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Minimal surfaces bounded by elastic lines

By L. Giomr! AND L. MAHADEVANDZ*

LSchool of Engineering and Applied Sciences, and ®Department of Physics,
Harvard University, Pierce Hall 29 Ozford Street Cambridge, MA 02138, USA

In mathematics, the classical Plateau problem consists of finding the surface of least area
that spans a given rigid boundary curve. A physical realization of the problem is obtained
by dipping a stiff wire frame of some given shape in soapy water and then removing it; the
shape of the spanning soap film is a solution to the Plateau problem. But what happens
if a soap film spans a loop of inextensible but flexible wire? We consider this simple query
that couples Plateau’s problem to Euler’s Elastica: a special class of twist-free curves of
given length that minimize their total squared curvature energy. The natural marriage
of two of the oldest geometrical problems linking physics and mathematics leads to a
quest for the shape of a minimal surface bounded by an elastic line: the Euler—Plateau
problem. We use a combination of simple physical experiments with soap films that span
soft filaments and asymptotic analysis combined with numerical simulations to explore
some of the richness of the shapes that result. Our study raises questions of intrinsic
interest in geometry and its natural links to a range of disciplines, including materials
science, polymer physics, architecture and even art.

Keywords: soap films; minimal surfaces; Elastica

1. Introduction

Soap films are ethereal and ephemeral. Yet their beauty is not, and has fascinated
scientists and mathematicians for more than two centuries since Lagrange and
Plateau first linked soap films and minimal surfaces: special surfaces of zero
mean curvature that minimize the area enclosed by a given contour. The classical
problem of finding the surface with least area that spans a given rigid boundary
curve was first formulated by Lagrange (1760). However, the subject was lifted
to a whole new level by Plateau in the mid-nineteenth century using a series of
beautiful experiments which showed that a physical realization of these objects
naturally arises through a consideration of soap films (Plateau 1849). Since then,
the subject has inspired mathematicians (Osserman 2002; Colding & Minicozzi
2007; Morgan 2008), scientists (Thomas et al. 1988; Kamien 2002), engineers and
even artists (Ferguson, http://www.helasculpt.com/), and spurred extraordinary
developments in all these fields. Over the past two decades, there has been a
renewed appreciation for the subject as links to problems as disparate as materials
science, string theory (Maldacena 1998) and other areas of high-energy physics
and cosmology (Penrose 1973) have become increasingly apparent.
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Figure 1. A physical realization of the Euler-Plateau problem. (a)-(d) Examples of minimal
surfaces bounded by an elastic line obtained by dipping (and removing) a loop of fishing line
(0.3 mm diameter) in soapy water. The interplay between the forces due to surface tension of the
film and the elastic forces arising at the boundary can be quantified via the dimensionless number
v =0L3/a with ¢ the surface tension, L the length and « the bending rigidity of the boundary. For
small values of v, the soap film takes the form of (@) a planar disc, but upon increasing v, it buckles
in the form of (b) a saddle, (¢) a twisted figure eight and (d) a two-headed racket-like structure.

Almost without exception, the focus of problems over the last two centuries
has always been on determining the shape of a soap film with a given rigid
boundary. However, since experiments with soap films are often carried out by
dipping closed wire frames into soap and then pulling them out, there is a natural
generalization of this boundary-value problem that is suggested by the following
question: what if the soap film is not bounded by a rigid contour, but has instead
a soft boundary such as a flexible, inextensible wire? This simple question links at
the hip the Plateau problem to another classical problem in geometry, that of the
Elastica, a curve of given length that minimizes the total squared curvature, first
formulated by Euler (1744) and since then the object of continuous mathematical
investigation (Bryant & Griffiths 1983; Langer & Singer 1984; Mumford 1993).
The natural marriage of two of the oldest geometrical problems linking physics
and mathematics leads to a quest for the shape of a minimal surface bounded by
an elastic line. The competition between the surface tension of the film, which acts
to minimize the area bounded by the loop, and the elasticity of the boundary,
which tries to minimize its deformation, dictates the shape of this composite
structure. Since small loops are stiff, they will remain flat and circular when
spanned by a film. On increasing the size of the loop past some critical value,
the forces due to surface tension can no longer be sustained by the boundary,
which buckles out of the plane, even as the film takes on the shape of a saddle.
Dimensional analysis suggests that the critical size of the loop when it just buckles
scales as (a/d)Y?, where a= EI (E is the Young modulus and I is the area
moment of inertia of the elastic filament) is the bending stiffness of the elastic
line and o is the surface tension of the soap film.

