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Abstract
Motivated by the observation of highly unstable flowing states in suspensions of
microtubules and kinesin, we analyse a model of mutually propelled filaments
suspended in a solvent. The system undergoes a mean-field isotropic–nematic
transition for large enough filament concentrations when the nematic order
parameter is allowed to vary in space and time. We analyse the model
in two contexts: a quasi-one-dimensional channel with no-slip walls and a
two-dimensional box with periodic boundaries. Using stability analysis and
numerical calculations we show that the interplay between non-uniform nematic
order, activity, and flow results in a variety of complex scenarios that include
spontaneous banded laminar flow, relaxation oscillations and chaos.

Mathematics Subject Classification: 76Z05, 92C17, 92C05

PACS numbers: 87.16.Ln, 42.70.Df, 87.18.Ed

(Some figures may appear in colour only in the online journal)

1. Introduction

Active hydrodynamics describes the collective motion of microscopic particles constantly
maintained out of equilibrium by internal energy sources. Colonies of swarming bacteria,
in vitro mixtures of cytoskeletal filaments and motor proteins and vibrated granular rods are
common examples of active systems and now active has become standard terminology for
any system whose constituents drive themselves mechanically by extracting and dissipating
energy from their environment. Originating from pioneering works by Pedley and Kessler [1],
Vicsek et al [2], Toner and Tu [3] and Simha and Ramaswamy [4], active matter research has
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blossomed to encompass diverse systems and scales ranging from animal groups to subcellular
matter [5].

Because active particles typically have elongated shapes, their collective behavior has
been often described using the language of liquid crystals [6, 7]. In this regard, an important
distinction among active particles concerns the possibility of forming phases characterized by
nematic or polar order. Apolar particles can form phases with nematic order, characterized
by a macroscopic axis of mean orientation identified by a unit vector n and global symmetry
for n → −n, as in equilibrium nematic liquid crystals [8]. Polar particles can order in both
nematic and polar phases. The polar phase is again characterized by a mean orientation axis
p, but p � −p. While many active systems contain asymmetric (polar) subunits (such as
cytoskeletal filaments or bacteria), in many cases such particles form nematic phases without
undergoing polar ordering since the steric interactions leading to nematic order dominate over
the weaker polar interactions4. Here we consider this case; the case of particles with polar
order is treated in [9].

Active particles can also be distinguished in terms of their locomotion characteristics:
self-propelled particles (SPPs) are endowed with an internal engine and, typically but not
necessarily, with appendages that allow them to swim in a fluid or crawl on a substrate. For
example, bacteria [10], large animals such as fish or birds [11], and catalytic motors [12]
belong in this category. Cytoskeletal filaments, on the other hand, cannot propel themselves,
but move in a solvent through the action of motor proteins, which are themselves powered by
the hydrolysis of adenosine triphosphate (ATP). Bundles of molecular motors attach to pairs
of filaments and, during an ATP cycle, slide the filaments with respect to each other. We will
refer to this type of active elements as mutually propelled particles (MPPs). There is finally
a third class of systems in which activity is provided through vibration. Vertically shaken
granular rods, for instance, gain and dissipate energy while bouncing on a substrate, resulting
in a two-dimensional motion along their major axis [13, 14].

Most theoretical effort in modelling active systems characterized by liquid crystalline
order has focused on constructing hydrodynamic equations that, in addition to the usual liquid
crystalline elasticity, can account for the additional forces and currents originated from the
activity. This task has been achieved by incorporating phenomenological non-equilibrium
terms in the hydrodynamic equations of nematic and polar liquid crystals [4, 7, 15] or by
applying the tools of non-equilibrium statistical mechanics to specific microscopic models
[16–22]. This program has generated a variety of predictions, which include the existence
of giant density fluctuations in active nematics [13, 23, 24, 28, 29], spontaneously flowing
states [9, 15, 26–31], unconventional rheological properties [31–36] and a plethora of a novel
hydrodynamic instabilities with no counterpart in passive complex fluids [4 ,21, 37–40]; a
recent overview can be found in [5].

Here we consider the case of an active nematic suspension motivated by the observation
of highly unstable flowing states in assemblies of microtubules and kinesin [41], a model
for mutually propelled elongated particles in a solvent. The system undergoes a mean-field
isotropic–nematic transition for large enough filament concentrations and the nematic order
parameter is allowed to vary in space and time. We use stability analysis and numerical
simulations to analyse the model in two geometries: a quasi-one-dimensional channel with
no-slip walls and a two-dimensional box with periodic boundaries. In the channel geometry,
moderate activity levels lead to spontaneous laminar flow, as seen in earlier works [15, 25] that
assumed a constant magnitude of the nematic order parameter. Upon increasing the activity

4 The literature on liquid crystals contains several example of nematogens that carry a permanent electric dipole
moment, but do not form a polar phase as the dipole–dipole interaction is negligible compared with the nematic-
forming steric interaction (a discussion on this topic can be found in the first chapter of [8]).
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past a threshold value; however, fluctuations in magnitude of the nematic order parameter lead
to oscillatory flow in which the nematic director periodically switches orientation. In the two-
dimensional box, the interplay between non-uniform nematic order, activity and flow results in
a variety of complex scenarios that include spontaneous laminar flow, relaxation oscillations
reminiscent of excitable media, and chaos. A detailed analysis allows us to uncover the origin
of oscillations in the system and characterize the chaotic regime, wherein we see behavior
consistent with turbulent flow even in the low Reynolds number regime, expanding on and
complementing a recent short report of some of our findings [42].

This paper is organized as it follows. In section 2 we introduce the hydrodynamic equations
for an active suspension of mutually propelled filaments. In section 3 we analyse the equations
for a quasi-one-dimensional channel of infinite length and finite width endowed with no-slip
walls. In section 4 we consider an active nematic suspension in a two-dimensional container
with periodic boundaries. We then present a minimal model that demonstrates oscillatory
behavior, and characterize the chaotic regime. Finally, we present our conclusions in section 5.

2. Hydrodynamical equations of motion

We consider a system of rigid rod-like particles which are transiently linked by clusters of
molecular motors. In the presence of ATP, motion of the motors causes the filaments to
displace relative to one another, and they thus fall into the class of MPPs. Our model can be
considered as a minimal description of a suspension of microtubules and kinesin clusters [41].

A fluid of orientable fore-aft symmetric particles can generally exist in two phases:
isotropic (I) and nematic (N). In the latter phase, the particles are orientationally ordered
with an average orientation characterized by the nematic director field n. For microscopic
particles in suspension, such as colloidal rods or biological filaments, the IN transition is
driven by density: when the concentration of particles overcomes some critical value c∗, the
particles form a nematic phase in order to maximize entropy. In a two-dimensional equilibrium
fluid of slender rods the critical concentration is given by c∗ = 3π/2�2 where � is the length
of the rods [43] and the phase transition is of the Kosterlitz–Thouless type. The anisotropy of
a nematic phase is expressed through the nematic tensor Qij [8], which for uniaxial nematics
reads

Qij = S

(
ninj − 1

d
δij

)
. (1)

The nematic tensor Qij is by construction traceless and symmetric, thus in d = 2 it consists of
only two independent degrees of freedom. The nematic phase has orientational order (S �= 0)
and is invariant under inversion of the director field: n → −n. Here the extent of nematic
alignment is expressed in terms of a scalar nematic order-parameter S:

S = 1

d − 1
〈 d |a · n|2 − 1〉, (2)

where a is the axis of the molecules, d is the dimension of the system and the angular
brackets denote a thermal average. In a suspension of rod-like particles, S depends on the
local concentration of the particles and, in equilibrium passive systems, is constant across
the sample since diffusion drives the fluid towards a homogeneous state. In active systems,
however, activity can build up density inhomogeneities and the order parameter may exhibit
spatial fluctuations. Moreover, since the effects of activity are generally enhanced by local
orientational order (see equation (5)), coupling between order, activity and flow can amplify
these fluctuations. In the following we describe a set of hydrodynamic equations suitable to
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describe a suspension of active particles whose nematic order is allowed to vary in space and
time as a consequence of activity and flow.

