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The size, shape, and dynamics of cellular blebs
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Abstract – A cellular bleb grows when a portion of the cell membrane detaches from the
underlying cortex under the influence of a cytoplasmic pressure. We develop a quantitative model
for the growth and dynamics of these objects in a simple two-dimensional setting. In particular,
we first find the minimum cytoplasmic pressure and minimum unsupported membrane length for
a stationary bleb to nucleate and grow as a function of the membrane-cortex adhesion. We next
show how a bleb may travel around the periphery of the cell when the cytoplasmic pressure varies
in space and time in a prescribed way and find that the traveling speed is governed by the speed
of the pressure change induced by local cortical contraction while the shape of the traveling bleb
is governed by the speed of cortical healing. Finally, we relax the assumption that the pressure
change is prescribed and couple it hydrodynamically to the cortical contraction and membrane
deformation. By quantifying the phase space of bleb formation and dynamics, our framework
serves to delineate the range and scope of bleb-associated cell motility.

Copyright c© EPLA, 2012

Introduction. – Blebs are protrusions of a cell
membrane driven by local variations in intracellular
pressure induced by contractility and are commonly seen
in many types of cells. Blebbing is closely related to
an elementary mechanical process —the formation of a
blister in a thin film adherent to a substrate, but also
rather different in that it involves a number of active
processes: active (and regulated) contractile stresses that
drive the process, as well as active mechanisms associated
with bleb healing via forces at the boundary. Cellular
blebbing is an important mechanism contributing to
apoptosis, cytokinesis, and cell motility in normal and
pathological/cancer cells [1–6]. In the context of motility,
recent experiments [7,8] on various cell types show
that blebs arise as a result of homogenous intracellular
pressure change coupled with a global contraction of the
entire cytoskeleton. It has been further suggested that
bleb protrusions can cooperate with lamellipodium-based
protrusions to power cell motility [2,5], and cells can
switch between different motility modes depending on
their environment [4,6,9,10]. Thus the focus on actin
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polymerization-driven protrusions in lamellipodia and
filopodia on cell motility must be complemented by
considerations of contractility/pressure induced blebbing
before one can determine the relative contributions of
these modes for whole cell motility. Understanding bleb-
bing quantitatively is a first step in this process.
While there have been some previous theoretical
studies [11,12] on aspects of blebbing such as for forma-
tion time or growth, here we focus on a synthetic approach
that accounts for the nucleation, expansion, retraction,
and large scale movements of blebs, with the aim of
providing a qualitative theory presented as a series of
phase diagrams. A bleb is nucleated when the local hydro-
static pressure generated by cortical contraction causes
the cell membrane to detach from the cortex. Cytoplasmic
pressure and flow then drive the expansion of a bleb.
This is accommodated by further delamination of the
cell membrane from the cortex, flow of lipid into the bleb
through the bleb neck, and unwrinkling of excess folded
membrane. Eventually, the bleb expansion slows down as
the driving contractile pressure is relieved, and the actin
cortex starts to reform underneath the bleb membrane
and the bleb heals. In non-motile cells, myosin-driven
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contraction of the reformed cortex retracts the bleb, while
in motile cells, contraction of the rear of a cell leads to a
net movement of the cell body towards the leading edge
where the bleb is formed. Sometimes an asymmetric refor-
mation of the actin cortex leads to bleb movements around
the periphery of a cell [13]. During this last process, the
actin cortex is reformed asymmetrically on one side of the
bleb and its contraction pushes the cytosol to the other
side of the bleb, leading to delamination of the membrane
on the unconsolidated edge, and thence motion.