In figure 1a—d, we show a gallery of shapes obtained via a simple experiment of
dipping a loop of fishing line into a solution of water and dish soap, and pulling
it out. The resulting shapes are quite varied: short loops span a planar disc
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(figure 1a), intermediate loop lengths cause the film to spontaneously twist out
of the plane (figure 1) and eventually form a planar figure-eight shape (figure 1¢).
At the centre of the eight (where the boundary crosses), the surface normal rotates
by 180°, and the spanning minimal surface is helicoid-like. Increasing the length
even further leads to a two-headed racket-like structure (figure 1d).

To understand these shapes and the transitions between them, we start with
a mathematical formulation of the problem using a variational principle, given
in §2. We then briefly describe some general geometrical and physical aspects
of the resulting Euler—Lagrange equations before describing the first symmetry-
breaking bifurcation from a planar circular disc to a planar elliptical disc in
§3. In §4, we describe numerical approximations to the secondary bifurcations
from the planar disc to twisted strips that resemble our experiments. In §5, we
characterize these using an asymptotic theory using a minimal trial shape that
captures the symmetries of the solutions seen in our computations, and finally
conclude in §6 with a discussion of some open problems that our study points
towards.

2. Mathematical formulation

To quantify the equilibrium shapes of these softly restrained soap films, we use a
minimal mathematical model that minimizes the following functional representing
the total energy of the system:

F[M]:aJ

dA+{; ds (ak® + B). (2.1)
M

oM

Here, M is a mapping of a two-dimensional closed disc representing a film of
surface tension ¢ bounded by a flexible curve of circular cross section with bending
rigidity 2. The boundary dM is thus treated as an Flastica immersed in three-
dimensional Euclidean space R?, and @ is a Lagrange multiplier, analogous to line
tension, that enforces inextensibility of the boundary of length L,

L:ﬁM ds. (2.2)

The assumptions that underlie our model are: (i) the soap film itself has negligible
thickness and is isotropic in its tangent plane, with an energy proportional to its
area, (ii) the soap film meets the bounding elastic filament at its edge along a line,
so that it can apply normal forces to the filament, but no torques, and (iii) the
bounding elastic filament has a circular cross section with a uniform bending and
twisting stiffness along its entire length and its ends are glued together without
twisting them relative to each other.

Then, it follows that the filament must remain untwisted, even when buckled
and bent out of the plane, although it can and does have geometric torsion.
This is because the translational symmetry of the circular cross section along
the filament implies that the twisting strain along it must be a constant (Love
1927); indeed the twist is the Noetherian invariant associated with this symmetry.
Taken together with the fact that the closed filament has zero twist initially, this
implies that the filament must always remain twist-free; therefore, the energetic
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contributions associated with twisting deformations vanish identically. As we will
show, our simple theory suffices to capture the qualitative nature of the shapes
and the transitions between them.

To derive the conditions for the extremum of the functional (2.1), we will
impose a small virtual deformation of the film and its boundary and use this
to calculate the corresponding change in energy and the necessary conditions
for the resulting shape to be a local minimum. For the boundary curve and
changes therein, we use a parametrization in terms of the Frenet frame {t, n, b} of
the tangent, normal and binormal vector (Kreyszig 1991). This orthogonal triad
evolves in space according to the Frenet—Serret equations,

t=kn, n'=—-«kt+7b and b =-7n, (2.3)

where k and 7 are, respectively, the curvature and torsion of the boundary curve
and (.)’=d(.)/ds in equation (2.3), where s is the arc length. A linear variation
of the boundary energy due to a small deformation can be easily calculated and
leads to the following form:

6% ds (ak® + B) =3g ds[a(2(” + k* — 27%K) — BK]E + a% ds (4c'T + 2x7")n,
oM oM

M
(2.4)
where £ and 7 are, respectively, the displacement along the normal and binormal
vectors (see Mumford 1993 for a pedagogical derivation). The linear variation of
the area bounded by the curve can be expressed in a standard coordinate basis
g, =0;R (with R the position vector of the film and 9d; the partial derivative with
respect to the ith coordinate) as (Lenz & Lipowsky 2000)

5JMdA=JMdA(v-u—2Hw)=§

dsv-u— ZJ dAHuw. (2.5)
oM

M

Here, u and w are, respectively, the displacement along the tangent plane of
the film (expressed in the basis g;) and its normal direction N, H is the mean
curvature of the film and v =t x NN is the outward directed tangent vector normal
to the boundary curve.