Let us consider a concentration c of rod-like active particles of length � and mass M

suspended in a solvent of concentration ρsolvent. The total density of the system ρ = Mc+ρsolvent

is conserved and the fluid is incompressible. Since the total number of particles is also constant,
the concentration c obeys a continuity equation of the form

∂tc = −∇ · [c(v + va) − D∇c], (3)

where v is the bulk flow velocity, va is the velocity at which the particles actively move relative
to the flow, and D is the diffusion tensor, which two-dimensional uniaxial nematics reads

Dij = D0δij + D1Qij , (4)

where D0 = (D‖ +D⊥)/2, D1 = D‖ −D⊥ and D‖ and D⊥ are, respectively, the bare diffusion
coefficients along the parallel and perpendicular directions of the director field. The active
current ja = cva has been modelled in different ways and depends on whether the system is
in a nematic or polar phase. In polar systems, active particles are collectively propelled in the
direction of the macroscopic polarization P ; thus va = v0P with v0 the average velocity of
an individual active particle. Thus, for example, for bacterial suspensions v0 is constant and
represents the average swimming velocity of an individual bacterium [1].

In the case of MPPs studied here, the number of transient links between one filament
and others grows linearly with the filament concentration, and thus the velocity v0 depends
linearly on the average filament concentration, i.e. v0 = α1c with α1 = u0�

2, where u0 is the
propulsion velocity for unit concentration and is proportional to the rate of ATP consumption.
This leads to an active current of the form ja = α1c

2P [17, 44]. More sophisticated models
for the active-current density could be obtained by introducing feedback which accounts for
the fact that the velocity v0 itself can be affected by the passive forces in the system.

For a nematic suspension, on the other hand, the active particles move along n and −n

at the same rate; thus if the director field is uniform across the system, there will be no net
flux of particles across an arbitrarily small domain and ja = 0. However, in the presence of a
non-uniform director field or equivalently a non-uniform nematic order parameter, there will
be regions of fluid moving faster than others and thus a current. Such a current must depend
on the derivatives of the nematic tensor rather than on Qij itself. The simplest term of this
type with the correct tensorial structure is given by va

i = v0�∂jQij , which for MPPs gives a
current

ja
i = −α1c

2∂jQij , (5)

where α1 is a constant with dimensions of inverse time (figure 1). The negative sign in
equation (5) reflects the fact that the flux of active particles is directed from regions populated by
fast moving particles to regions of slow moving particles. The active current ja has been derived
in form (5) by Ahmadi et al starting from a microscopic model of filaments interacting through
a motor cluster [17] and later by Lau and Lubensky for swimming bacteria [34] (the dependence
on the concentration c is different in the latter case because of the different microscopic model).
Ramaswamy and co-workers argued that such active currents are responsible for the existence
of giant fluctuations in the number density of active nematic particles in the presence of
noise [13, 23]. Since spatial variations of the order parameter were neglected in that work,
the only driving force for active currents arose from curvature (i.e. tilt) in the director field
orientation, hence the name ‘curvature-induced currents’ coined in [23]. Here we show that a
more complete description, in which both the orientation of the director field and the nematic
order parameter are allowed to vary, leads to additional complex phenomena.
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Figure 1. An example of the active currents resulting from equation (5) in the presence of large
distortions of the director field, such as those which occur near a disclination. As noted in [13], the
tilt in the director field surrounding a +1/2 disclination (left) results in a collective drift of particles
in the direction indicated by the red arrows (i.e. towards the ‘nose’ of the defect). On the other
hand, a −1/2 disclination (right) will produce the same amount of incoming and outgoing currents
and thus zero net flux.

Next we construct a set of hydrodynamic equations for the nematic tensor Qij . These can
be written in the generic form:

[∂t + v · ∇]Qij = �
(r)
ij + �

(v)
ij + �

(a)
ij , (6)

where the rates �
(r)
ij , �

(v)
ij and �

(a)
ij embody, respectively, the relaxational dynamics, the

coupling with the flow, and the active contribution to the dynamics of the nematic tensor.
Following Olmsted and Goldbart [45], the rates on the right-hand side of equation (6) can be
obtained phenomenologically by constructing all possible traceless-symmetric combinations
of the relevant fields of the theory. These are the strain-rate tensor uij = 1

2 (∂ivj + ∂jvi), the
vorticity tensor ωij = 1

2 (∂ivj −∂jvi), and the molecular tensor Hij = −δF/δQij defined from
the two-dimensional Landau–de Gennes free energy F [8]. In two dimensions this reads5

F =
∫

dA

[
1

2
A QijQij +

1

4
C (QijQij )

2 +
1

2
K ∂iQjk∂iQjk

]
, (7)

where the coefficients A and C characterize the location of a second order phase transition.
Since tr(Q2) = S2/2, at equilibrium one has that S = √−2A/C. In a hard-rod fluids, when
the IN transition is driven only by the concentration of the nematogens, one can chose for
instance: A/K = (c∗ − c)/2 and C/K = c, so that

S =
√

1 − c∗/c. (8)

Thus for c 
 c∗, S ∼ 1 while for c < c∗, S = 0. The last term in the free energy expression
is the Frank elastic energy in the one elastic constant approximation [8]. As for passive liquid
crystals, the relaxational dynamics of Qij is driven by the molecular tensor Hij :

�
(r)
ij = γ −1Hij = −γ −1

[(
A +

1

2
S2C

)
Qij − K
Qij

]
, (9)

5 In three dimensions, on the other hand, the Landau–de Gennes free energy contains an extra cubic term of the form
1
3 B QijQjkQki that allows the mean-field transition to be first-order.
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where γ is a type of rotational viscosity. The coupling between nematic order and flow is
found by constructing all possible symmetric traceless tensors from the products of uij , ωij

and Qij [45]. This yields

�
(v)
ij = β1uij + β2(ωikQkj − Qikωkj ) + β3

[
uikQkj + Qikukj − 2

d
tr(uQ) δij

]
. (10)

In two dimensions the last term is identically zero and �
(v)
ij simplifies to

�
(v)
ij = β1uij + β2(ωikQkj − Qikωkj ), (11)

where the coefficients β1 and β2 can be found by comparing this expression with the standard
Ericksen–Leslie theory [8, 46], which gives β1 = λS and β2 = −1 [45]. Here λ is the flow-
aligning parameter which dictates how the director field rotates in a shear flow. In passive
liquid crystals, for |λ| > 1, the director tends to align to the flow direction at an angle θ0

such that cos 2θ0 = 1/λ, while for |λ| < 1, it forms rolls across the system. These regimes
are known as ‘flow aligning’ and ‘flow tumbling’, respectively. The value of λ has even
greater significance in active systems; together with the magnitude of forces exerted by the
active particles it dramatically influences the flow behavior and rheological properties of the
system [25, 35].

