
PHYSICS OF FLUIDS 25, 024101 (2013)

Dissolution-driven convection in a Hele–Shaw cell
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Motivated by convection in the context of geological carbon-dioxide (CO2) storage,
we present an experimental study of dissolution-driven convection in a Hele–Shaw
cell for Rayleigh numbers R in the range 100 < R < 1700. We use potassium per-
manganate (KMnO4) in water as an analog for CO2 in brine and infer concentration
profiles at high spatial and temporal resolution and accuracy from transmitted light
intensity. We describe behavior from first contact up to 65% average saturation and
measure several global quantities including dissolution flux, average concentration,
amplitude of perturbations away from pure one-dimensional diffusion, and horizon-
tally averaged concentration profiles. We show that the flow evolves successively
through distinct regimes starting with a simple one-dimensional diffusional profile.
This is followed by linear growth in which fingers are initiated and grow quasi-
exponentially, independently of one-another. Once the fingers are well-established,
a flux-growth regime begins as fresh fluid is brought to the interface and contami-
nated fluid removed, with the flux growing to a local maximum. During this regime,
fingers still propagate independently. However, beyond the flux maximum, fingers
begin to interact and zip together from the root down in a merging regime. Several
generations of merging occur before only persistent primary fingers remain. Beyond
this, the reinitiation regime begins with new fingers created between primary exist-
ing ones before merging into them. Through appropriate scaling, we show that the
regimes are universal and independent of layer thickness (equivalently R) until the
fingers hit the bottom. At this time, progression through these regimes is interrupted
and the flow transitions to a saturating regime. In this final regime, the flux gradu-
ally decays in a manner well described by a Howard-style phenomenological model.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790511]

I. INTRODUCTION

Geological carbon-dioxide storage has the potential to be a near-term implementable technol-
ogy that diverts atmosphere-bound anthropogenic CO2 emissions into underground storage.1 The
proposal is to capture CO2 from point sources (e.g., fossil-fuel burning power stations), purify it,
compress it, and store it at depths of 1 to 3 km beneath the Earth’s surface. At this depth, the (su-
percritical) CO2 (of density 600 to 700 kg m−3) is positively buoyant relative to resident brine (of
density ∼ 1000 kg m−3). The CO2 rises through permeable rock until it reaches an impermeable bar-
rier, along which it spreads laterally to form a roughly horizontal pool of CO2 overlying brine. Being
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slightly soluble, CO2 then gradually dissolves into the surrounding brine, initially purely through
diffusion, to generate a layer of brine containing aqueous CO2 at the interface. Upon achieving
sufficient thickness, this negatively buoyant layer becomes gravitationally unstable and convective
overturning commences.2, 3 By forcing fresher fluid to the CO2-brine interface and thus sharpening
concentration gradients, convection substantially enhances the dissolution flux.

Here we study the dissolution process from first contact between CO2 and brine through to
almost complete saturation. Because the subsurface geological conditions are not readily simulated
in a laboratory, we use an analog experiment in a Hele–Shaw cell with an idealized geometry of a
horizontal boundary between solute and water and a horizontal, impermeable lower boundary. As
our solute we use potassium permanganate (KMnO4), which closely mimics relevant CO2 properties
and for which we can readily infer concentration from color intensity. The relevant dimensionless
parameter for this process is the Rayleigh number

R = H K�ρg

φDμ
, (1)

where K = d2/12 is the effective permeability with d the Hele–Shaw cell gap size, φ = 1 is the
effective porosity, �ρ = ρsat − ρ0 is the excess density of KMnO4-saturated water (of density ρsat)
over pure water (of density ρ0), μ viscosity, D diffusivity, g gravity, and H the cell height. We present
results for 100 < R < 1700.