Model. – To quantify these phenomena, we focus on
a simple 2-dimensional model of the dynamics of a cell,
consisting of an active fluid —a contractile cortex bathed
in a Newtonian fluid, and surrounded by a membrane that
is detachable from the actin cortex. While our model can
be extended to three dimensions, here we limit ourselves
to the simplest geometry where we still can capture many
of the qualitative trends. We assume that the membrane is
one-dimensional and neglect its natural curvature, which
is reasonable for blebs that are small compared with the
size of the cell. In addition, we focus on a single bleb and
thus neglect bleb-bleb interactions, as well as the adhesion
of the bleb to any external scaffolds or substrates. For a
single bleb, denoting the distance between the detached
membrane and the cortex as y(x) at the position x, the
energy per unit width E(x, y, yx, yxx) of a piece of blistered
membrane y(x) is given by

E =

∫ sr

sl

(

B

2
y2xx+

T

2
y2x+

κ

2
y2− py−Ea

)

dx, (1)

where (.)x =d(.)/dx, and the limits of integration sl,r
define the left and right boundaries of the bleb, which
are possibly dynamic. The various terms in the integrand
denote, respectively, the bending energy of the membrane
with flexural rigidity B, the work done by the in-plane
membrane tension T , the binding energy of the adhesive
bonds between the membrane and the cortex with spring
constant κ, the work done by the cytoplasmic pressure p,
and finally the adhesion energy between the membrane
and the cortex. For consistency, the spring constant κ
must be related to the adhesion energy Ea by κ= 2Ea/l

2
c ,

with lc the maximum length of the membrane-cortex
adhesion bond, with the condition that when y(x)� lc, the
adhesion bond at x breaks. The Euler-Lagrange equation
derived from (1) for the shape of the bleb is then given by

Byxxxx−Tyxx+κyH[1− y/lc]− p= 0, (2)

where H[a] = 1, a� 0;H[a] = 0, a < 0 is the Heaviside
function. In general, the cytoplasmic pressure p is
non-uniform owing to local variations in the cortical
contractility, and due to the healing of the actin cortex
after the bleb is formed. Here, we assume that local corti-
cal contraction is the main contribution to the change
in pressure and bleb formation consistent with observa-
tions of the non-equilibration of local hydrostatic pressure

during cell blebbing and the fact that the actomyosin
cortex behaves as a active poroelastic network whose
contractility leads to an increase in pressure [2,13,14]. We
prescribe the pressure as a localized traveling pulse given
by

p(x, t) =Πexp

(

−
(x− vπt)

2

x2π

)

, (3)

where Π, vπ, and xπ denote the magnitude, traveling
speed, and width of the pulse, respectively. This form
decouples actin reformation in the bleb from the changes of
cortical contractility, a constraint that we will relax later
on. If vπ > 0, the pressure variations as well as the bleb
boundaries sl,r are time dependent.
Completing the formulation of the problem for the
formation and dynamics of a bleb, the boundary condi-
tions associated with eq. (2) are

y|sl,r = yx|sl,r = 0 (4)

as well as

B

2
(yxx)

2|sl −Ea =−μ

(

dsl
dt
− vH−

)

(5)

for the left boundary and

B

2
(yxx)

2|sr −Ea = μ

(

dsr
dt
+ vH+

)

(6)

for the right boundary, where vH− and vH+ are the active
cortical healing speeds at the left and right boundaries
of the bleb. These conditions effectively assume that the
dominant dissipation mechanisms are associated with the
movement of the contact lines, with μ the associated
dynamic viscosity, and follow by balancing the variational
derivative of the energy in eq. (1) with the relative velocity
of the contact line due to passive mechanical forcing.
Our model equations can be made dimensionless by
introducing a characteristic length scale

√

B/T , velocity
scale T/μ, and energy scale B so that (2)–(6) read

yxxxx− yxx+KyH[1− y/yc] = P exp

(

−
(x− vpt)

2

x2p

)

,

(7)

y|sl,r = yx|sl,r = 0, (8)

1

2
(yxx)

2|sl −J = −

(

dsl
dt
− vh−

)

, (9)

1

2
(yxx)

2|sr −J =

(

dsr
dt
+ vh+

)

. (10)

with the dimensionless parameters J,K, yc, P, xp, vp, vh±
listed in table 1. As stated earlier, in general, P =
P (vp, vh±), although we will start by assuming that P
is not dependent on the contractility or rate of healing.
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Table 1: Dimensionless parameters in the model described by eqs. (7)–(10) and their values.