The active contribution to the dynamics of the nematic tensor was derived by Ahamadi
et al [17] and is directly proportional to the nematic tensor

�
(a)
ij = α0Qij . (12)

However, given the structure of equations (6) and (9), such a term can be simply incorporated
into the molecular field, leading to a redefinition of the critical concentration c∗. Here
we will drop this explicit dependence for sake of brevity, but remember that that the
critical concentration c∗ associated with the IN transition does depend on the activity.
The corresponding reactive stress tensor can be obtained from equations (6), (9) and (11) using
the standard energy conservation and entropy production argument (see, for example, [46]).
This gives, after some algebra:

σ
(e)
ij = −λSHij + QikHkj − HikQkj . (13)

Finally the flow velocity obeys the Navier–Stokes equation, with the total stress tensor given by

σij = 2ηuij − pδij + σ
(e)
ij + α2c

2Qij , (14)

where η is fluid viscosity of the fluid and p the pressure. The last term was established in the
seminal work of Pedley and Kessler [1] and represents the tensile/contractile stress exerted
by the active particles in the direction of the director field n. The c2 dependence again arises
because the propulsion, in our analysis, is provided by pair interactions of the filaments through
motors. A detailed derivation can be found in [44].

Summarizing, the hydrodynamics of an incompressible nematic suspension of mutually
propelled filaments is governed by the following set of differential equations for the particle
concentration c, the nematic tensor Qij , and the flow velocity v (with components vi):

ρ∂tvi = η∂2
i vi − ∂ip + ∂j τij , (15a)

[∂t + vi∂i]c = ∂i[(D0δij + D1Qij )∂j c + α1c
2∂jQij ], (15b)

[∂t + vi∂i]Qij = λSuij + Qikωkj − ωikQkj + γ −1Hij , (15c)

where we defined τij = σ
(e)
ij + α2c

2Qij . Here we have neglected the inertial convective term
in the velocity equation because we are interested in fluids of cytoskeletal filaments and motor
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proteins for which the typical Reynolds number is small. However, since both the nematic
order and the concentration of particles can be advected by the flow, the associated terms in
the equations for c and Qij cannot be neglected.

The dynamics of such an active nematic suspension is governed by the interplay between
the active forcing, whose rate τ−1

a is proportional to the activity parameters α1 and α2, and
the relaxation of the passive structures, the solvent and the nematic phase, in which energy is
dissipated or stored. The response of the passive structures, as described here, occurs at three
different time scales: the relaxational time scale of the nematic degrees of freedom �2/(γ −1K),
the diffusive time scale �2/D0, and the dissipation time scale of the solvent ρL2/η, where L

is the system size. While the presence of three dimensionless parameters makes for a very
rich phenomenology, for simplicity we choose parameter values in this work so that the three
passive time scales are of the same magnitude τp. When τa 
 τp, the active forcing is irrelevant
and the system behaves like a traditional passive suspension. On the other hand, when τa ∼ τp,
the passive structures can balance the active forcing leading to a stationary regime in which
active stresses are accommodated via both elastic distortion and flow. Finally, when τa � τp

the passive structures respond too slowly to compensate active forces, leading to a dynamical
and possibly chaotic interplay between activity, nematic order and flow. In the rest of the
paper, we quantify these different regimes.

For further manipulations it is convenient to make the system dimensionless by scaling
all lengths using the rod length �, scaling time with the relaxation time of the director field
τp = �2/(γ −1K), and scaling stresses by the elastic stress σ = K�−2.

3. Channel geometry

3.1. Overview

The simplest geometry in which to analyse the hydrodynamic equations given in the previous
section is a two-dimensional channel of infinite length and finite width. This geometry has been
studied in detail for active nematic and polar suspensions under the assumption of constant
magnitude of the nematic order parameter [15, 25–27, 35]. The most striking feature of active
nematic fluids in a channel is the ‘spontaneous-flow transition’: when the activity parameter
α2 is increased past a threshold, the system goes from a stationary state in which the director
field is parallel to the walls of the channel to a state of non-uniform orientation and flow. Here
we show that lifting the assumption of constant nematic order parameter leads to a second
transition to oscillatory flow not considered previously in theories of active nematics.

We consider a channel of infinite length along the x direction of a Cartesian frame and
finite width L along y. The channel is bounded by no-slip surfaces at y = 0 and y = L.
Assuming translational invariance in the x direction, the flow field is completely defined by
the velocity field vx = vx(y), vy = 0 since the incompressibility condition implies that

∇ · v = ∂yvy = 0, (16)

thus, vy = 0 since the fluid is confined. The strain-rate tensor has only one non-zero component
uxy = ∂yvx/2 ≡ u/2. Calling θ the angle between the director field n and the x-axis, the
nematic tensor can be expressed in the simple form:

Q = S

2

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (17)
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Under these conditions the hydrodynamic equations (15c) simplify to

ρ ∂tvx = ∂yσxy, (18a)

∂tc = ∂y[(D0 − 1
2D1S

2 cos 2θ)∂yc − 1
2α1c

2∂y(S cos 2θ)], (18b)

∂tS = ∂2
y S − S[A(c) + 1

2C(c)S2 − λu sin 2θ + 4(∂yθ)2], (18c)

∂tθ = ∂2
y θ + 2S−1∂yS ∂yθ − 1

2u(1 − λ cos 2θ), (18d)

where we have assumed that the inertia of the active particles is negligible and the dependence
of the coefficients A and C on the concentration c is as explained previously (The procedure
for decoupling the angle θ and the order parameter S is given in appendix A). Furthermore,
the total shear stress is finally given by

σxy = ηu + 1
2α2c

2S sin 2θ + 1
2Sλ sin 2θ ∂2

y S

+ 2S(1 − λ cos 2θ)∂yS ∂yθ + 2S(1 − λ cos 2θ)∂2
y θ

+ Sλ sin 2θ [A(c) + 1
2C(c)S2 + 4(∂yθ)2]. (19)

To complete the formulation of the problem, we need to specify some boundary conditions.
Here we assume that

vx(0) = vx(L) = 0, θ(0) = θ(L) = 0,

c′(0) = c′(L) = 0, S ′(0) = S ′(L) = 0. (20)

Here the condition on θ assumes strong anchoring with the filaments parallel to the wall at the
boundaries, and the conditions on c and S imply that there is no current flowing through the
walls. In particular, from equations (3) and (5)

jy = (D0 − 1
2D1S

2 cos 2θ)∂yc − 1
2α1c

2∂y(S cos 2θ). (21)

The condition jy(0) = jy(L) = 0 requires c′ = 0 and S ′ = 0 at the boundaries. As initial
conditions we take c = c0 (constant), vx = 0 and θ and S randomly distributed.