Compatibility demands that the bulk and boundary variations must be
consistent with each other. To understand the conditions for this, we now need
to express the first term on the right-hand side of equation (2.5) in the Frenet
frame of the boundary curve. This can be done by letting

N =cosvn + sin b, (2.6)

where ¢ is the angle between the surface normal to the film and the normal to the
boundary curve and will be herein referred to as contact angle. Standard algebraic
manipulation then yields

v-u=mncosvtb — £sind n. (2.7)
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Enforcing the condition that the energy variations (2.4) and (2.5) vanish while
satisfying the compatibility condition (2.7) yields

1
K"+ §/<3 — (7'2 + %) K— % sind =0, (2.8a)
2T + k7 4 210050:0 (2.80)
o
and H=0. (2.8¢)

Equations (2.8) can be made dimensionless by rescaling the arc length s, the
curvature k and the torsion 7 by the length L of the boundary. This identifies
unambiguously a single dimensionless parameter y = o L?/«a representing the ratio
between surface tension and bending rigidity. In §4, we will see how tuning y (for
instance, by changing the length of the boundary) triggers a sequence of buckling
transitions and concomittant shapes. Determining the shape of the soap film then
corresponds to solving (2.8) subject to periodicity of the boundary curve; here, we
note that it is not sufficient to impose periodicity on the curvature and torsion,
but we must impose it directly on the coordinate description of the curve.

3. General considerations and bifurcation from the flat state

Before we focus on the detailed nature of the solutions of the Euler—
Lagrange equations derived in the previous section, we start with some general
considerations. From a geometrical perspective, since the projection of the surface
normal IN on the boundary normal and binormal direction are associated with
the normal and geodesic curvature of the boundary, namely: x, =k cos¢ and
Kk, =ksind, an alternative way to write the equation satisfied by the boundary
curve (2.8) in terms of the extrinsic and intrinsic curvature of the boundary
leads to

v, 1.3 5, B 0 Ky
1.3 _ - - — 2 =0 3.1
K"+ 3K (T +2a)K 50 (3.1a)
and
o K
2k’ '+ — 2 =0. 3.1b
KT+KT+2a B ( )

From a physical perspective, is interesting to note that equations (2.8) can be
also obtained from the classical equilibrium equations of rods in the presence of
a body force directed along v. These require the total force and torque acting on
a line element of the rod to vanish at equilibrium and yield (Landau & Lifshitz
1986)

F'=—K and M'=Fxt. (3.2)
The vectors F and M can be expressed in the Frenet frame of the bent rod as

F = (ak® — B)t + 2ak'n + 2akTb (3.3a)
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and
M = —2akb. (3.30)

We see that while torque balance is automatically satisfied, taking the
external force K =ov and differentiating the expression for F' readily yields
equations (2.8).

We now turn to a number of properties of the system that can be inferred from
equations (2.8) and (3.1) without knowledge of the exact solution. Multiplying
equation (3.10) by «k allows us to recast the resulting expression as (k1) =
—(a/20)k,, which integrated along the length of the closed boundary yields the
following integral formula for the normal curvature «,,:

fi;dsm =0, (3.4)

valid for all values of the physical parameters.

Furthermore, it is possible to consider a special class of solutions of
equations (2.8) for which the contact angle ¢ is constant along the curve. Then,
equation (3.4) can be used to prove that the surface normal is always orthogonal
to the boundary normal. To understand this latter statement, we first need to
recall that the normal vector m is undefined at inflection points (i.e. where k =0).
From equation (2.7), it follows that, in order for ¥ to be defined everywhere along
the boundary, the curvature of the boundary must be non-zero everywhere, i.e.
k> 0. If ¥ is constant, writing k, = k cos ¢} in equation (3.4) yields

cosﬂjgdsxz(), (3.5)

but since « is strictly positive, this last condition is possible if and only if cos ¢ = 0,
thus ¥ = +7/2, i.e. k, =0 and the surface normal must be perpendicular to the
curve normal everywhere if ¢} is to be constant. This imposes strong constraints
on the nature of the solution in this case, as we will now argue.

