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Twisting graphene nanoribbons into carbon nanotubes
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Although carbon nanotubes consist of honeycomb carbon, they have never been fabricated from graphene
directly. Here, it is shown by quantum molecular-dynamics simulations and classical continuum-elasticity
modeling, that graphene nanoribbons can, indeed, be transformed into carbon nanotubes by means of twisting. The
chiralities of the tubes thus fabricated can be not only predicted but also externally controlled. This twisting route
is an opportunity for nanofabrication, and is easily generalizable to ribbons made of other planar nanomaterials.
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I. INTRODUCTION

Carbon nanotubes (CNTs) are today grown by atomic
self-organization, resulting in variable tube diameters and
structures,1,2 whereas in textbooks nanotubes are portrayed as
being made by rolling up graphene. Recent experiments have
shown how nanotubes can be unzipped into graphene nanorib-
bons (GNRs).3,4 The inverse route of making nanotubes of
graphene directly, however, has remained elusive.

Here we show that graphene nanoribbons can indeed be
transformed into carbon nanotubes by twisting. Our quantum
molecular-dynamics simulations show that tube formation is
preceded by buckling that serves as an intermediate stage
between a flat ribbon and a pristine tube. Both buckling
and tube formation can be explained by classical continuum
elasticity, apart from effects due to atomic discreteness. Since
graphene nanoribbons can be made with controlled edge
morphology,5 even with atomic precision and subnanometer
width,6 this twisting route to carbon nanotube fabrication
provides an opportunity for precision control in nanotube
fabrication, while also enabling encapsulation of molecules,
designed chirality, and easy generalization to ribbons made of
other planar nanomaterials.

II. THE TUBE FORMATION PROCESS:
SHOWCASE

To demonstrate the mechanism of tube formation, we first
present a simulation of the twisting of a 24-Å wide, infinitely
long graphene nanoribbon with unpassivated zigzag edges,
shown in Fig. 1(a). We simulated the fixed-length ribbon
with quantum molecular dynamics at room temperature,
while increasing the twist at a constant rate; increasing
the twist continuously without end effects was enabled by
periodic boundary conditions adapted to chiral symmetry (see
Appendix B for simulation details). The amount of twist is
characterized by a dimensionless parameter τW with τ being
the twist angle per unit length and W the width; hence τW = 0
for a flat ribbon and τW = 1 for a ribbon that has been twisted
a full turn within a length of 2πW .

At the initial phases of the simulation, the cross section of
the ribbon remained flat until a critical value τW = τbW ∼=
0.83 when the ribbon buckled into a twisted groove with a U-
shaped cross section [see Fig. 1(a)]. In order to characterize the

tubular geometry quantitatively, we introduced a geometrical
parameter, the tubularity parameter �, which measures how
much the ribbon edges have approached each other in relation
to ribbon width: It is zero for flat ribbons and one for tubes
[see Eq. (A1)].

Upon further twisting, the ribbon’s tubularity was fluc-
tuating, but increased on the average. Increased twisting
brought, therefore, the opposite edges closer together, and
at a second critical value, τW = τtW ∼= 1.62, they began to
interact chemically: They were joined by a sudden formation
of bonds, and the buckled ribbon was rapidly transformed
into a tube. This point was identified as a sudden increase
in the tubularity parameter � and as an even more sudden
decrease in the potential energy due to the formation of
σ and π bonds. At this stage, the resulting tube had a
slightly nonround cross section. So as to anneal any rem-
nant residual strains, we stopped the molecular-dynamics
simulation and carried out a full structural optimization.
The simulation then resulted in a pristine (9,3) CNT (see
supplemental video 1).7,8 We repeated such simulations for
a number of zigzag and armchair nanoribbons (ZGNRs and
AGNRs) of varying width, and invariably obtained pristine
CNTs.