Symbol Description Dimensional description Value

J membrane-cortex adhesion energy Ea/T 1

K membrane-cortex spring constant κB/T 2 5000

yc critical length of membrane-cortex spring lc/
√

B/T 0.02

P magnitude of the cytoplasmic pressure Π
√

B/T 3 100–150

xp width of the pressure pulse xπ/
√

B/T 1–10

vp speed of the pressure pulse μvπ/T 0–20

vh± cortex-membrane healing speed μvH±/T 0–20

Physiologically, the material parameters J,K, and yc
are properties of adhesion molecules such as the Ezrin,
Radixin and Moesin (ERM), proteins which are known
to be key regulators of membrane-cortex interactions and
signaling [15]. Thus, modifying the density of these ERM
proteins in a cell will change the value of J , whereas
modifying the sequence of the proteins may change their
adhesion strength and rest length and hence K and yc,
respectively. On the other hand, the parameters related
to the localized traveling pressure pulse, P, xp, and vp
are governed by the actomyosin contractile activity in
the cortex; for example, modifying the motor density
affects both P and xp whereas modifying the actin and
actin crosslinker density changes P, xp, and vp. Finally,
the healing speed vh± is governed by the rate of actin
polymerization in the cortex. For our calculations, we
assume the parameter values as listed in table 1, chosen
to correspond to physiological values of B ≈ 10−19 J [13],
T ≈ 10−6N/m [13], μ= 10−2 Pa s, Ea ≈ 10

−6N/m, κ≈

1011N/m
3
, lc ≈ 10

−9m, Π ≈ 100Pa, xp ≈ 10
−6m, and the

speeds vp and vh± ∈ [0–10
−4] m/s.

To understand the behavior of the solutions to
eqs. (7)–(10), we solve them numerically with initial
conditions sr − sl = 2 (10

−7m in dimensional terms) and
y(x, t= 0) = 0 for all x, using a second-order centered
finite difference scheme in space and a forward Euler finite
difference scheme in time. The time-step and the grid-size
used are dt= 1× 10−4 and dx= 0.025, respectively.

Results and discussion. –

Stationary blebs. In the static case when vp = vh± = 0,
we study the nucleation and growth of a bleb as a function
of the scaled pressure magnitude P and its spatial extent
xp. A bleb forms when membrane-cortex adhesive bonds
are broken over a finite length, i.e., y� yc for some x∈
(sl, sr). The phase diagram of stationary bleb nucleation
in P −xp space is shown in fig. 1, with a phase boundary
for bleb formation given by the curve xp ∼ (P −P0)

−α,
in terms of a critical pressure P0 and exponent α, which
depends on the membrane flexural rigidity B. We find
that α→ 1 when xp≫ 1, or equivalently, B/T ≪ x

2
π in

dimensional terms, consistent with prior predictions [13].
In this limit, a scaling theory [13] also predicts that the
critical pressure for bleb nucleation P0 = 2J/yc, a relation
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Fig. 1: Phase diagram of stationary bleb formation when
vp = vh± = 0. Critical values of the pressure width xp and
the pressure magnitude P necessary for bleb formation are
found to obey xp ∼ (P −P0)

−α with P0 = 123.2 and α= 0.59.
When only large values of xp > 3 are considered (where bending
energy can be neglected), the exponent approaches unity,
namely α= 0.73, as previously predicted [13]. The inset shows
numerically calculated P0 as a function of adhesion energy J
with yc kept constant. These numerical results agree well with
the prediction P0 = 2J/yc. Several bleb shapes are also shown.