Before we describe our study, it is useful to compare and contrast recent studies investigating
convection in this context. On the experimental side, Kneafsey and Pruess4 presented results for
R = 40, 75, and 370 for CO2 and water at 4 MPa in a Hele–Shaw cell and quasi-2D porous
medium. They reported onset of convection, measured by the flux beginning to deviate from pure
diffusion, as the dimensional time (φμ/K�ρg)2 Dtflux, with 48 < tflux < 177 (note that tflux is
dimensionless in the advection–diffusion scalings of Sec. II). In the large R limit, Neufeld et al.5

investigated behavior for 5 × 104 < R < 6 × 105 in a quasi-2D porous medium and Backhaus et al.6

considered convection for 6000 < R < 9 × 104 in a Hele–Shaw cell. Both studies used pairs of fully
miscible fluids that have a density maximum at an intermediate mixing ratio. Both observed and
focused on an intermediate-time regime in which the dissolution flux appears steady. They found
that a dimensionless measure of the mass flux characterized by the Sherwood number S follows
S = 0.12R−0.16 and S = (0.045 ± 0.025)R−0.24±0.06, respectively, where

S = μ

K�ρgcsat
F, (2)

with F the mass flux and csat the mass of solute per unit volume of saturated solution. Backhaus
et al.6 also described the dynamics of finger merging and reinitiation and reported wavenumber
selection in time. Related experiments on finger formation in miscible Rayleigh–Taylor mixing are
described by Wooding7 and Fernandez et al.8

On the theoretical side, several studies have focused on predicting convective onset for the same
idealized geometry that we consider (see Rees et al.9 for a review). Studying onset is challenging
because the base state of pure diffusion evolves in time and so standard linear stability approaches
are inapplicable. A lower bound for the time at which perturbations can grow (the first time at
which the mean-square difference between the observed distribution of dissolved CO2 and the pure
diffusion solution can grow) is provided by Slim and Ramakrishnan.10 For R < 32.50, convection is
impossible. For R ≥ 32.50, onset occurs after a dimensional time (φμ/K�ρg)2 Dtamp, where tamp

= 110 for R = 32.50 decreasing to tamp = 47.9 for R � 75 (tamp is dimensionless in the advection–
diffusion scalings of Sec. II). Neither this bound, nor other estimates for the onset of convection
based on particular initial conditions (for example, tamp = 75 for a “white noise” initial condition11)
or approximate techniques (for example, tamp = 146 for a “dominant-mode” analysis12) have been
verified experimentally.

Finally, a number of computational studies exist,12–14 for which instability is sparked by spatial
white noise in the initial concentration profile,12 through spatial white noise in the porosity and
permeability,14 or by numerical round-off error alone.13 Descriptions have primarily focused on
relatively early times (before fingers hit the base). Onset times (as measured by flux deviation) range
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from13 tflux = 500 to14 tflux = 3670. A steady flux regime was identified by Pau et al.14 in which
S = 0.017 to 0.018 independent of R.

Here we build a detailed description of convective dynamics and characterize several global
measures from inception up to 65% saturation. In particular, we describe the flux throughout:
initially it decays diffusively as 1/

√
t , before arriving at a local minimum at the convective flux-

onset, growing again to a local maximum, and then gradually decaying. We present a new theory
for the flux shortly after convective fingers impact the layer bottom based on a Howard-style
phenomenological model15, 16 and find it closely matches observations. Our experimental system
permits easy and detailed inference of concentration profiles and we use this to present further
global measures of the flow: the horizontally averaged concentration profile, from which we justify
the Howard approach, and the amplitude used in theoretical studies of onset. The latter provides a
first experimental confirmation of such studies, showing that the lower bound10 is reasonably tight.

We start by describing the relevant scalings for the problem in Sec. II and then introduce the
experimental setup in Sec. III. We then describe results for an experiment without convection in
Sec. IV, observing close agreement with an error function similarity profile. This serves as a check
against theory while also allowing us to infer the diffusivity D. In Sec. V, we describe a convection
experiment from first contact through to almost complete saturation and quantify global measures
and local properties of the flow for a range of Rayleigh numbers. Finally, in Sec. VI, we summarize
our findings into a delineation and detailed description of the distinct convective regimes. We close
with a brief discussion of how to relate our principal results to realistic CO2-sequestration conditions.

II. LENGTH AND TIME SCALES

The primary physical processes in CO2-dissolution are advection and linear diffusion of solute
at a relatively low concentration (Péclet numbers are 10−6 to 10−3 in realistic formations and so
Taylor dispersion is negligible10). Ignoring heterogeneity and secondary processes such as possible
geochemical changes, this simple system has just a few relevant scales. We focus briefly on these
scales here and identify their relative importance.