The essence of the tube formation process outlined above
can be captured by a simple demonstration—just twist the ends
of a strap of your backpack and watch the result (Fig. 2). In
particular, the CNT formation process is not an artifact of the
imposed boundary conditions; simulations with finite tubes
and thousands of atoms produce the same results, as discussed
in Sec. VI. On the actual nanoscale, twisting experiments
should be feasible using the established paddle-type setups in
which voltages applied to electrodes can be used to control the
orientation of the somewhat asymmetrically positioned paddle
electrostatically [the inset in Fig. 2(a)]. This setup has already
been successful in twisting CNTs.9,10

These atomistic simulations showed the feasibility of tube
formation by twisting, but raised several questions that include
characterization of buckling and tube formation as a function
of ribbon width, the required critical torque, the resulting
CNT chiralities and their possible control, electronic structure
modifications, finite-size effects, effects of imperfections, and,
finally, a simple explanation of the mechanisms involved
at a classical continuum level. We attempt to address these
questions in the following sections.
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FIG. 1. (Color online) Quantum molecular-dynamics simulation
of GNR transformation into a CNT. (a) The simulation of a 12-ZGNR
with snapshots at different twist parameters τW (for GNR notations,
see Appendix A). The red atoms highlight one row of atoms across
the ribbon, and their cross-section projections are shown below; the
cross denotes the twist axis. The rightmost tube is the final, fully
optimized (9,3) CNT. (b) The tubularity parameter � that shows the
stages of flat ribbon, buckled ribbon, and CNT. Fluctuations in �

arise from nonzero temperature. (c) Potential energy per unit length
as a function of twist. The final curve segments in panels (b) and (c)
(the green ones) represent the subsequent full structural optimization
of the resulting CNT.

III. TUBE FORMATION IS GOVERNED BY
CONTINUUM ELASTICITY

We addressed the last question by modeling GNRs as thin
elastic sheets with an in-plane modulus k, bending modulus
K , Poisson ratio ν = 0.3, and width W . The twisted shape
was found by numerically minimizing the elastic deformation
energy that had an in-plane stretching component and an out-
of-plane bending component (see Appendix C). Our analysis
based on continuum elasticity theory indicates that the key
elements in tube formation are the following: Buckling results
from transverse stress in the twisted ribbon and the shape of
the buckled cross section from competition between stretching
and bending.

The condition of fixed length in the analysis distinguishes it
from previous studies in which the tensile force was fixed, and

FIG. 2. (Color online) Ribbon buckling and tube formation can
be demonstrated with a strap of a backpack. Inset: Proposal for an
experimental realization, adapting the successful scheme of Refs. 9
and 10.

ribbon length could thus vary leading to smooth longitudinal
buckling,11,12 helical developable geometry,13 or triangular
stress-focusing patterns.14 Our analysis assumed that the cross
section of the ribbon was free to bend and warp, which is
not possible close to its ends if they are clamped. The ribbon
should thus be sufficiently long for our assumptions to be
valid. The length 2π/τt , over which the ribbon makes a full
turn at the point of tube formation, can be taken as a reasonable
minimum-length criterion.

Dimensional analysis indicates that the twisted geometry
depends only on the dimensionless elastic thickness h̃ =√

K/(kW 2) and twist τW . For graphene K = 1.6 eV and
k = 25 eV/Å2 such that h̃ ≈ 0.01 in the above simulation with
W ≈ 24 Å.15 Figure 3(b) shows the changing geometry of an
elastic ribbon under twisting for h̃ = 0.01—the similarity with
Fig. 1(a) is evident. Quantitative comparison in Fig. 3(b) of
the tubularity parameters of quantum and classical analyses
makes the similarity of these two approaches even more
evident, although there are some differences near � ≈ 1.
This is because of the difference between the zigzag and
armchair ribbons of similar width, which have somewhat
different tube-formation mechanisms due to the role of edge
morphology and edge stress16,17 that do not normally appear
in continuum models (discussed in Sec. V). We note here that
the maximum strain induced by twisting at the ribbon edge is
≈6% for h̃ = 0.01, decreasing as ∼1.3 Å/W for increasing
W , so graphene ribbons survive twisting without tearing.

The buckling point τb and the tube-formation point τt vary
with the scaled elastic thickness h̃ as shown in Fig. 3(c).
These numerically obtained curves are well approximated
by the expressions τbW ≈ 6.6

√
h̃ and τtW ≈ 17.2

√
h̃ that

follow from a simple scaling analysis (see Appendix C).
The same analysis also yields the torque associated with the
tube-formation point as Mt ≈ 1.8K/