We solved the hydrodynamical equations (18d) and (19) with the boundary conditions
(20) numerically after dropping all derivatives of order higher than two in the equation for vx

to avoid the use of fictitious boundary conditions. The velocity equation then becomes

ρ∂tvx = ∂yσ
′
xy + 1

2λ sin 2θ ∂yS ∂2
y S + Sλ cos 2θ ∂yθ ∂2

y S

+ 2(1 − λ cos 2θ)∂yS ∂2
y θ + 4λS sin 2θ∂yθ ∂2

y θ (22)

with

σ ′
xy = ηu + 1

2α2c
2S sin 2θ + 2S(1 − λ cos 2θ)∂yS ∂yθ

+ Sλ sin 2θ [A(c) + 1
2C(c)S2 + 4(∂yθ)2]. (23)

In all our numerical calculations we set α1 = 0.1α2, although other parameters are changed as
indicated. Our simulations show that the system exhibits three different regimes determined by
the values of the activity parameter α2 and the flow-alignment parameter λ. For small activity,
the homogeneous stationary state is the only stable solution, with

vx = 0, c = c0, S =
√

1 − c∗/c, θ = 0. (24)

Upon increasing α2 and taking 0 < λ < 1, the system undergoes a transition to a steady state
in which θ and S vary across the system. In addition the flow velocity vx is non-zero and
reaches its maximum in the centre of the channel. Figure 2 shows a plot of the hydrodynamic
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Figure 2. The hydrodynamic fields c, S, θ and vx as a function of y/L in the spontaneously flowing
regime for the channel geometry obtained by solving equations (18d) with boundary conditions
(20). The initial concentration of the active particles is set to c0 = 2c∗, α2 = 1.5 and α1 = 0.1α2.
The other parameters are λ = 0.1, L = 5 and η = D0 = D1 = 1. For these values, the spontaneous
flow transition occurs at α2 = 1.240 69.

fields as a function of y/L. We note that the spatial variations of the order parameter S are
not localized, thus this regime is equivalent to the spontaneously flowing state identified in
earlier studies of active nematics [15, 25–27, 35]. It is worth noting that, in this steady state, the
nematic order parameter is anti-correlated with the concentration. This feature, which might
appear counterintuitive in comparison with the passive case, is a non-equilibrium effect that
arises due to the balance between diffusive and active currents (equation (5)). Assuming n

uniform, the total particle current is given by

jy ∼ −D∂yc − α1c
2∂yS. (25)

Since stationary solutions in this geometry require jy = 0, the active current out of regions
with large S is balanced by diffusion from regions with large c.

Upon increasing α2 the system undergoes a further transition to a regime in which the
order parameter S, the tilt angle θ and the velocity oscillate in time, with a frequency that
increases with α2. In figure 3 we illustrate the oscillatory behavior by showing a plot of the
hydrodynamic fields c, S, θ and vx in the centre of the channel (y = L/2) as a function of
time. Both the spontaneously flowing and the oscillatory regime occur in the nematic phase,
when the concentration c > c∗. For c < c∗, on the other hand, the isotropic homogeneous
state with no flow is the only solution.

3.2. Linear stability analysis

To understand the result of our numerical simulations and the onset of spontaneous flow we
turn to stability analysis of the base state. Letting ϕ = {c, S, θ, vx}, we consider

ϕ(y, t) = ϕ0 + εϕ1(y, t), (26)

with ϕ0 = {c0, S0, 0, 0} the stationary homogeneous solution and ε � 1. Substituting this
ansatz into the hydrodynamic equation (18d) yields a linearized system that may be written in
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Figure 3. The hydrodynamic fields c, S, θ and vx in the centre of the channel as a function of
time in the oscillatory regime obtained by solving equation (18d) with boundary conditions (20)
for α2 = 3 and the other parameters as in figure 2.

block-diagonal form as

∂tϕ1 =
(

A 0
0 B

)
ϕ1, (27)

with

A =
(

(D0 − 1
2D1S0) ∂2

y − 1
2α1c

2
0 ∂2

y

1
2S0(1 − S2

0 ) −c0S
2
0 + ∂2

y

)
, (28)

and

B =
(

∂2
y − 1

2 (1 − λ) ∂y

α2c
2
0S0 ∂y η ∂2

y

)
. (29)

The spontaneous-flow instability is triggered by the coupling between orientation and flow
embodied in the B operator. To calculate the critical value of α2 we must solve the
homogeneous system:{

B11∂
2
y θ1 + B12∂yv1 = 0

B22∂
2
y v1 + B21∂yθ1 = 0,

(30)

with the boundary conditions (20). This implies that the only possible forms for θ1 and v1 are

θ1 = C1 sin

(
2πn

L
y

)
, v1 = C2

[
1 − cos

(
2πn

L
y

)]
. (31)

Substituting these forms into (30) yields


− (2πn)2

L2
C1 − πn(1 − λ)

L
C2 = 0

2πnα2c
2
0S0

L
C1 +

(2πn)2η

L2
C2 = 0,

(32)
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Figure 4. Phase diagram of the flow behavior in the channel geometry, presented in the (λ, α2)

plane (with α1 = α2/10). The boundary line separating the stationary state (S) from the steady
flow state (SF) is given by equation (33). The phase boundary of the oscillatory regime (OF) was
obtained numerically. Other parameter values are η = D0 = D1 = 1, c0 = 2c∗ and L = 5.

which together with the requirement for C1 and C2 to be non-zero yields the following critical
value of α2:

α∗
2 = 8ηπ2n2

c2
0L

2S0(1 − λ)
. (33)

We thus see the first unstable mode corresponds to n = 1, which along with the critical value
α∗

2 is consistent with that seen in our numerical simulations. The phase diagram in figure 4
summarizes the flow behavior for the channel geometry.

4. Planar geometry

4.1. Overview

We now turn to the case of an active nematic fluid in a two-dimensional square domain
with periodic boundary conditions. We numerically integrated the hydrodynamic equations
of section 2 using a vorticity/stream-function finite difference scheme on a collocated grid
of lattice spacing 
x = 
y = 0.078. The time integration was performed via a fourth
order Runge–Kutta method with time step 
t = 10−3. As illustrated in section 4.2, the
vorticity/stream-function method requires one to solve a Poisson equation at each time step in
order to calculate the two components of the flow velocity. This was performed efficiently with
a V -cycle multigrid algorithm [47]. As initial configurations we considered a homogeneous
system where the director field is aligned along the x-axis and subject to a small random
perturbation in density and orientation. Thus c = c0 + ε, θ = ε, S = √

1 − c∗/c and
vx = vy = 0, where ε is a random number of zero mean and variance 〈ε2〉 = 10−2. The
equations were then integrated from t = 0 to t = 103, corresponding to 106 time steps.
Except where mentioned otherwise, the numerical calculations described in this section use
the parameter values α1 = α2/2, η = D0 = D1 = 1, λ = 0.1, c0 = 2c∗ and L = 10.

At low activity, the system relaxes quickly to a stationary homogeneous nematic state with

vx = vy = 0, c = c0, S =
√

1 − c∗/c, θ = 0. (34)

Upon raising the activity above a critical value αa
2, with αa

2 ≈ 0.37 for the parameters of our
calculation, this state becomes unstable to a flowing state. The behavior of the spontaneously
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Figure 5. The velocity field (top) and the director filed (bottom) are superimposed on density
plots of the concentration (top) and the nematic order parameter (bottom) for α2 = 0.4 obtained
by solving equation (15c) with periodic boundary conditions. The colours indicate regions of
large (green) and small (red) density and large (blue) and small (brown) nematic order parameter.
The flow consists of two bands travelling in the opposite directions. The director field is nearly
uniform inside each band. Parameter values are c0 = 2c∗, α1 = α2/2, λ = 0.1, L = 10 and
η = D0 = D1 = 1. For these values, the spontaneous flow transition occurs at αa

2 = 0.37.

flowing solution, in this two-dimensional periodic domain, is substantially different than the
quasi-one-dimensional system discussed in section 3. For values of α2 slightly above αa

2 ≈
the system divides into two bands flowing in the opposite directions. The direction of the
streamlines is dictated by the initial conditions which, in this case, favour a flow in the
x-direction. Moreover, the solution is constant along the flow direction (see figure 5).