we also validate numerically (fig. 1, inset). Sample bleb
shapes shown in fig. 1 confirm that both the width and
the height of a stationary bleb increase with P and with
xp, as expected. We note the shapes of the blebs are less
circular than actual cellular blebs; this is a reflection of our
assumption of a minimal Cartesian geometry and small
membrane curvatures.
If we now let vh± > 0 but keep vp = 0, we observe
that a bleb grows and equilibrates into an asymmetric
shape (except when vh+ = vh− in which case it grows
into a symmetric shape). Traveling blebs do not result
from asymmetric cortical healing because the intracellular
pressure is decoupled from cortical healing in this first
model. When we relax this assumption later, we find that
traveling blebs can indeed be sustained by asymmetric
healing alone.
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Traveling blebs. We now consider the case vp > 0
and P >P0 when blebs become non-stationary. For conve-
nience, we will set vh+ = 0 and henceforth talk only of the
relative healing speed vh = vh−. A sample numerical calcu-
lation of a traveling bleb is shown in fig. 2(a), (b), obtained
by solving eqs. (7)–(10) for parameter values that allow for
bleb nucleation. We see that a bleb first grows and moves
in the direction of vp; its shape eventually equilibrates and
it travels at a constant speed given by vp. However, not all
traveling blebs can be sustained. In some instances, blebs
cannot be formed or retract as they travel, even if P >P0.
The traveling bleb decays when either i) vh is large, so
that the trailing edge catches up with the leading edge of
the bleb, or ii) vp is large so that the leading edge has
a tearing rate that lags behind the location of the pres-
sure pulse. To understand this, we consider the boundary
conditions eqs. (7)–(10) in a frame moving with speed vp.
We see that increasing vp has the same effect as increasing
the adhesion energy at the leading edge while increasing
vh has the same effect as increasing the adhesion energy at
the trailing edge. Since a bleb can be sustained at equilib-
rium only when P >P0, where P0 is an increasing function
of the adhesion energy J , a high value of either vp or vh
will shift P0 to a larger value, i.e., P0 ∼ 2(J + vp,h)/yc,
by such an extent that the bleb eventually decays. In
other words, there is a critical value of the healing speed
vp,h ∼ P − 2J/yc above which blebs become extinct. These
results are summarized in fig. 2(c), where we show two
types of non-stationary blebs in the 3-dimensional phase
space of P , vp, and vh, those that travel and those that
decay.
For steady traveling blebs, our numerical simulations
show that their speed is vp is independent of vh, deviating
only in the initial stages of bleb growth. Furthermore
for a given traveling speed, the shape of the bleb is
determined by vh; a symmetric bleb exists only when
vp = vh/2. To understand this, we consider eqs. (7)–(10)
in a moving frame with speed vp. Then the boundaries

move at speeds dsl/dt=− (yxx)
2
/2|sl +J − vp+ vh and

dsr/dt= (yxx)
2
/2|sr − (J + vp) leading to a traveling bleb

with speed vp and boundary curvatures (yxx)
2
/2|sl =

J − vp+ vh and (yxx)
2
/2|sr = J + vp. We see that the bleb

shape is symmetric when vp = vh/2, and confirmed by
numerical simulations. Our assumption of cortical healing
only along the bleb edges cannot capture the observed
crumpling of the bleb membrane on retraction as we do
not have a cortex along the entire blabbed membrane.
However, our minimal model is sufficient to capture the
qualitative trends in both the growth rates and traveling
speeds.

The role of a non-local pressure. In eq. (7), we
assumed that the localized perturbation for the pressure
field is independent of other variables. In reality, it is
coupled to the cortical contraction and healing as well as
the shape of the cell membrane, as suggested by many
experiments [2]. To account for this coupling, we consider
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Fig. 2: (a) Kymograph showing a traveling bleb obtained from
eqs. (7)–(10) with vp = 1.2 and vh = 0.6 showing that the
traveling speed is constant; (b) Snapshots of instantaneous bleb
shapes at t= 1 (dotted line), t= 2.5 (dashed line), t= 8 (dash-
dotted line), and t= 15 (solid line). The parameter values used
were P = 130.8, xp = 9.0, vp = 1.2, vh = 0.6 and the remaining
parameter values as listed in table 1. (c) Phase diagram
demarcating steadily traveling and decaying phases in terms
of the speed of pressure change vp, speed of cortical healing vh,
and magnitude of pressure pulse P . Traveling regimes (shaded
regimes) for P = 132.5, 135, 137.5, and 140 are plotted. The
traveling speed of a bleb is indicated by the grayscale. The
solid lines mark the boundaries between the two phases on
the P planes. When P is increased, the boundary between the
steadily traveling and decaying phases is shifted outwards.