The relevant velocity scale is that with which a fully saturated parcel falls in an otherwise
unsaturated medium,

U = K�ρg/μ,

while the two relevant length-scales are the distance over which advection and diffusion balance,

L = φD/U ,

and the layer thickness H. The three time-scales are (i) the time for advection or diffusion over
the characteristic distance L, TL = φL/U ; (ii) the time for advection over the whole domain,
TH = φH/U ; and (iii) the time for diffusion over the whole domain, TD = H2/D.

At early times, when convection is localized close to the KMnO4-water interface and away from
the lower boundary, the layer thickness is irrelevant and the important scales areL and TL. We denote
quantities scaled by this combination by subscript L and refer to them as the advection–diffusion
scalings. We use the concentration at saturation csat to rescale the concentration field.

In contrast, at late times, after convective fingers have impacted the base, the scales H and
TH become increasingly important. We denote quantities non-dimensionalized by this combination
by subscript H and refer to them as the layer-thickness scalings. We again use csat to rescale the
concentration field.

The only dimensionless parameter is the ratio of the two length-scales H/L, which is readily
seen to equal the Rayleigh number R given in Eq. (1). In the advection–diffusion scalings, the
Rayleigh number is the dimensionless layer thickness. Thus at early times, when KMnO4 is far from
the bottom boundary, we anticipate that behavior should be universal (parameter-independent) in the
advection–diffusion framework. In the layer-thickness scalings relevant later, the Rayleigh number
acts as a dimensionless inverse diffusivity.

Neither of our combinations correspond to the classical choice of scales H and TD; indeed the
classical combination does not allow for a good collapse of the data in any regime. We suggest that the
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time-scale of diffusion over the layer thickness is irrelevant in convection and only appropriate for thin
layers, where diffusion always dominates and convection is limited or impossible, or for very long
times after convection has ceased (see also Hidalgo and Carrera17 and Slim and Ramakrishnan10).

III. EXPERIMENTAL SETUP

Our experimental design was guided by a few key objectives: (i) finding a good mimic for
CO2, with a relatively low solubility, a relatively low excess density, and a linear dependence of
density on dissolved concentration; (ii) easy visualization; (iii) observation of onset, in other words
a sufficiently long diffusive regime before convection starts; and (iv) minimizing three-dimensional
effects such as Taylor dispersion.

To meet these requirements, we used KMnO4 in water as an analog for CO2 in brine, with mass
fraction at saturation wsat = 0.067 and �ρ = 46 kg m−3 (interpolated to the experimental ambient
temperature of 23.4 ◦C from the relations given by Soehnel and Novotny18) compared to19 wsat up
to 0.07 and �ρ up to 30 kg m−3 for CO2 at reservoir conditions. We inferred concentrations to
high accuracy and resolution from transmitted light intensity motivated by the Beer–Lambert law.
The experiments were performed in almost horizontal (0.1◦ − 0.3◦ inclination) Hele–Shaw cells to
reduce the effective gravity and slow the dynamics so that onset of convection took tens of minutes.
To limit three-dimensional effects, we ensured the gap d satisfied d � 2L. We can approximate the
combined effect of diffusion and dispersion in our system by the Taylor–Aris dispersion coefficient20

for (symmetric) flow in a planar channel, D + (1/210)(d/L)2 D in our nomenclature, taking the
average channel speed as the extremal value U . When d � 2L, diffusion significantly dominates
dispersion. In the closely related problem of miscible Rayleigh–Taylor fingering in a vertical Hele–
Shaw cell, Fernandez et al.8 show experimentally and theoretically that d � 10L is required for
diffusion to dominate dispersion. For our tilted cell, the restriction is presumably tighter owing to a
counter-flow across the gap being easier to establish.

Our experimental setup is shown in Figure 1. The cell comprised two soda-lime glass plates
9.4 mm thick and 250 ± 10μm apart, with the gap maintained by precision brass shims along the
sidewalls. The lower plate had a short strip of thinner glass attached to its top. The top of the upper
plate was aligned with the top of this attachment to form a well with a depth of 5 mm and height
of 12 mm. A fine, 316 stainless steel mesh of nominal screen size 37μm was placed in this well to
hold KMnO4 particles. The lower glass plate had a sharp edge in contact with the mesh (indicated
as “sharp” in Figure 1(b)). This interface between the KMnO4 particles and convection domain was
effectively impermeable to convective fluid flow. The cell heights used were 38, 89, and 190 mm
and the width was 280 mm.