The structure of the bands can be inferred from the plots in figure 6 showing the various
hydrodynamic fields along the y-direction. The yellow region indicates the extent of a band.
Both the flow velocity and the concentration are maximal at the centre of a band. The maximum
in the velocity, in particular, is associated with a very sharp variation in the orientation of the
director field (see the bottom-left panel of figure 6). This rapid variation of the director field
generates a large elastic stress, which is balanced by the release of viscous stress through the
increase in the local flow velocity. The nematic order parameter, on the other hand, is minimal
in the centre of a band due to the balance between diffusive and active currents discussed in
section 3. As in the case of spontaneous flow in the channel geometry, here too the variations
in concentration and the order parameter are relatively small and not localized. Finally, the
width of the bands is set solely by the size of the system. Because of the periodic boundary
conditions, the lowest nontrivial Fourier mode of the flow velocity has wavenumber 2π/L;
hence the size of the bands is simply L/2. This is inevitable in our setting, but in a real
suspension of cytoskeletal filaments and motor proteins higher modes might come into play,
as a function of the elasticity of the filaments (neglected here), a possible depletion interaction
between filaments, the presence of impurities, etc

4.2. Linear stability analysis

To understand these behaviours, we analyse the linear stability of the stationary homogeneous
state in the two-dimensional periodic domain. In order to ensure the incompressibility
condition ∇ ·v = 0 it is convenient to rewrite the Navier–Stokes equation in terms of vorticity
and stream function, by writing

vx = ∂yψ, vy = −∂xψ, (35)
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Figure 6. Hydrodynamic fields c, S, θ and vx as a function of y obtained by solving equation (15c)
with periodic boundary conditions. The parameter values are the same as in figure 5. The yellow
region indicates the extent of a band shown in figure 5.

so that the incompressibility condition is automatically satisfied and the vorticity field is
given by

ω = 2ωxy = ∂xvy − ∂yvx. (36)

The two-dimensional Navier–Stokes equation can be expressed in terms of ω by

∂tω = η
ω + ∂2
x τyx + ∂xyτyy − ∂yxτxx − ∂2

y τxy, (37)

where we defined

τij = −λSHij + QikHkj − HikQkj + α2c
2Qij . (38)

From equation (36) we see that the stream-function ψ is related to the vorticity ω through
a Poisson equation of the form 
ψ = −ω. Consistent with the numerical calculations, we
consider a nearly uniform suspension of nematogens whose director field is approximatively
aligned along the x-direction. Thus c(x, t) = c0 + ε c1(x, t) and n(x, t) = x̂ + ε n1(x, t).
Analogously, the nematic tensor can be expressed to first order in ε as

Qij (x, t) = S0

2
(δixδjx − δiyδjy) + ε Q

(1)
ij , (39)

with S0 = √
1 − c∗/c0. As in the quasi-one-dimensional case, we use the compact notation

ϕ = {c, Qxx, Qxy, ω} and write the perturbative expression

ϕ(x, t) = ϕ(0) + ε ϕ(1)(x, t). (40)

To enforce periodic boundary conditions on a square domain, we look for solutions of the form

ϕ(1)(x, t) =
∞∑

n=−∞

∞∑
m=−∞

ϕnm(t)e
2πi
L

(nx+my). (41)

The Fourier components of the stream-function are related to those of the vorticity by

ψnm = ωnm(
2πn

L

)2

+

(
2πm

L

)2 . (42)
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With this choice the linearized hydrodynamic equations reduce to a set of coupled of linear
ordinary differential equations for the Fourier modes ϕnm:

∂tϕnm = Anmϕnm, (43)

with the matrix Anm given in appendix B. The first mode to become unstable is the transverse
excitation (n, m) = (0, 1) associated with the block-diagonal matrix:

A01 =
(

a01 0
0 d01

)
, (44)

with

a01 =


−2π2

L2
(2D0 − D1S0)

4π2

L2
α1c

2
0

c∗

4c0
S0 −c0S

2
0 − 4π2

L2


 , (45)

and

d01 =


 −4π2

L2

1

2
(1 − λ)S0

4π2

L2
α2c

2
0 − 16π4

L4
S0(1 − λ) −4π2η

L2


 . (46)

The instability first arises from the coupling between local orientations and flow (unless
α1 
 α2). The critical value of α2 is obtained by examining the eigenvalues of the matrix d01

given by

�± = −2π2(1 + η)

L2
±

√
2 π

L2

[
2π2(1 − η)2 − 4π2S2

0 (1 − λ)2 + α2c
2
0S0L

2(1 − λ)
] 1

2
. (47)

When the real part of the above eigenvalues becomes positive, an instability ensues: this
corresponds to α2 larger than the critical value:

αa
2 = 4π2[2η + S2

0 (1 − λ)2]

c2
0L

2S0(1 − λ)
. (48)

The origin of the instability of the homogeneous stationary state is the same for the 1D channel
and the 2D domain and is related to the interplay between the orientation of the director field
and the shear flow driven by the internal active stresses. To illustrate this point let us consider
a two-dimensional nematic fluid in a stationary state with the director field aligned, say, along
the x-axis of an arbitrary reference frame. The active stress produced by the action of the
motors powers a collective motion of the nematogens. However, the director field rotates in
the presence of shear flow for λ �= 1, which generates elastic stress. For small activities, the
elastic stiffness dominates and suppresses flow, while above the critical value of αa

2 activity
dominates and drives collective motion. Higher levels of nematic order focus the sources of
active stress and thus require lower activity levels to destabilize the homogeneous stationary
state (lower αa

2).
In a ‘dry’ system (i.e. vx = vy = 0 and α2 = 0) the homogeneous state becomes unstable

solely as a consequence of the coupling between density and orientation fluctuations expressed
by the matrix anm. In this case, the first modes to become unstable are the transverse mode
(0, 1) and the longitudinal mode (1, 0) associated with the matrix (see appendix A):

a10 =


−2π2

L2
(2D0 + D1S0) −4π2

L2
α1c

2
0

c∗

4c0
S0 −c0S

2
0 − 4π2

L2


 . (49)
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Figure 7. Hydrodynamic fields c, S θ and ω at the centre of the box as a function of time obtained
by solving equation (15c) with periodic boundary conditions for α2 = 1.5 and the other parameters
as in figure 5.

Simple algebraic manipulations can be used to show that the real part of the eigenvalues of a01

and a10 becomes positive when α1 is larger in magnitude than the critical value:

α∗
1 = −2(±2D0 − D1S0)(c0L

2S2
0 + 4π2)

c0c∗S0L2
, (50)

where the plus sign correspond to the (1, 0) mode and the minus to the (0, 1) mode. This
instability, which occurs in the absence of hydrodynamics, has been described in various
contexts (see, for example, [28, 30] and references therein). We refer the reader to these works
for a detailed discussion while in the rest of this paper we focus on hydrodynamic phenomena.
A thorough discussion on the instability of the homogeneous state in ‘dry’ and hydrodynamic
systems can be found in [9].