Curves on surfaces have zero normal curvature everywhere are called
asymptotic curves and their tangent vectors asymptotic directions. Every curve
that lies on the plane is clearly asymptotic. On a minimal surface, on the other
hand, there are two asymptotic curves passing through each point where the
Gaussian curvature K is non-zero and these curves always intersect orthogonally.
If the minimal surface contains flat points (i.e. isolated points where K =0),
these are traversed by n > 2 asymptotic curves crossing at @/n and forming, in
their neighbourhood, n valleys separated by ridges (Koch & Fischer 1990). These
observations suggest that the only simply connected minimal disc bounded by a
closed asymptotic curve lies in the plane; otherwise, the asymptotic directions in
the disc would form a vector field tangent to the boundary. For a simply connected
disc, this vector must then enclose a singularity or vortex, in the neighbourhood of
which the structure of the asymptotic directions would disagree with the previous
classification. Hence, we conclude that the only solution having constant contact
angle is given by the flat disc.

However, even in this case, it is possible for the soap film to be non-circular
when the parameter vy is large enough. To see this, we note that a trivial solution
of equations (2.8) is a circular disc whose radius R satisfies the equation

oR® + BR* — 0 =0, (3.6)
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for all parameter values, with @ enforcing the condition L =2wR, where L is
the length of the boundary. For large enough surface tension, however, we might
expect this configuration to become unstable and the disc to buckle into a more
complex shape. To test this hypothesis, we analyse the stability of the disc with
respect to a small periodic displacement in the radial direction 0R = py sin k¢,
where ¢ is the polar angle and pj a small amplitude. Expanding the energy (2.1)
to second order in p; yields

2 4 F12
+ﬁ>+§wp§[a+@+a(2k ok +2)]. (3.7)

o

R2

~ 2
F~o(rR )+277R( - =

Here, the Lagrange multiplier 8 is given by equation (3.6) with R = L/2m, so that
B=[a—a(L/27)3]/(L/2m)?. Introducing the dimensionless parameter vy = o L?/a
and replacing § in equation (3.7), it is easy to verify that the coefficient of the
second-order term becomes negative when

v > 167 (k* — 1). (3.8)

Thus, the first mode that goes unstable is that associated with an elliptical
deformation with k = 2, corresponding to the critical value y* = 4873, This elastic
instability, discussed, for example, by Love (1927) in the case of a circular ring
constrained to lie on the plane and subject to a uniform normal pressure, and has
since been the subject of post-bifurcation analysis using asymptotic and numerical
methods (Flaherty et al. 1972). As v is increased still further, the non-circular
shape eventually twists out of the plane. To understand these transitions, we
resort to a combination of numerical and asymptotic approximations.

4. Numerical simulations of softly constrained soap films

To explore the variety of possible shapes resulting from the solution of
equations (2.8) and the transitions between them, we minimized a discrete
analogue of the total energy (2.1). The soap film is approximated as a simplicial
complex consisting of an unstructured triangular mesh. The internal edges of the
triangles are treated as elastic springs of zero rest-length so that the total energy
of the mesh is given by

FIMl=a Y (s)ki+kY_ lef (4.1)

vedM eeM

The first sum runs over the boundary vertices and (s,) = (s, + $,-1)/2 is the
average of the length of the two edges meeting at v. The curvature of the boundary
is calculated as k, =|t, — t,_1|/(s,) with t, and t,_; the tangent vectors at v.
The second sum in equation (4.1) runs over all internal edges. If the triangles are
equilateral, this yields a discrete approximation for the soap film energy with the
spring stiffness proportional to the surface tension, i.e. k= +/3¢/4. The choice of
minimizing the squared length of the edges, instead of the area of the triangles, is
motived by numerical stability. Replacing the spring energy in (4.1) with the sum
of the area of the triangles has the effect of shortening the range of interaction
between the boundary and the interior to the single strip of triangles at the
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boundary. Most standard local optimization algorithms would then attempt to
reduce the area of these triangles to zero, thus suppressing the interaction between
the boundary and the interior. In the continuum limit, the energy (4.1) approaches
that given by (2.1) for the original problem, and the sequence of shapes obtained
with this method is in excellent agreement with our experimental observations
shown in figure 1.