Potassium permanganate was inserted in the well, to a layer thickness of at least 5 mm, as a
barely wet paste to ensure neither particles nor solution would penetrate beyond the mesh during
assembly. The paste was pressed down firmly into the well and left to dry in a fume hood for at least
four hours. The remainder of the well was then filled with modeling clay and the whole cell sealed
with silicone along the edges, except for a small air release on the opposite side of the water inlet
(see Figure 1(a)).

To start an experiment, the cell was placed on three supports, one fixed and two adjustable
through micrometers. The cell was horizontally levelled to within 0.02◦ using a Starrett 98 precision
level and then the micrometer controlling the lower support (labelled 1 in Figure 1) adjusted to
achieve the desired angle. The cell was then removed from the supports to fill with de-ionized water.
This was done with the cell oriented vertically on the short edge having the water inlet, with water
injected over a period of 1–2 min, ensuring the mesh and KMnO4 wet fully. Once the cell was filled,
the air release was sealed with vacuum grease. This seal appeared sufficient to avoid significant
evaporative losses over the several-day duration of an experiment.

The cell was then returned to the supports, ensuring no change in the inclination occurred. Data
collection then began, with an LED light tablet illuminating the cell from below and a Nikon D90
digital SLR (single lens reflex) camera collecting images from above. The data acquisition rate was
a four-image burst every 60 s at early times and every 300 s at late times. The four images were
averaged to reduce pixel noise. The camera, LED tablet, and supports were held in place rigidly
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FIG. 1. (a) Plan view of the Hele–Shaw cell and (b) side view of the complete experimental setup (not to scale).

so that their relative positions were fixed. The entire apparatus was enclosed in a shroud to reduce
background light and air currents (the latter to reduce temperature variations). Owing to sensitivity
of the saturation concentration and excess density on temperature, we also recorded spot values
of the temperature on the upper plate. The temperature was found to be 23.4 ± 0.5 ◦C (with the
variation occurring within an experiment).

Table I gives the parameters for each experiment (the height of the cell and the angle to the
horizontal) together with the scales L, TL, and TH, and the parameter R.

A. Intensity–concentration calibration

Our goal was to characterize the spatio-temporal KMnO4 concentration in the Hele–Shaw cell.
To do so, we calibrated the concentration of KMnO4 to the transmitted light intensity, averaging 16
images of the cell containing a prescribed-concentration solution. To account for inevitable minor
spatial inhomogeneity in the light tablet’s intensity, each averaged image was divided pixel-by-pixel
by the corresponding pure-water image, thus providing a uniform value across the cell to within
pixel noise. Extracted red, green, and blue channel values are shown in Figure 2. To infer low
concentrations, we used the green channel (mass fraction w < 0.006); for higher concentrations we
used the red channel. Sensitivity in the red channel at very high concentrations (w > 0.04) is limited
and our accuracy is reduced. The error in the inferred concentration is less than 2.5% for w < 0.04.
For w > 0.04 it increases to about 10%. Fortunately, only relatively small areas of the cell have such
high concentration.

We note that the blue channel appears to be the best choice for higher concentrations; however,
during an experiment this channel gradually reduced in intensity because of a slight but progressive
rust-colored staining of the glass. The red and green channels appeared unaffected by this. At the
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TABLE I. Experiment names, symbols, and parameters. Symbols are (sd) for short-dashed, (ld) for long-dashed, and (s)
for solid. Errors in θ are ±0.02◦ and in H are ±1 mm. To evaluate L, TL, TH, and R, we take D = 1.65 × 10−9 m2 s−1,
�ρ = 46 kg m−3, and K = d2/12 = 5.2 × 10−9 m2 as described in Secs. III and IV, together with g = 9.81 m s−1 and
μ = 9.2 × 10−4 Pa s. Errors inL and TL are approximately 20%, 10%, and 7% for angles 0.11◦, 0.21◦, and 0.33◦, respectively
(principally due to the error in θ ). Errors in TH are twice this percentage. Asterisks (*) denote experiments with a small
bubble at the interface.