the interaction of the intra- and extra-cellular fluid with
the cell membrane and solve for the pressure field instead
of prescribing it as an independent parameter. For relative
simplicity, we assume that the other parameters associated
with local cortical contraction and actin reformation,
namely vp, xp, and vh, remain fixed. In the context of
this minimal hydrodynamic coupling model, we consider
a two-dimensional cell immersed in an incompressible
viscous fluid, with the same viscosity as the cytoplasm,
and enclosed by an elastic membrane uniformly adhered
to a permeable but rigid actin cortex through soft Hookean
springs; a schematic of the model is shown in fig. 3.
Initially, the cell membrane and the cortex are assumed
to be circular, with the membrane (cell) given by
rm = rm0r̂ and the rigid cortex given by rc = rc0r̂. The
membrane-cortex adhesive springs are uniformly distrib-
uted and uniformly stretched. This configuration gives
rise to a uniform positive intracellular pressure. Next, we
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Fig. 3: (Color on-line) Schematic of the model incorporating
non-local pressure. The position of the cell membrane rm is
solved from eqs. (12)–(15) with the forces due to membrane
bending fb, membrane tension ft, membrane-cortex adhesion
fad as shown. The inner circle of radius rc denotes the cortex
contracting with fc, and the dashed lines denote membrane-
cortex adhesion.

assume that there is a slow global cortical contraction of
the cell prescribed as rc(t) = rc0 [1−G (1− exp(−t/τ))]
where G is the magnitude of global contraction and
1/τ characterizes the speed of contraction. This global
contraction generates a high uniform intracellular pres-
sure that nucleates and expands a bleb when the active
cortical contractive body force

fc(θ, t) =L exp

[

−A

(

1− cos

(

θ−
vct

rc0

))]

r̂, (11)

of magnitude L and size ∼ 1/A, translating with speed vc
in the angular direction becomes large enough.
The presence of a localized body force fc results in a

non-uniform pressure field p(r) and velocity field u(r) in
the fluid, which can be deduced from the two-dimensional
scaled Stokes equation and the equation of continuity

∇p=∇2u+ f , (12)

∇·u= 0, (13)

where f is the total body force due to cortical
contraction and membrane motion. We parameter-
ize the cell membrane in the deformed configuration
rm(ζ) = (x(ζ), y(ζ))

T with ζ = [0, Lm] where Lm is the
perimeter of the membrane. The motion of the membrane
at position rm is determined from the no-slip boundary
condition imposed on the Stokes equation, i.e.,

um =
drm
dt
. (14)

The permeable rigid cortex that supports the cell
membrane is assumed to be in a position such that at any
time t, the net force experienced by the cortex is zero.
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Fig. 4: (a) Kymograph showing a traveling bleb obtained from
the Stokes model, with vc = 1.2 and vh = 2.0; (b) snapshots of
instantaneous bleb shapes at t= 2 (dotted line), t= 12 (dashed
line), t= 22 (dash-dotted line) and t= 32 (solid line). The
parameter values used were J = 1, K = 20, L= 4, A= 400, τr
= 0.25, vc = 1.2 and vh = 2.0. (c) Phase diagram demarcating
steadily traveling and decaying phases in terms of the speed of
the localized contraction vc, speed of cortical healing vh, and
magnitude of the local contractile force L. Traveling regimes
(shaded regimes) for L = 4, 4.5, and 5 are plotted. A bleb is
successfuly formed only when L> 3.35. The traveling speed of
a bleb is indicated by the grayscale. Two traveling regimes are
identified: i) a regime in which the traveling speed equals vc
(regime I characterized by low vc) and ii) a regime in which
the traveling speed is independent of vc but is dependent on
vh (regime II characterized by high vc). In the vh-dependent
regime, the traveling speed of a bleb is low but increases
with increasing vh. As vc further increases, this vh-dependent
regime gets narrower and eventually vanishes at a high enough
vc. When L is increased, the boundary between the steadily
traveling and decaying phases is shifted outwards.