Numerical minimization of equation (4.1) using a conjugate gradient method
leads to a variety of shapes depending on the values of «, k, the boundary
length L as well as the initial shape of the domain. An interactive gallery
of the shapes obtained based on our numerical simulations is available online
(http://www.seas.harvard.edu/softmat /Euler-Plateau-problem/), and we invite
the reader to explore these shapes. A first set of simulations were run by starting
with an unstructured triangular mesh of 474 vertices bounded by an elongated
hexagonal perimeter; the mesh points were started out randomly displaced
transverse to the plane. As the spring constant k& was increased, corresponding to
an increase in the surface tension, the system moved through a series of transitions
shown in figure 2. Beyond a critical value of the surface tension (relative to the
bending stiffness, as discussed earlier), the planar disc buckled into a twofold
mode consistent with our linear stability analysis. The geometry of this shape has
been rigorously described (Flaherty et al. 1972; Arreaga et al. 2002; Vassilev et al.
2008), and is related to the problem of the collapse of a infinitely long cylindrical
pipe under a uniform pressure difference. For kL?/a =~ 643, the planar elliptical
shape transitions to a twisted non-planar saddle-like shape, as experimentally
observed. This is accompanied by an increase in the normal curvature of the
boundary, and there is a progressive twisting of the central ‘waist’ of the surface.
A further increase in k leads to an increase in the twist until the surface normal
undergoes a full 180° rotation across the waist for kL?/a & 740. The surface then
reverts to a planar configuration that is lemniscate like, i.e. figure-eight shaped
(hgure 2e).

Once the surface reaches the planar figure-eight conformation, an increase
in the surface tension does not produce further conformational changes until
kL?/o~2000. Beyond this value, the surface again becomes non-planar, self-
intersects at the pinch of the lemniscate, and the two lateral lobes start bending
towards each other. The curvature of the lobes increases with increasing &k until
they intersect to produce the complex shape shown in figure 2h. The transition
to this latter surface is analogous to the transition from the figure eight to the
two-headed racket-like structure observed in our experimental realization of the
problem. However, in the physical experiment, self-intersection cannot occur and
adhesion favours the formation of a line of contact between the two lobes (see
figure 1d).

Not surprisingly, given the nonlinear nature of the governing equations (2.8),
the solutions are not expected to be unique, as our stability analysis of the flat
disc has already indicated. In our numerical simulations, we also find that the
final state is a strong function of the initial configuration of the system. If the
initial configuration is mot elongated, as in say a triangular mesh bounded by a
hexagonal perimeter, which is closer to being circularly symmetric, we find other
possible stable configurations. As in the previous case, for small values of the
surface tension, the system rapidly relaxes into a flat circular disc. However,
for kL?/a= 855, the system transitions to a saddle-like configuration that is
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Figure 2. (a—h) Some solutions of the Euler—Plateau problem and a bifurcation diagram. Shapes
obtained by minimizing the discrete approximation (4.1) of the continuum energy of a minimal
surface bounded by an elastic line (2.1) as a function of the dimensionless number kL3/a. For
small values of the parameter, the flat circular disc of radius L/27 has the lowest energy. Upon
increasing kL3/a, the disc first buckles into flat elliptical shape (see text). For kL? /o > 643, this
elliptical disc deforms into a three-dimensional saddle-like shape, becoming increasingly twisted
with an increase in kL?/a > 643 until the surface eventually becomes flat again, but now forming
a fully twisted eight-shaped conformation. This twisted flat shape is a local energetic minimum
for 740 < kL3 /a < 2000. For still larger kL?/a, the twisted surface self-intersects at the waist of the
figure eight, and the two lateral lobes bend towards each other, while for very large kL3/a, the
surface exhibits several self-intersections leading to the complex structure (h). Below the shapes,
in (4) we show the bifurcation diagram for the system, characterizing the shape using the absolute
normal curvature of the boundary integrated along its length (a measure of the amplitude of
the instability) as a function of the bifurcation parameter kL3/«, along with the location of the
transitions described earlier. (Online version in colour.)

