set describes an ellipse whose intersections with the k̂y-axis
(i.e. the untwisted configurations) are given by k̂y = ĉy and k̂y = ĉx/n. The small
but finite bending stiffness along the principal directions prevents this from being
a true zero energy mode and instead leads to the existence of a soft mode by
raising the energy of the minimum at k̂y = ĉx/n; for b 
 n2 (i.e. D22 
 D11),
the minimum is completely suppressed. Taking the limit b → n2 corresponds
to lowering the bending stiffness so that the energies of the two isometric
configurations k̂y = ĉy and k̂y = ĉx/n are comparable again. This mechanism is
completely general and independent of the specific geometry of the problem; any
plate with shallow spontaneous curvature is amenable to a set of isometries, and
multi-stability can in principle be obtained by setting det(D) ∼ 0, which, in the
case of orthotropic plates, corresponds in fact to b ∼ n2.

An interesting feature of this tristable energy landscape relies on the fact that
the energy barrier separating the minima at k̂y = ĉy and k̂y = ĉx/n is generally
much smaller than that located at k̂y = 0 separating the base configuration with
the minimum at k̂y < 0. More precisely,

Û (k̂−
y ) ≈ 1

720
(ĉx − nĉy)4. (3.19)

while Û (0) ≈ (1/45)(nK̂0)2. Assuming k̂xy = ĉxy = 0, the ratio between the height
of these two energy barriers can be approximated as

Û (k̂−
y )

Û (0)
≈ 1

16

[(
ĉx

nĉy

)
+

(
ĉx

nĉy

)−1

− 2

]2

=
[
sinh

1
2

log
(

ĉx

nĉy

)]4

. (3.20)

Assuming ĉx < ĉy , this ratio is O(10−2). For ĉx > ĉy , the previous relation is no
longer valid as the bending energy that was neglected to derive (3.20) becomes
relevant; however, the order of magnitude of the ratio Û (k̂−

y )/Û (0) remains always
of the order O(10−2).
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Figure 10. (a) Total elastic energy as a function of k̂y for a strip with b − n2 = 10−5 and spontaneous
curvatures ĉx = 1, ĉy = 2 and ĉxy = 0. The inset shows a magnification of the boxed region k̂y ∈
[1.8, 3.3]. The height of the barrier separating the base configuration from the tertiary minimum
located at k+

y ≈ cx/n = 3 is four orders of magnitude smaller than the barrier at k̂y = 0. (b) Phase
diagram in the plane (ĉx , e = b − n2) of the bistable (M, in white) and tristable (T, shaded) regions
of a strip with zero spontaneous twist and various ĉy . The other relevant parameter are r = 1 and
t̂ = 10−2. (Online version in colour.)

The stability of the tertiary minimum at k̂+
y ≈ ĉx/n depends, in general, on the

value of the Poisson ratio and the spontaneous curvatures ĉx and ĉy . Figure 10
shows the bistability/tristability regions as a function of e = b − n2 and ĉx for
various values of ĉy . Increasing the transverse spontaneous ĉx allows tristability
to occur at larger values of e, thus further away from the limiting condition b = n2.

4. Strips with coupling between stretching and bending

We now consider generally anisotropic strips, in which stretching and bending
deformations are coupled through the B matrix, so that the total elastic energy
density reads

u = 1
2{a22N 2

y + d11(kx − cx)2 + 2d12(kx − cx)(ky − cy)

+ d22(ky − cy)2 + d66(kxy − cxy)2}, (4.1)

where the elastic moduli a22 and dij are given by (2.4), and Ny and kx have
the general form given in equations (2.18) and (2.19). Because of the reduced
dimensionality of this class of elastic objects, the coupling between stretching
and bending is not expected to produce marked differences when compared with
the case of orthotropic strips discussed in §3c, and indeed, for the majority of the
choice of the elastic moduli a22 and dij , the behaviour is qualitatively identical to
that already described.

Under some circumstances, however, the finer control of the material properties
characteristic of anisotropic laminates might be taken advantage of to enhance
the region of tristability. To understand this possibility, we first note that the
requirement for the matrices a and d to be positive-definite, translates here
into the condition a22 > 0, d66 > 0 and d11d22 > d2

12. If the latter condition, in
particular, is only weakly satisfied, the strip will be tristable for some value of
the spontaneous curvatures cx and cy . To illustrate this point, let us consider the
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case of an antisymmetric angle-ply laminate. The condition d11d22 > d2
12 translates

into the following inequality:

(B2
16 − A66D11)(B2

26 − A66D22) > (B16B26 − A66D12)2.

Regardless of the specific values of Bij and Dij , the left- and right-hand sides of this
inequality will be comparable in any material where B2 
 A66D. In other words,
the limit det(d) → 0, which for orthotropic strips can be approached by taking
b → n2, can be obtained here by increasing the strength of the coupling between
stretching and bending. Thus, we might expect angle-ply laminated strips with
strong coupling between bending and stretching to be tristable for a broad range
of spontaneous curvatures.

5. Conclusions

Despite its relatively long history, the theory of elastic mulitstability is still a field
rich in challenging problems and open questions. Most of the theoretical work has
been limited to the case of uniform Gaussian curvature deformations. Here, we
lift the assumption of uniform curvature variations and inextensibility, and find a
variety of morphing and multi-stable scenarios in shells that have both anisotropy
and spontaneous curvature. Our results complement and extend those previously
reported by Galletly & Guest (2004a,b), Guest & Pellegrino (2006), Seffen (2007)
and Vidoli & Maurini (2009). In particular, we emphasize the fundamental role
of the intrinsic geometry of the base configuration embodied in the spontaneous
Gaussian curvature of the strip. Both strips of positive and negative spontaneous
Gaussian curvature admit bistable configurations, but while strips of positive
spontaneous curvature are always bistable, regardless of the values of the elastic
moduli, the occurrence of bistability in strips of spontaneous negative curvature
depends crucially on the presence of spontaneous twist as well as the relative
stiffness of the strip under tensile and shear deformations. This fundamental
difference stems from the fact that the principal curvatures of saddle-like strips
can be isometrically switched from positive to negative and vice versa. This leads
to the formation of low-energy pathways across the energy barrier corresponding
to the flat configuration.

Furthermore, we find that tristability occurs in strip-like plates when det(d) ∼
0, where d = D − BA−1B is the effective bending stiffness matrix. In orthotropic
materials, this corresponds to the limit b → n2, where b = Ey/Ex discussed by
Vidoli & Maurini (2009) for the case of plates with uniform curvature. A special
feature of tristable strips is associated with the height of the barrier separating the
two equilibrium configurations of like-sign curvature. The height of this barrier
is, in general, much smaller than that associated with the flat configuration. This
might have interesting implications for nanoscale materials. Typical strip-like
biopolymers, such as proteins or cytoskeletal filaments, have widths of the order
of a few nanometres, lengths that range from 1 to 103 nm and elastic moduli of the
order of mega-Pascal. Assuming ĉx , ĉy and ĉxy are of order one and at ∼ 1 nm2, one
finds that U (k−

y ) ≈ 3 × 10−4 kBT nm−1. Thus, even a micrometre-long strip-like
polymer with non-zero spontaneous curvature would be able to fluctuate between
minima under the sole effects of thermal excitations. Extending our analysis of
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multi-stability to include the effects of thermal fluctuations is likely to yield
insights on the dynamical behaviour of biopolymer assemblies and is but one
extension of our present analysis.
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the Wyss Institute and the MacArthur Foundation for partial support, and the anonymous referees
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