√
h̃. In the presence of

an externally applied pre-strain, γ0, which naturally can be
released after tube formation, the critical values for τb and τt

decrease as shown in Fig. 3(d). This is in agreement with the
trend observed in molecular-dynamics simulations: Control
over γ0 thus provides a way to fine-tune the required twist and
has implications for the resulting CNT chiralities, which is the
question we discuss next.
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FIG. 3. (Color online) Tube formation by elasticity theory. (a) Visualizations of twisted elastic ribbons for h̃ = 0.01 (width ≈24 Å in
graphene) and τW = 0, 0.44, 0.88, 1.32, and 1.65. Cross-section projections are also shown. (b) Tubularity parameter � by elasticity theory
(h̃ = 0.01) and from simulation results for a zigzag (12-ZGNR, h̃ ≈ 0.0104) and an armchair ribbon (22-AGNR, h̃ ≈ 0.0097). (c) Buckling
(τb) and tube-formation points (τt ) as a function of elastic thickness, which results from elasticity theory and from simulations for different
ZGNRs. For the rightmost ribbon, 10-ZGNR, the simulation was repeated 10 times, and the vertical bars denote the range where τb and τt

were observed to fluctuate. (d) Buckling and tube-formation points that result from elasticity theory (h̃ = 0.012) and from simulation results
for 10-ZGNR (h̃ ≈ 0.0117), as a function of pre-strain.

IV. CARBON NANOTUBE CHIRALITIES
CAN BE PREDICTED

Our simulations suggest that by knowing the width and
chirality of the GNR the chirality of the CNT can be predicted
with unexpected reliability. The CNT chiral angle θ depends
on a shift 	z that measures the (relative) axial displacement
of ribbon edges at the tube-formation point. In the continuum
picture the honeycomb geometry thus implies the relation

φ + θ = π/2 − arctan(	z/W ) (1)

between the GNR (φ) and CNT (θ ) chiral angles2,18 that vary
between 0◦ and 30◦ (see Appendix A). With 	z/W given
by the elasticity theory and with tube circumference deduced
from the ribbon width (Fig. 9), Eq. (1) offers a recipe for a
continuum prediction of the CNT chirality.

In the atomistic picture, however, the shift 	z has to be
compatible with the atomic discreteness. Figure 4(a) shows
how 	z in N -ZGNRs picked values close to the continuum
predictions, either an integer or a half-odd-integer times the
edge periodicity azz = 2.46 Å. Other values of 	z would have
cost additional shear-deformation energy. Similarly, Fig. 4(b)
shows that the chiral angles of the corresponding CNTs pick
allowed values in the proximity of the continuum-limit curves
given by Eq. (1).

The elasticity result for 	z can, in fact, be used for a still
better estimate of the CNT chiral angle—also for an estimate
of the CNT chiral indices (n,m) themselves. For a given N

and ribbon type, only certain indices (n,m) are allowed, and
the honeycomb lattice suggests the expressions

(n,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(N/2 + δh,N/2 − δh), odd-N ZGNR
(N/2 + δi,N/2 − δi), even-N ZGNR
(N/2 − δh,2δh), odd-N AGNR
(N/2 − δi,2δi), even-N AGNR,

(2)

where δi is the nearest integer and δh is the nearest half-odd-
integer to the ratio 	z/a(zz/ac), owing to the symmetry of the
opposite edges as shown in Fig. 8 (N/2 can be a half-odd-
integer), and where 	z is predicted by the elasticity theory.
Prediction for the CNT chiral angle is then given by (n,m) via
the expression

θ (n,m) = arccos
2n + m

2
√

m2 + n2 + mn
. (3)

Yet Eq. (2) is only a prediction—the tube formation process
contains stochastic aspects. For some ribbons the continuum-
limit value for 	z happened to be halfway between two
allowed values, making prediction based on room temperature
simulations inevitably less precise. For example, Figs. 4(c)
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FIG. 4. (Color online) Predicting CNT chiralities. (a) Axial shift 	z of the opposite edges in the tube as given by the elasticity theory as a
function of ribbon width (lines) for three values of pre-strain (denoted by percentages). Circles are the simulated values for ZGNRs. (b) The
CNT chiral angles θ that correspond to the shifts in panel a. Full lines are the predictions for θ given by Eq. (1) with φ = 0◦ and with 	z/W

given by the elasticity theory. (c) Shift 	z for 10-, 12-, and 14-ZGNRs (symbols from left to right) and the corresponding elasticity-theory
prediction (full curve) with zero pre-strain. Each of these ribbons was simulated 10 times, and the intensity of the color inside the circles is
proportional to the number of times the room temperature simulation gave the given 	z. (d) The CNT chiral angles, augmented by the chiral
indices, corresponding to the 	z of c, with the same definitions for the symbols. The line is the elasticity-theory prediction by Eq. (1).

and 4(d) show how identical room temperature simulations
result in different shifts 	z and in correspondingly different
CNT chiralities. While the obtained shifts indeed favored the
nearest integer multiple of azz close to the elasticity-theory
prediction, they fluctuated so that the final result could not
be predicted with certainty. Still for more than 80% of our
simulations Eq. (2) predicted the CNT chirality correctly.