4.3. Relaxation oscillations

Upon increasing the activity parameter α2 above a second critical value αb
2 (with αb

2 ≈ 0.41
for our default parameter values), the spontaneously flowing state evolves into a pulsatile
spatial relaxation oscillator. Figure 7 shows a plot of the various hydrodynamic fields as a
function of time for α2 = 1.5. In this regime the dynamics consists of a sequence of almost
stationary passive periods separated by active ‘bursts’ in which the director switches abruptly
between two orthogonal orientations. During passive periods, the particle concentration and
the nematic order parameter are nearly uniform across the system, there is virtually no flow,
and the director field is either parallel or perpendicular to the x-direction. Eventually this
configuration breaks down and the director field rotates by 90◦ (see figure 8). The rotation of
the director field is initially localized along lines, generating flowing bands similar to those
discussed in section 4.1. The temporary distortion of the director field as well as the formation
of the bands is accompanied by the onset of flow along the longitudinal direction of the bands.
The flow terminates after the director field rotates and a uniform orientation is restored. The
process then repeats.
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Figure 8. Dynamics of an active ‘burst’ for the trajectory shown in figure 7, with α2 = 1.5. The
flow velocity at the point x = y = L/3 is shown as a function of time over the course of a director
field rotation (top left) and the director field is shown for the three labelled time points. Between
two consecutive bursts the system is homogeneous and uniformly aligned. During a burst, nematic
order is drastically reduced in the whole system and the director undergoes a distortion with a
consequent formation of two bands flowing in the opposite directions. After a burst, a stationary
state is restored with the director field rotated of 90◦ with respect to its previous orientation.

Remarkably, the rotation of the director fields occurs through a temporary ‘melting’ of the
nematic phase. As shown in figure 7, during each passive period the nematic order parameter is
equal to its equilibrium value S0 = √

1 − c∗/c (S = 1/
√

2 because of the choice of c0 = 2c∗),
but drops to ∼ 2

5S0 during rotation. The reduction of order is system-wide, but, as shown in
the bottom-left panel of figure 8, is most pronounced along the boundaries between bands.
Without this transient melting (i.e. if the magnitude of S is not allowed to vary), the distortions
of the director field required for a burst are unfavourable for any level of activity.

A closer look at the dynamics of an individual oscillation elucidates the mechanism of the
instability. Figure 9 shows the flow (represented by the vorticity), orientation and the nematic
order parameter as a function of time for α2 = 1.5. Beginning from the homogeneous state,
the active forcing generates a gradual increase in flow, and the system evolves in a manner
similar to that of the spontaneous-flow regime described in section 4.1. As described there,
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Figure 9. Left: the vorticity ω, the orientation of the director cos θ , and the nematic order parameter
1−S/S0 are shown for the point x = y = L/3 over the course of a burst for the trajectory shown in
figure 7 with α2 = 1.5. The data are from the numerical integration and the vorticity is normalized
so that its maximum value is one. Right: A close-up of the same data during the onset of a burst.

Figure 10. Left: The average nematic order parameter 〈S〉 = ∫
dA/L2 S(x) and the total shear

stress σxy are shown over several bursts for the trajectory shown in figure 7 with α2 = 1.5. Right:
the frequency of bursts is shown as a function of α2 with other parameters as in figure 7.

the resulting shear flow causes the nematic director to rotate, generating elastic stress that
competes with the active stress. Above the critical value of α2, however, the elastic stress is
never sufficient to balance the active stress and the banded flow configuration becomes unstable
to melting of the nematic phase. Importantly, the instability occurs only once the flow and
director rotation have reached a threshold level; thus, there is a significant delay during which
the nematic order parameter is nearly constant. Once melting occurs, the stress is rapidly
released during reorientation (figure 10). The timescale of the oscillation is given by the time
required for the flow and director rotation to reach their threshold values, and thus decreases
with an increase in α2 above αb

2.
The physical origin of the oscillatory dynamics in our model of active nematic suspension

has to be ascribed to the existence of multiple time scales in a system that is internally driven.
As we mentioned in section 2, one time scale is set by the rate at which the active forcing
occurs and is τa = η/(α2c

2
0). A second time scale is related to the relaxational dynamics of

the fluid microstructures (i.e. the solvent flow field, the director field, and the nematic order
parameter) and is given by τp = �2/(γ −1K) (the time unit in all numerical and analytical
calculations). When the two time scales are comparable, the active forcing is accommodated
by the microstructures leading to a distortion of the director field and a steady flow. However,
when the active forcing occurs at a larger rate the microstructures fail to keep up, revealed
above by the instability to melting of the nematic phase. This lag results in oscillatory dynamics
and eventually chaos. Similar oscillatory phenomena have been found in models of complex
fluids under shear. Cates and co-workers discussed specifically the effect of a slow response of
the microstructure to an external shear and showed how such a phenomenon can be naturally
described via the FitzHugh–Nagumo equation [48–50].
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To reiterate, if the time scale of the forcing and that at which the microstructures (i.e. flow,
nematic phase) respond are comparable, the active stress is ‘instantaneously’ compensated by
the local velocity leading to a static flow. However, when the active forcing rate is increased, the
microstructure dynamics lag, resulting in oscillatory behavior. To illuminate the origins of the
relaxation oscillations in a concrete way, we construct a simplified version of the hydrodynamic
equations that retains the minimal features required to exhibit oscillatory phenomena: the
coupling between active forcing and the fluid microstructure and the variable nematic order.
The purpose of the following calculation is not to rigorously analyse equation (15c), but rather
to identify basic physical mechanisms that can drive oscillations and to illustrate the effect of
different timescales in the system.

Let us then consider the following simplified version of the hydrodynamic equations for
the quantities Qxy and uxy which represent, respectively, the liquid crystal degrees of freedom
and the flow field.

Q̇xy = uxy + γ −1Hxy, (51a)

u̇xy = 
(ηuxy + αQxy), (51b)

obtained by treating c and Qxx as constants and by simplifying the coupling between the
nematic tensor and flow, as compared with the complete phenomenological construction
discussed in section 2. Here, variations in the nematic order parameter are embedded in
the Landau–de Gennes free energy within Hxy . Moving to Fourier space, equations (51a) can
be rearranged in the form

Q̇xy = uxy + γ −1[(|A| − CQ2
xx − k2)Qxy − CQ3

xy], (52a)

u̇xy = −k2(ηuxy + αQxy). (52b)

Finally, by taking Q = Qxy , u = −uxy , a = γ −1(|A| − CQ2
xx − k2) and b = γ −1C, one

obtains

Q̇ = aQ − bQ3 − u (53a)

u̇ = k2(αQ − ηu), (53b)

equivalent to the spatially homogeneous FitzHugh–Nagumo model or the generalized van der
Pol oscillator [51, 52]. In our periodic square domain k2 = (2nπ/L)2 + (2mπ/L)2, with n and
m integer numbers. The nullclines of the dynamic system (53a) are given by

u = Q(a − bQ2), u = αQ/η. (54)

There are, in general, three fixed points P = (Q, u):