the classical Enneper minimal surface. Upon increasing the surface tension still
further, the curvature of the boundary and film becomes larger still and the
surfaces self-intersect, leading to the beautiful structure shown in figure 3d.
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Figure 3. (a—d) Further equilibrium solutions of the Euler-Plateau problem. An initial
configuration of a triangular mesh bounded by a hexagonal perimeter gives the classic Enneper
minimal surface rather than the figure-eight shape shown in figure 1. (Ounline version in colour.)
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Figure 4. Characterizing the onset of twist and non-planarity. (a) The average absolute normal
curvature of the boundary (|x,|) as a function of kL?/« in the neighbourhood of the onset of the
transition to non-planarity. The solid line is obtained from a best fit of the data. The exponent
resulting from the fit is 0.489 £ 0.005, and is consistent with the instability being of a supercritical
pitchfork type. (b) The average Gaussian curvature of the surface (K) as a function of kL3/a
in the neighbourhood of the onset of the transition to non-planarity. The linear behaviour is also
consistent with our approximate analysis, which yields the result shown in the text. (Online version
in colour.)

5. Asymptotic analysis of twisted states

The numerical data show that the transition from the planar twofold symmetric
shape to the non-planar twisted eight is consistent with a supercritical pitchfork
bifurcation, with (|k,|) ~ (y — v*)"/2, where the angular brackets stand for an
average along the boundary curve. Indeed, figure 4 shows a best fit of the
numerical data at the onset of the transition, with an exponent of 0.489 4 0.005.

To understand the origin of the pitchfork bifurcation, it is helpful to introduce
a specific approximate representation of the twisted soap film in terms of the
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following one-parameter family of surfaces:

2
r=r(1+1t)cos¢, y=r(l—1t*)sing and z=t (%) sin 2¢, (5.1)

where r € [0, R] and ¢ € [0, 27] are the usual plane-polar coordinates. Here, t €
[—1,1] is a parameter that characterizes the family of shapes. Equation (5.1) is
the simplest parametrization of a twisted saddle with the topology of a disc, and
whose degree of non-planarity is controlled by the parameter ¢. For ¢t =0, the
surface given by (5.1) is a disc of radius R; as t becomes positive (negative), the
surface becomes a right-handed (left-handed) twisted figure eight, and for ¢ = +1,
the surface reduces to a flat twisted figure eight bounded by a lemniscate of
Gerono. In the following, we will exploit the qualitative equivalence between this
family of surfaces and the actual twisted soap film to study the global properties
of the surface at the onset of the transition, when |{| < 1.
The first fundamental form for the surface (5.1) is given by

2 2
g = 11+ 212 [(%) + cos2¢p — (%) cos 4¢] +1, (5.2a)
2
Grp = 21t [(%) sin 4¢ — sin 2¢} (5.2b)
2 2
and % =t* 4+ 2¢ [(%) — cos 2¢ + (%) Cos 4¢] +1, (5.2¢)

while its Gaussian curvature is given by

2t

2
K=—(~= £9). 5.3
(%) + o (5.3
For the boundary curve, its arc length and squared curvature are given,
respectively, by
ds® = R?[(1 4 t*)% — 24%(cos 2¢ — cos 4¢)] (5.4a)

L2t t2(10 — 6 cos 4¢p) — t4(2 — 6 cos 2¢ — 2 cos 6¢) + t5(10 — 6 cos 4¢) + t°
and K- = .
R2[(1 + £2)2 — 2t2(cos 2¢ — cos 4¢)]?