Finally, since increasing the axial pre-strain γ0 decreases
τt , and thus 	z, as shown in Fig. 4(a), we can use γ0 to control
the CNT chirality as illustrated in Fig. 4(b). In particular, given
the discreteness of the allowed 	z, even a coarse experimental
control over γ0 can be used to fine-tune the chirality.

V. ARMCHAIR RIBBONS: EDGE STRESS AND
FORCED-JOINING EFFECTS

Figure 5(a) shows the buckling and tube-formation points
for AGNRs, showing less apparent agreement between simu-
lations and continuum-limit theory than for ZGNRs [compare
with Fig. 3(c)]. These differences have two reasons: compres-
sive edge stress and forced-joining effect that arises from the
comparatively large unit-cell length at the ribbon edge.

The compressive stress at the edge of an unpassivated
AGNR is ≈1.45 eV/Å, some ≈3.5 times greater than in
ZGNRs.17 In narrow ribbons this stress can cause spontaneous

twisting because of elongation of the edge with respect to the
ribbon axis.19 Because the stress makes edges prefer small
strain, larger twists were required for buckling [consistent
shifts between the blue curve and the blue symbols in Fig. 5(a)].
However, we omitted the edge stress from the elasticity
theory on three grounds. First, it affected mainly the buckling
threshold. Second, the edge stress depends on edge type and
passivation—with hydrogen passivation the stress vanishes.
Third, the edge stress can be imitated simply by having a
decreased pre-strain.

Apart from buckling, the tube formation itself was dom-
inated by a kind of forced-joining effect caused by edge
morphology. Namely, because the edge periodicity aac =
4.26 Å in AGNRs is almost twice the periodicity azz = 2.46 Å
in ZGNRs, larger deviations from the continuum prediction
for 	z were required—certain forcing was needed to initiate
the tube formation. Joining was easier for wide ribbons, where
shifts in steps of aac required less shear, and for ZGNRs, where
the required steps azz were smaller.

Furthermore, prior to tube formation the edge stress turned
out to make the edges of buckled ribbons bulge radially
outwards [see inset of Fig. 5(a)]. Then, to initiate the tube
formation, the buckled ribbon with bulged edges often required
more forced twisting so as to attain the allowed 	z. In
some simulations bulging was further enhanced by twisting,
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(a) (b) (c)

FIG. 5. (Color online) Tube formation for armchair graphene nanoribbons. (a) Buckling (τb) and tube-formation points (τt ) as a function
of elastic thickness given by the elasticity theory (full lines; Eq. (1) with φ = 30◦) and by simulations (squares) for AGNRs of varying width
[corresponds to Fig. 3(c) for ZGNRs]. The inset: AGNR prior to tube formation, illustrating the radial bulging of the edges. Pre-strain is zero.
(b) Shift 	z as given by the elasticity theory (full lines) and by atomic simulations (squares) as a function of ribbon width for three values of
pre-strain [corresponds to Fig. 4(a) for ZGNRs] (c) The CNT chiral angles corresponding to the shifts in (b).

making tube formation require exceptionally large twists
(tube formation was hindered by an energy barrier). In these
simulations a longer simulation time or higher temperature
might have initiated the tube formation earlier. However, when
the continuum 	z happened to be such that dangling bonds
from the opposite edges met directly, no forcing was needed
and simulation yielded τt in agreement with the elasticity
theory prediction [compare Figs. 5(a) and 5(b)].

Note that while pre-strain drives ZGNRs toward armchair
CNTs [θ = 30◦; see Fig. 4(b)], it drives AGNRs toward
zigzag CNTs [θ = 0◦; see Fig. 5(b)]. These tendencies can
be understood by noticing that increased pre-strain always
decreases 	z; with precisely zero 	z armchair ribbons would
become zigzag tubes and zigzag ribbons armchair tubes.