P0 = (0, 0), P± =
(

±
√

a − α/η

b
, ±α

η

√
a − α/η

b

)
. (55)

For α < η(2a + ηk2)/3 the origin P0 is a saddle point, while P± are stable nodes. A trajectory
starting from an arbitrary (Q, u) point will then converge to a stable state characterized by a
finite strain-rate that matches the active stress αQ: ηu = αQ = α

√
(a − α/η)/b. This fixed

point represents the usual spontaneously flowing state (figure 5). For α > η(2a + ηk2), P±
become unstable and the system exhibits relaxation oscillations. Figure 11 shows a typical
trajectory and a phase-plane plot showing the flow of trajectories in u and Q space. In this
regime the dynamics consists of slow relaxations, when the trajectory is close to the cubic
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Figure 11. Left: A typical trajectory of the variable Q from equation (53a) for α slightly above
the critical value 1

3 η(2a + ηk2). Right: The same limit cycle in the (Q, u)-plane. The black dashed
line is the u̇ = 0 nullcline and the black solid line is the Q̇ = 0 nullcline.

nullcline (Q̇ = 0), interspersed with rapid large jumps in Q when the trajectory reaches
the unstable portion of the cubic nullcline. By inspection of equations (53a) and (53b) the
frequency of the oscillations is given by ν ∼ k2α. To expand on the assertion that relaxation
oscillations arise when the passive timescales exceed that of the active forcing, the critical
active rate can be obtained by rewriting α in terms of the characteristic timescales defined
above as 3τ−1

a = (2aτ−1
p + �2k2τ−1

d ), with τa = η/α.
Numerical simulations of the full system (15c) exhibits a much richer behavior than that

captured by equations (53a), but the qualitative dependence of the dynamics with respect to
α2 persists (figure 10). The origins of the kink at α2 = 1.35 are unclear at present, but it does
not correspond to excitation of a spatial mode of larger wavenumber.

It is interesting to study how the three regimes described so far change as the size of
the system is increased. Figure 12 shows a phase diagram of the various dynamical regimes
for the full equations in the plane (L, α2). Upon increasing the size L of the system, the
critical value of α2 separating the spontaneous flow and the oscillatory regime decreases
and merges with the lower phase boundary (whose expression is given in equation (48)) for
11 < L < 12. Thus we expect that in large samples, the instability of the homogeneous state
will lead directly to oscillatory and then chaotic dynamics. The latter is described in the next
section.

It is important to emphasize that the excitability described here for active nematic fluids
is a purely hydrodynamic phenomenon that arises as a consequence of the existence of
multiple time scales in the system, when the dynamics of the flow lags with respect to the
rate of the active forcing exerted at the microscopic scale. This phenomenon is thus very
different from the large scale fluctuations previously observed in simulations with noise and
no hydrodynamics [24, 28]. Furthermore, the excitability seen here is quite different from
that seen in many biological systems where the relaxation oscillations arise from heavily
regulated networks of chemical and electrical signals, in contrast with our model where they
emerge directly from physical interactions among the constituent components of an active
fluid such as the cytoskeleton in a cell. Excitability might have dramatic consequences for the
response of cytoskeletal suspensions to external stimuli as well as the interaction of the cell with
the extracellular matrix. Moreover, the ability of the cytoskeleton to support self-sustained
relaxation oscillations might shed light on the rhythmic and coordinated motion observed in
many eukaryotes (a thorough investigation of this scenario is, however, beyond the scope of
this paper). Finally, the transition from regulated to chaotic behavior predicted by our model
could provide a simplified setting in which to consider fundamental questions in the context
of ‘living materials’ and tissues, where pathological conditions can give rise to dynamics that
impair normal functions, such as in the case of cardiac arrhythmias.
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Figure 12. Phase diagram for the stationary (S), spontaneous flow (F), relaxation oscillation (O)
and chaotic (C) regimes in the plane (L, α2) for the full equations (15c) with periodic boundary
conditions. The dots are obtained from numerical integration. The green solid line, separating
the stationary and flowing state, is given by equation (48). The red dashed line, separating the
spontaneously flowing state and the relaxation oscillations regime is interpolated from the numerical
data. The colour gradient at the intersection between the oscillatory and the chaotic region indicates
a fuzzy boundary between these two regimes. Parameter values are c0 = 2c∗, α1 = α2/2, λ = 0.1
and η = D0 = D1 = 1.

4.4. Chaotic regime

When the activity α2 is further increased past a third critical value αc
2, with αc

2 ≈ 2 for our
default parameters (figure 12), the flow becomes chaotic. The route to chaos takes place
through a disordering of the flip-flop dynamics described in the previous section. Initially the
dynamics is still characterized by periods of low activity alternating with bursts during which
nematic order is temporarily lost and the director field rotates. In figure 13 we show the time
course of several hydrodynamic fields in a typical trajectory for α2 = 2.3.

In this chaotic regime, the structure of the flow presents some coherent features typical of
two-dimensional turbulence. For example, in figure 14 we show a representative snapshot of
the flow velocity superposed on the concentration field, and the director field superposed on the
nematic order parameter. We see that the flow is characterized by large vortices that span the
system size, with the director field organized into ‘grains’ of uniform orientation separated by
grain boundaries that span the entire sample. Comparison of the two plots in figure 13 reveals
that the grain boundaries are the fastest flowing regions in the system. Thus the dynamics in this
regime is characterized by grains with approximatively uniform orientation that swirl around
each other and continuously merge and reform, giving rise to a flow that appears turbulent.
This is similar to other chaotic flows in active fluids that have been reported in models of
dilute bacterial suspensions but which do not include liquid crystalline elasticity [53, 54] (also
see [26] for a related steady-state analysis).

Figure 15 shows the energy and enstrophy power spectra, with the spectral densities E(k)

and �(k) defined so that 1
2 〈v2〉 = ∫ ∞

0 dk E(k) and 1
2 〈ω2〉 = ∫ ∞

0 dk �(k) are the mean kinetic
energy and enstrophy per unit area. Although our simple numerical simulations do not span
a sufficient range of scales to establish any scaling laws that are expected of two-dimensional
turbulence, there are qualitative signatures of such behavior in our model of active nematic
fluids. We recall that for passive two-dimensional fluids, the classic Kraichnan theory of
two-dimensional turbulence in viscous fluids [55, 56] predicts a double cascade through which
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Figure 13. Hydrodynamic fields c, S, θ and ω at the centre of the box as a function of time obtained
by solving equation (15c) with periodic boundary conditions for α2 = 2.3 and the other parameters
as in figure 5.