(5.4b)

Knowing the properties of the parametrized surface and its boundary in terms
of its metric equations (5.2) and curvature (5.4), we can approximate the total
energy of the system given by (2.1) as

R3 R3 50R3
Fa e 2—’,—0——|—t2 10+G_ — 9-|-—0— ) (5.5)
R o o 3

o

Finally, the condition of inextensibility for the boundary curve is given by
L=§J§ds=wR(2+2t2 — Y + o(t9). (5.6)

Using equation (5.6) in equation (5.5) to eliminate R and then taking the
derivative of the approximate energy equation (5.5) with respect to ¢ yields the
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following equation of equilibrium for the amplitude parameter ¢ that characterizes
the shape of the boundary:

(967 — v) + 2 yt* =0. (5.7)

We recognize this as the normal form of a supercritical pitchfork bifurcation and
see that it implies
t~(y =2 =967 (5.8)

We note that the critical value of the bifurcation parameter y* is consistent with
our exact linear stability analysis, but our approximate parametrization of the
shape allows us to go beyond this via a weakly nonlinear analysis.

The normal and geodesic curvatures of the boundary are given by

2t ¢
Kn=—7sin2¢+ = (3sin 2¢ — sin 4¢ + sin 6¢) + o(t*) (5.9a)
1 #*(1+ 3cos2¢ — 5cosde) A
an Kg R + 2R + 0( )7 ( )
which at leading order in ¢ leads to
(lienl) A 8~ (v — )%, (5.10)

confirmed by our numerical simulations, as shown in figure 4a.

Having characterized the curvature of the elastic boundary curve, we now turn
to the bounded minimal surface. The Gaussian curvature K of the surface in the
neighbourhood of the onset of the bifurcation to non-planarity can be deduced
from the relation (Kreyszig 1991)

%dSKg +JdAK:27T. (5.11)

The integrated geodesic curvature can be easily calculated using (5.90) at leading
order as

ﬂgdsxg ~2m (1 + 2t7),

from which, on using (5.11), we find that the integrated Gaussian curvature (K) =
JdAK is
(K)~—=(vy—7"), (5.12)

in excellent agreement with the numerical simulations shown in figure 4b.

6. Conclusions

Through simple physical experiments using loops of flexible thread which are
deformed by a soap film that is bounded by the loops, we have demonstrated a
natural link between two of the oldest problems in geometrical physics and the
calculus of variations, bringing together Euler’s Elastica and Plateau’s problem.
The union of these leads to the question of the shape of minimal surfaces
bounded by elastic lines, a new class of questions at the nexus of geometry
and physics. We have formulated a simple geometric variational principle for the
shapes of these surfaces and their boundaries and a corresponding set of coupled
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systems of partial differential equations for the double free boundary problem. A
combination of scaling concepts, asymptotic analysis and numerical simulation
allows us to characterize the qualitative nature of the solutions that result.

However, many questions remain. While a minimal physical realization of
the Euler—Plateau problem is a kitchen-sink experiment, its ramifications are
likely to go far beyond this specific manifestation, just as the humble soap
film and the elastic filament have been relevant for the study of matter, not
just at the every-day scale, but also for systems that range from molecules to
black holes (Penrose 1973; Thomas et al. 1988; Kamien 2002), while inspiring
art (Ferguson, http://www.helasculpt.com/). In addition, both Euler’s Elastica
and Plateau’s problem have inspired a variety of mathematical developments in
topology, geometry, analysis and beyond (Bryant & Griffiths 1983; Langer &
Singer 1984; Osserman 2002; Colding & Minicozzi 2007; Morgan 2008). Perhaps
their fruitful union might also do the same? Some immediate mathematical
questions include proofs of existence, regularity of solutions, as well as measures of
the non-uniqueness of solutions, particularly for large values of the only parameter
in the problem v or its discrete analogue kL?/a. In terms of applications,
the Euler—Plateau problem is probably lurking behind almost every physical
manifestation of the Plateau problem, itself an idealization; time alone will
uncover these. Further generalizations that introduce the effects of finite shearing
and bending rigidity in the soap film, the torques from the soap film’s Plateau
borders on the filament, the effects of twist deformations of the filament due to
anisotropy and inhomogeneity of its cross section, etc., are just some avenues that
might be worth exploring; indeed, some of these arise naturally in problems of
vertebrate gut morphogenesis (Savin et al. 2011) and elsewhere.

We acknowledge support from the NSF Harvard MRSEC, the Harvard Kavli Institute for Nanobio
Science and Technology, the Wyss Institute and the MacArthur Foundation. We are grateful to
Aryesh Mukherjee for help with the experiment and William Meeks III for discussions.
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