In addition to the purely geometrical effects associated
with the GNR-CNT transition, we also investigated twisting-
induced modifications in the electronic properties of the
system. Prior to buckling, the energy gaps in N -AGNRs were
observed to form three families according to q = mod(N,3),
as reported earlier,20–22 and as illustrated in Fig. 6. Buckling
turned out to cause only slight rehybridization of the carbon
atoms, consistent with earlier studies on CNTs.23 In contrast
to the smooth electronic modification caused by twisting, at
the point of tube formation the gap instantaneously jumped to
that of CNT, which may have been, prior to relaxation, still
influenced by remnant residual torques.

VI. ADEQUACY OF REVISED PERIODIC BOUNDARY
CONDITIONS

The validity of the revised periodic boundary condition
(RPBC) approach was confirmed by finite-ribbon simulations.
Here we present exemplary results of a simulation for L =
38 nm long 12-ZGNR with 3720 atoms. One end of the
ribbon was clamped, and the other end was kept at a fixed
distance (without pre-strain) while twisted continuously at the
rate dθ/dt = 0.0091 degrees/fs with a 2 fs time step; the rest
of the atoms were treated with a Langevin thermostat set to 300
K. In this simulation we used the reactive empirical bond-order
(REBO) interatomic potential from the LAMMPS package.24–26

Supplementary video 227 shows an animation of this
simulation, with selected snapshots in Fig. 7. The tube-
formation processes in RPBC and in finite ribbons were
the same and both resulted in the same pristine (9,3) CNT.
Sure enough, some finite-size effects did arise. Both buckling
and tube formation initiated in a narrow central region, and
the zipping up propagated toward the ribbon ends when the
applied twist increased. Complex distortions were suppressed
by the experimentally feasible fixed-length constraint. After
tube formation we released the end constraints and observed
that the tubes (that were partially unzipped near the ends)
remained thermodynamically stable at 300 K, and even at
1200 K.

The spreading of the end-to-end twist angle 	θ across
the ribbon was somewhat uneven, and twisting effectively
took place within a length smaller than L. Therefore, while
initiation of the buckling at τbW = (	θb/L)W ≈ 0.83 agreed
with what happened for RPBC, the initiation of tube formation
at τtW = (	θt/L)W ≈ 0.91 occurred earlier than in RPBC.
For increasing length such finite-size effects vanished and the
results converged toward RPBC results; for large L buckling

FIG. 6. (Color online) Energy gaps for selected N -AGNRs from
quasi-static simulations (optimized atomic coordinates for given τW )
representing three different N families. The narrow panel shows the
gaps in the resulting CNTs with torque and axial stress removed.
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FIG. 7. Finite ribbon simulations. Figure shows snapshots from the simulation of L = 38 nm long 12-ZGNR with clamped ends and with
increasing end-to-end twist angle (the first six snapshots; structures are rotated to give the best view angles). The last snapshot is the (partially
unzipped) (9,3) CNT after removing the clamps and performing a constraint-free simulation at 300 K.

and tube-formation points also became sharper. We performed
this simulation four times for different twist rates, obtaining
invariably the same results.

Such trends in the finite-size effects were confirmed by
simulations of shorter ribbons. For instance, dimensional
analysis helped to find the scaling L/W � 0.7

√
W/Å as the

critical length-to-width ratio above which the picture of the
tube-formation process remains valid. Indeed, for W = 25 Å,
inferring a critical ratio of ≈4, the tube was formed in an
expected manner for L/W = 7.5, but not for L/W = 2.6.
More systematic investigations of the finite-size effects are
underway.

VII. CONCLUSION

When the twisted ribbons have atomically smooth edges,
which is experimentally feasible and even preferred,5,6 the
formed CNTs are expected to become essentially pristine by
energy arguments.28,29 In practice, however, we cannot exclude
the formation of defects either. If tube formation is initiated
at different locations with different CNT chiralities,30 the
zipping up of the tube may give rise to scattered point defects.
Moreover, edge roughness, irregular edge chirality, and edge
passivation can lead to CNTs with vacancies, impurity atoms,
or dangling bonds, arranged as chiral line defects. Although we
cannot entirely exclude the appearance of phenomena related
to other finite-size effects,31 lattice fatigue,32 or complex
defect formation,33 preliminary results indicate that the central
concepts of tube formation prevail. Furthermore, when GNRs
are hydrogen-passivated, as they often are, tube formation
must be preceded by dehydrogenation and formation of H2

gas. Since this reaction has only a weak thermodynamic
driving force,29 presumable energy barriers for formation of
H2 suggest a slow reaction, and catalytic dehydrogenation may
be required to aid the tube formation.34