Furthermore, a spring is assumed to break if the spring
energy exceeds the membrane-cortex adhesion energy J
(i.e., if the length of the spring is greater than the critical
length yc); this detachment of membrane from the cortex
results in the nucleation of a bleb. The total body force
f(r) in eq. (12) is the sum of the forces from membrane
bending, membrane tension, membrane-cortex adhesion,
and cytoskeletal contraction, i.e., and is given by

f(r) =

∫ Lm

0

[fb(rm)+ ft(rm)+ fad(rm)] δ(r− rm) dζ

+

∫ Lc

0

fc(rc)δ(r− rc) dζ, (15)
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where rc = rc(ζ), Lc is the perimeter of the cortex and
δ(r) is the two-dimensional Dirac delta function. In terms
of the bending energy density Eb = γ

2/2 with curva-
ture γ = (x′y′′− y′x′′)(x2+ y

′2)−3/2, the stretching energy

density Et = ǫ
2/2 with strain ǫ=

√

x′2+ y′2− 1, and the
membrane-cortex spring constant K, the bending force,
tensile force, and adhesive force can be evaluated in a
straightforward way. We then use a boundary integral
method with regularized Stokeslets [16] to solve the result-
ing equations eqs. (12)–(15), while the shape of membrane
is determined using a forward Euler scheme.
Then bleb growth and dynamics follows by consider-
ing membrane-cortex detachment as a function of the
cortical pressure, and tracking the bleb boundaries until
membrane-cortex adhesion reformation, as dictated by
eq. (8). We set the membrane-cortex adhesion and refor-
mation to start at one boundary at a time τr after local
cortical contraction occurs to prevent membrane-cortex
adhesion immediately after initial membrane-cortex
detachment and allow for bleb growth; τr thus determines
the initial patch size sr − sl|t=0 in eqs. (8)–(10) in
nucleating the bleb.
Our non-local model also leads to steadily traveling
blebs as shown in fig. 4(a), (b). Here, a bleb travels along
with the local contraction speed vc. In fig. 4(c), we show
the region in phase space spanned by vc and vh for steadily
propagating blebs and find two regimes. In regime I, shown
in fig. 4(c), the speed of a bleb vb = vc, in good agreement
with the linear model. In regime II, shown in fig. 4(c), the
bleb speed depends on the speed of the the healing edge
vh. This occurs when the localized contractile body force
is relatively small but its speed vc is relatively large. For a
given rate of edge healing vh, the transition from regime I
to regime II takes place when the contraction speed vc is
so high that the bleb lags behind cortical contraction and
the process is dominated by healing.

Conclusion. – Our minimal description of the many
phenomena associated with the onset, growth, dynamics,
and extinction of blebs takes the form of a simple theory
for the active deformations of a thin membrane partially
attached to a substrate, captured in eqs. (7)–(10). Bleb
growth and motion are determined by the dynamics
of detachment of the cell membrane from the underly-
ing actin cortex through the competition between the
membrane bending energy and the membrane-cortex
adhesion energy, coupled through a localized pressure
term that models cortex contractility. When the pressure
pulse is time independent, a bleb may grow and equili-
brate into a stationary bleb. However, as the cytoplasmic
pressure induced by local cortical contraction becomes
dynamic, so does the bleb. When the pressure pulse
associated with cortical contraction is independent of

membrane deformation, the resulting linear theory is
consistent with and complements earlier scaling predic-
tions [13], while characterizing the formation and motion
of blebs in terms of an experimentally relevant phase
diagram.
We also consider a more complete theory where
the contractility generated fluid pressure is coupled to
membrane deformation through flow while also account-
ing for the cortical healing dynamics. We find that when
local contraction dominates healing and the relative
contribution to the pressure from hydrodynamic causes is
small, the uncoupling of pressure from the other variables
is reasonable. However, when the contractile forces are
relatively small, we get active blebbing waves that persist
because of a combination of passive hydrodynamics and
active contractility for a moving boundary problem,
consistent qualitatively with experiments. Our study sets
the stage for bleb driven motility, wherein asymmetric
forces associated with polarized blebbing can lead to the
motion of whole cells when coupled with the dynamics of
adhesion.
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