Sym θ (deg) H ( mm) L (μm) TL ( s) TH ( s) R

Dec13 s 0 190
Dec07* sda 0.11 38 330 67 7700 110
Jan14* sda 0.11 38 330 67 7700 110
Jan06 sa 0.11 190 330 67 38 000 570
Dec29 sdb 0.21 38 180 19 4100 220
Dec18* ldb 0.21 89 180 19 9500 510
Dec21 sb 0.21 190 180 19 20 000 1100
Dec22 sdc 0.33 38 110 7.6 2600 340
Jan11 ldc 0.33 89 110 7.6 6000 790
Dec30* sc 0.33 190 110 7.6 13 000 1700

aBold red online/bold print.
bGreen online/light gray print.
cBlue online/dark gray print.

end of each experiment, the cell was disassembled and the staining readily removed with hydrogen
peroxide.

To calculate the local concentration c = ρ(w)w (as a mass of solute per unit volume of solution)
and hence the total dissolved mass and dissolution flux, we assume the system is relatively dilute
and take ρ(w) = ρ(0). This resulted in an error of at most 3% in the mass in the longest-running
experiments (less than the error due to lack of sensitivity in the concentration near saturation) and a
negligible error in the flux. We opted for this because the error is insignificant and the mass fraction
very marginally gives the better fit to the error function discussed in Sec. IV.

B. Limitations

A few limitations arose in our setup that we were unable to correct for. Bubbles would occa-
sionally form on the mesh, even though it is nominally hydrophilic. If this occurred, then even for
small bubbles the concentration field could be locally distorted away from the one-dimensional pure
diffusion profile. Such experiments are marked with an asterisk in Table I. In these, behavior after
onset appeared consistent with that for other experiments, however amplitudes (see Sec. IV A and
Sec. V A 1) could not be obtained reliably. A second concern is the role of the corners in the

FIG. 2. The red (�), green ( �), and blue (•) channel concentration–intensity relationships, together with the curve fits used.
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Hele–Shaw cell. On the side that was at the bottom during filling, a larger pool of high concentration
KMnO4 solution could collect, while on the side that was at the top during filling, imperfect filling
into the corner could result in a slight lag of the concentration profile. Finally, once high concentra-
tion fluid reached the bottom of the cell, bubbles would appear there. We speculate that this resulted
from air trapped in the polish-groove of the upper plate (labelled “polished” in Figure 1(b)) balling
up in response to the increase in surface tension.

IV. THE PURELY DIFFUSIVE STATE

We first describe a horizontal, pure-diffusion experiment where we compare the observed
concentration profile with the analytic solution to check for non-linear diffusion and to infer the
diffusivity.

Let z be the coordinate perpendicular to the KMnO4-water boundary, directed into the KMnO4

and with origin on the boundary. Then the pure Fickian diffusion profile following the step-change
in concentration at the boundary at time t = 0 is

cdiff = csat[1 + erf(z/2
√

Dt)], z < 0 (3)

for constant diffusivity. The corresponding total dissolved mass per unit area of KMnO4-water
interface m(t) (for brevity, we henceforth omit to state “per unit area,” taking it as understood) and
dissolution mass flux F(t) are

m =
∫ 0

−H
cdiff dz = 2csat

√
Dt/π, (4a)

F = D
∂cdiff

∂z

∣∣∣∣
z=0

= csat

√
D/(π t), (4b)

respectively. Later, in the convection experiments, we will use the definitions m = ∫
V c dV/W,

where V is the volume of the cell and W its cross-sectional area, and F = dm/dt to estimate the
dissolved mass and dissolution flux.

Figure 3 shows the concentration profile along a z-transect of the cell at times from 5 min to
5 days after initial KMnO4-water contact, together with the total dissolved mass. Fitting the function
f (t) = 2

√
Dt/π to the latter allows us to infer a diffusivity D = 1.65 ± 0.05 × 10−9 m2 s−1. Here

we take the inception time to be when the dissolved mass extrapolates to zero. This is in close
agreement with the time of filling; however, because the filling process takes a finite time and
introduces an anomalous initial dissolved mass of KMnO4, we prefer to use the extrapolated time.