To conclude, our study opens up opportunities in nanoma-
terial manipulation not limited to carbon-based ribbons alone.
Indeed, using a combination of varying geometry that ribbons
afford with their separation of scales, one might envisage
using inhomogeneous width, chemical modification including

passivation, adsorbed molecules, and clusters, to construct
structures with desirable functionalities. Examples include
tubes with bulges or partial tears,35 nanoscrolls, multiwalled
nanotubes with a spiral cross section,36 all of which can also
be manipulated using external forces so as to enable molecular
encapsulation and release in a variety of applications.
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APPENDIX A: ABOUT RIBBON GEOMETRIES

We simulated tube formation for N -ZGNRs (φ = 0◦, N =
10−19) and N -AGNRs (φ = 30◦, N = 16−34), their geome-
tries are illustrated in Fig. 8. All simulated ZGNRs and AGNRs
resulted in pristine CNTs with well-defined chiral indices
(n,m) (corresponding to CNTs uniquely defined by the vector
C = na + mb, the circumferential vector expressed in terms of
the honeycomb unit-cell vectors a and b). For computational
feasibility ribbons were unpassivated; hydrogen passivation
would have required catalyst particles or a prohibitively long
simulation time.

The tubularity parameter was defined as

� = dflat − d

dflat − dbond
, (A1)

where dbond = 1.42 Å is the carbon-carbon bond length and
d is the distance between any two opposite-edge atoms that
form a bond in the final tube. The distance is at maximum
(d = dflat) for a flat ribbon and at minimum (d = dbond) for
a tube. Hence � = 0 for a flat ribbon and � = 1 for a tube.
The threshold for buckling was defined as �buckled > 0.1. In
the continuum limit, because there are no bonds, Eq. (A1) was
used with dbond = 0.
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FIG. 8. (Color online) ZGNRs and AGNRs illustrating the N

alternation in the opposite-edge profiles; alternation shows up, for
example, in Eq. (2). The unit-cell length is azz ≈ 2.46 Å in ZGNRs
and aac ≈ 4.26 Å in AGNRs for zero pre-strain. Ribbon relaxation
leads to slightly longer ribbons, more so for narrow ribbons. Width
W0 is measured from atomic positions [W0 ≈ (2.13N − 1.42) Å for
ZGNRs and W0 ≈ 1.23(N − 1) Å for AGNRs]. The angle φ is the
angle between the ribbon axis and the adjacent zigzag direction.

The width of an atomistic ribbon is a question of definition,
and although the width W0 (Fig. 8) would be an easy concept,
the direct comparison of atomic and continuum widths is
inherently ambiguous. We chose to define the ribbon width W

of the atomistic ribbon as the circumference of the resulting
CNT (Fig. 9). The difference between W and W0, which mainly
originates from curvature and bond formation (merging of
opposite edges creates new surface area), plays a bigger role
in narrow ribbons (when dbond is a notable fraction of W0).

APPENDIX B: MOLECULAR-DYNAMICS SIMULATIONS

We used spin-unpolarized density-functional tight-
binding37,38 and revised periodic boundary conditions adapted
to chiral symmetry.19,22,39,40 In the twisting simulations, with
minimal cell in the axial direction and zero strain correspond-
ing to a relaxed flat ribbon, we used the Langevin thermostat
at 300 K with 1 fs time step, and a stepped twist rate of
	(τW )/	t = 0.2−0.3 ns−1. (Buckling and tube formation
was possible due to the absence of symmetry constraints
with respect to axial symmetry, unlike in Refs. 20 and 22.)
The rate has only a minor effect on the results because of
the abruptness of the buckling and tube-formation events.
Molecular-dynamics simulations were performed for ZGNRs
using 20 κ points and for AGNRs using 10 κ points (while

FIG. 9. (Color online) The ratio of CNT circumference to W0.
Fitting given for the tube circumference πD ≡ W ≈ W0 + 2.5 Å
(Poisson effect caused by the pre-strain was removed). The CNT
circumference was obtained more accurately from the chiral indices,
W = √

3dbond

√
n2 + m2 + mn with (n,m) predicted by Eq. (2).

calculating energy gaps using 100 κ points) with respect to the
chiral symmetry operation.