Figure 14. Top: The velocity field superimposed on a density plot of the concentration and
(bottom) the director field superimposed on a density plot of the nematic order parameter obtained
by solving equations (15c) with periodic boundary conditions for α2 = 3 and other parameters as
in figure 5. The colours indicate regions of large (green) and small (red) concentration and large
(blue) and small (brown) nematic order parameter.

energy is transferred from small to large scales while enstrophy flows from large to small scales.
At length scales smaller than the injection scale, the enstrophy cascade dominates, giving rise
to energy and enstrophy spectra decaying like k−3 and k−1, respectively (modulo logarithmic
corrections). The fundamental difference between simple viscous fluids and the active fluid
discussed here is that the forcing acts on a molecular scale here, in contrast with the situation in
viscous fluids which is forced at scale of the system. This suggests that a possible mechanism
for turbulence in the active fluid described here could involve an inverse enstrophy cascade
in which vorticity is injected into the system at small scales through the active forcing and
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Figure 15. Energy (top) and enstrophy (bottom) spectra for system of size L = 20 obtained by
solving equation (15c) for α2 = 2 and other parameters as in figure 5. Dashed lines show the graph
of the power laws k−3 and k−1 expected in two-dimensional turbulence.

then transferred to the scales of order the system size. The dashed lines in figure 15 show the
power laws E(k) ∝ k−3 and �(k) ∝ k−1 expected for two-dimensional turbulence in viscous
fluids, which while suggestive are not definitive as our numerical methods are inadequate to
stringently test these ideas quantitatively. However, we hope that our simple discussion might
serve as a starting point for identifying and characterizing active turbulence.

5. Conclusions and outlook

In this paper we have analysed in some detail the hydrodynamics of active nematic suspensions
in quasi-one and two dimensions. By allowing spatial and temporal fluctuations in the nematic
order parameter, we observed a rich interplay between order, activity and flow. Significantly,
we find that allowing fluctuations in the magnitude of the order parameter S qualitatively
changes the flow behavior as compared with systems in which S is constrained to be uniform.

At a minimal level, the behavior of the system can be qualitatively understood by
comparing the timescale of energy input due to activity and the relevant relaxation time scales
associated with solvent and liquid crystalline degrees of freedom. While we have specifically
chosen parameter values so that the solvent and liquid crystalline degrees of freedom have the
same intrinsic timescales, it would be interesting to continue the analysis to cases with multiple
relaxation time scales.

More generally, the richness of behaviours emerging in the present theoretical study of
active fluids with liquid crystalline order raises an important question: are these phenomena
observed in real active systems? And if so, how well can hydrodynamic models capture
the complexity of those systems? Recent publications have reported the observation of many
examples of the collective dynamics in motility assays consisting of highly concentrated active
polar filaments propelled by immobilized molecular motors in a planar geometry [57–59].
These include the onset of travelling density bands, oscillatory dynamics in which the average
orientation of the filaments switches periodically in time, and large scale swirling motions.
Our results suggest that spatially inhomogeneous nematic order is sufficient to drive both an
oscillatory dynamics of the director field and a swirling motion even in the absence of polar
order. With this work, we hope to have provided a number of testable predictions that can
be used in combination with experiments to shed light on the basic physical mechanisms
governing the dynamics of living or otherwise active matter.
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Appendix A. Nematodynamics via Pauli matrices

For some practical application, such as the channel geometry described in section 3, it is
desirable to have separate hydrodynamic equations for the variables θ and S, rather than
having them entangled in the equation for the nematic tensor Qij . In two dimensions, this
operation can be performed rather elegantly using Pauli matrices. To see this let us start from
the two-dimensional nematic tensor expressed in the matrix form:

Q = S

2

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (1.1)

In order to decouple S and θ , we can introduce the following matrices:

σp = sin 2θ σ1 + cos 2θ σ3, (1.2a)

π = cos 2θ σ1 − sin 2θ σ3, (1.2b)

where σ1 and σ3 are Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

The matrices σp and π enjoy a number of properties. Namely

σp σp = π π = δ, σp π = iσ2, (1.4)

where δ is the 2 × 2 identity matrix. Since the Pauli matrices are traceless and Hermitian, so
are σp and π. An equation for S can be derived straightforwardly by expressing

Q = S

2
σp, (1.5)

thus
dQ

dt
= 1

2

(
dS

dt

)
σp + S

(
dθ

dt

)
π. (1.6)

Multiplying this expression from the left by σp and taking the trace gives

tr

(
σp

dQ

dt

)
= 1

2

(
dS

dt

)
tr(δ) + iS

(
dθ

dt

)
tr(σ2) = dS

dt
. (1.7)

Analogously we have that

tr

(
π

dQ

dt

)
= 2S

(
dθ

dt

)
, (1.8)

from which the hydrodynamic equations for S and θ are found in the form:

dS

dt
= tr

(
σp

dQ

dt

)
, (1.9a)

dθ

dt
= 1

2S
tr

(
π

dQ

dt

)
. (1.9b)
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Thus, the general hydrodynamic equations of section 2 can be finally recast as follows:

∂tv = ∇ · σ, (1.10a)

[∂t + v · ∇]S = [
λS u + Qω − ωQ + γ −1H

]
σp

, (1.10b)

[∂t + v · ∇]θ = 1

2S

[
λS u + Qω − ωQ + γ −1H

]
π

(1.10c)

[∂t + v · ∇]c = ∇ · [(D0δ + D1Q)∇c + α1c
2∇ · Q], (1.10d)

where we used the notation: [A]α = tr[α A].

Appendix B. Linearized system

In section 4.2 we discussed the linear stability of the homogeneous state and we gave an
expression for the matrix A01 of the linearized dynamics associated with the first unstable
mode. Here we give an expression for the generic Anm matrix. This can be written in the
block form:

Anm =
(

anm bnm

cnm dnm

)
, (2.1)

with

anm =




−2π2

L2
[2D0(n

2 + m2) + D1S0(n
2 − m2)]

4π2

L2
α1c

2
0(m

2 − n2)

c∗

4c0
S0 −4π2

L2
(n2 + m2) − c0S

2
0


 , (2.2)

bnm =




−8π2nm

L2
α1c

2
0 0

0
nm

n2 + m2
λS0


 , (2.3)

cnm =




0 0

2π2nmS0

c0L2
(4α2c

2
0 − λc∗S0)

8π2nm

L2
[α2c

2
0 − λ(c∗ − c0)S0 +

4π2λS0

L2
(n2 + m2)]


 ,

(2.4)

dnm =




−4π2

L2
(n2 + m2)

S0[n2(1 + λ) + m2(1 − λ)]

2(n2 + m2)

4π2

L2
α2c

2
0(m

2 − n2) − 16π4

L4
S0(n

2 + m2)

×[n2(1 + λ) + m2(1 − λ)] −4π2

L2
η(n2 + m2)




. (2.5)
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[31] Fielding S M, Marenduzzo D and Cates M E 2011 Phys. Rev. E 83 041910
[32] Cates M E, Fielding S M, Marenduzzo D, Orlandini E and Yeomans J M 2008 Phys. Rev. Lett. 101 068102
[33] Sokolov A and Aranson I S 2009 Phys. Rev. Lett. 103 148101
[34] Lau A W C and Lubensky T C 2009 Phys. Rev. E 80 011917
[35] Giomi L, Liverpool T B and Marchetti M C 2010 Phys. Rev. E 81 051908
[36] Saintillan D 2010 Phys. Rev. E 81 056307
[37] Saintillan D and Shelley M J 2007 Phys. Rev. Lett. 99 058102
[38] Saintillan D and Shelley M J 2008 Phys. Rev. Lett. 100 178103
[39] Ramaswamy S and Rao M 2007 New J. Phys. 9 423
[40] Sankararaman S and Ramaswamy S 2009 Phys. Rev. Lett. 102 118107
[41] Sanchez T, Dogic Z and Needleman D J 2010 private communication
[42] Giomi L, Mahadevan L, Chakraborty B and Hagan M F 2011 Phys. Rev. Lett. 106 218101
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