APPENDIX C: ANALYSIS OF TWISTING OF A RIBBON
BASED ON ELASTICITY THEORY

We consider twisting of a thin ribbon with a fixed length
and translational symmetry such that each cross section of the
ribbon has the same shape. A cross section is free to warp
in the direction of the twist axis. We denote by x = (x1,x2)
the material coordinates of the ribbon, where x1 and x2 are
the coordinates in the transverse and longitudinal directions,
respectively. Position in space of a material point x is given by
r(x) = (x,y,z), and the twist axis was chosen to coincide with
the z axis. Symmetry of the problem implies that

∂r
∂x2

= (−τy,τx,1 + γ0) (C1)

and

∂2r

∂x2
2

= (−τ 2x, −τ 2y,0), (C2)

where τ is the twist per unit length and γ0 is a longitudinal
external strain. In-plane deformation of the sheet is described
by the strain tensor

γij = 1

2

(
∂r
∂xi

· ∂r
∂xj

− δij

)
(C3)

and out-of-plane deformation by the curvature tensor

Cij = n · ∂2r
∂xi∂xj

, (C4)

where n is the surface normal and i,j = 1,2. Deformation
energy per unit length is given by41

U = k

2(1 + ν)

∫ W

0

{
Trγ 2 + ν

1 − 2ν
(Trγ )2

}
dx1

+ K

2

∫ W

0
{(TrC)2+(1 − ν)[TrC2−(TrC)2]}dx1. (C5)
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FIG. 10. (Color online) (a) Torque at the tube-formation point as determined by numerical energy minimization (full line) is compared
with the scaling estimate Mt/K ≈ 1.8/

√
h̃ (dashed line). (b) Tube-formation point, τt , and buckling point, τb, are compared with the scaling

estimates τt ≈ 17.2
√

h̃ and τb ≈ 6.6
√

h̃, respectively.

Here k is the in-plane modulus, K the bending modulus, ν

the Poisson ratio, and W the ribbon width. The shape of the
ribbon was found by numerically minimizing U . To this end
we discretized the cross section x2 = const into N = 100
points and replaced the derivatives by finite differences.
The discretized energy with ν = 0.3 was minimized by a
damped molecular-dynamics method. Both τb and τt could
be determined by increasing τ in small steps.

Useful insight into the buckling and tube formation can
be obtained by a simple scaling analysis. During twist the
initially straight longitudinal fibers (narrow strips across the
ribbon) are deformed into helices and strained by 1

2τ 2R2,
where R is the distance from the twist axis. This generates
a compressive stress T ∼ kτ 4W 4 in the transverse direction
of a flat ribbon as the fibers tend toward the axis to minimize
the longitudinal stretching energy. The buckling threshold for
a compressed plate is given by41 T ∼ K/W 2, from which a
critical twist, τbW ≈ cb

√
h̃, is obtained. Here h̃ =

√
K/(kW 2)

is the elastic thickness. For τ > τb the buckled shape of the
cross section is determined by competition between stretching
and bending. The stretching and bending energies per unit
length can be estimated such that S ≈ k

2 ( 1
2τ 2R2)2W and

B ≈ KW
2R2 , respectively, for a cross section curved with a

radius R. By minimizing S + B for R = W
2π

, we find that the

twist τtW ≈ ct

√
h̃ is required to bring the two edges of the

ribbon together so as to form a tube. For the torque we find
that Mt = ∂(S+B)

∂τ
|τ=τt

≈ cMK/
√

h̃. The constants cb = 6.6,
ct = 17.2, and cM = 1.8 were found by fitting results of
numerical energy minimization (see Fig. 10). The simple
scaling expressions work well, although deviations appear at
high h̃ when the cross-section warps are large.

During twisting nearly all of the shear strain vanishes,
which leads to warping of the cross section (i.e., to relative
displacement of the two edges along the twist axis). Integrated
warp, or the shift 	z, can be approximated by

	z ≈
∫ W/2

−W/2
τr

(
�̂ · ∂r

∂x1

)
dx1, (C6)

where r is the distance from the twist axis and �̂ is a unit
vector perpendicular to the radial direction. By assuming a
circular cross section with radius R = W

2π
, we find

	z ≈ τtW
2

2π
(C7)

for the shift at the tube-formation point.
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