Using this value for D, we compare the observed concentration profile with Eq. (3) in
Figures 3(a) and 3(b). We find excellent agreement, except at very high concentrations c > 0.05
where red-channel sensitivity is diminished and our accuracy is concomitantly reduced. This sug-
gests that nonlinear diffusion is unimportant. The diffusivity obtained is in excellent agreement
with the Nernst formula prediction21 based on electrical neutrality of a simple salt at infinite di-
lution, D = 1.70 ± 0.02 × 10−9 m2 s−1 at 23.4 ◦C (adjusting the value of 1.78 × 10−9 m2 s−1 at
25 ◦C to ambient experimental temperatures). It is also broadly consistent with literature values, but
surprisingly contradicts previous suggestions of a strong concentration dependence.22, 23

A. Amplitude of the concentration field

To quantify the approach to, or deviation from, the pure-diffusion solution Eq. (3), we plot the
perturbation amplitude in Figure 3(d). This is measured as

A(t) = 1

W

∫
V

(c − cdiff)
2 dV, (5)

the mean-square of the difference between the observed concentration profile and the theoretical
solution associated with pure diffusion. Here again we take the initial time as the time at which the
dissolved mass extrapolates to zero; using the time of starting to fill the cell or the time-stamp of
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FIG. 3. Horizontal, pure diffusion experiment. The concentration profile along a z-transect for times t ≈ 5 min, 1 h, 5 h,
38.5 h, and 120 h in (a) dimensional and (b) similarity form. (c) Dissolved mass per unit interfacial-area. In (a)–(c), the thin
solid curves are experimental results and the bold dotted curves are the analytic pure diffusion solutions Eqs. (4) and (3).
(d) Amplitude of perturbation away from pure diffusion (solid curve) together with an estimate of the measurement-error
amplitude (dashed curve).

the first recorded image does not perceptibly alter the plot. There are two sources of amplitude: the
actual difference c − cdiff and the measurement error in c. The dashed curve in the plot provides an
estimate of the measurement-error contribution to the amplitude based on the error in the inferred
concentration at each pixel. This error grows commensurately with the extent of the diffusion layer.

We observe an initial rapid decay of the amplitude during which the observed profile approaches
the error function solution ever more closely. After about 1.5–2 h, the amplitude increases by a factor
of about 2.5 before leveling off. We attribute this partly to the solution taking up a larger fraction
of the cell, and thus more measurement error contributing, and partly to edge effects (the diffusion
layer profile is slightly polluted in the two upper corners). This amplification is significantly less
than observed in the convection experiments in Sec. V A 1.

In summary, we see that the error function profile for pure, linear, Fickian diffusion is very
well reproduced in a horizontal experiment, with a diffusivity in good agreement with the Nernst
formula.

V. CONVECTIVE FLOW

While diffusion is the dominant transport mechanism when the Hele–Shaw cell is horizontal, a
very small tilt (of order 0.1◦ − 0.3◦) qualitatively changes the dynamics: then, following a transient
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FIG. 4. “Jan11” convection experiment. Snapshots of the concentration field at times t (tL, tH) after inception (a) 155 s (12,
0.016), (b) 20 min (160, 0.20), (c) 40 min (320, 0.40), (d) 90 min (710, 0.90), (e) 2 h (960, 1.2), (f) 8 h 15 min (3900, 4.9),
(g) 25 h 15 min (12 000, 15), and (h) 45 h (21 000, 27). Solid curves in (a)–(f) are the 0.05csat contour. Insets show in (b) a
vertical concentration slice at various times (thin solid curves) together with the analytic solution Eq. (3) (bold dotted curve),
in (e) an early merger (at intervals of approximately 15 min, 120L, 0.15H), and in (g) a merger of a reinitiated finger (at
intervals of 1 h, 470L, 0.60H). The solid curves are the 0.05csat contour. White spots are air bubbles (except along the left
boundary where the camera was obscured).

diffusively dominated regime, we see convection. Before quantifying and analyzing local details and
global measures across all experiments, we first describe the behavior in an exemplar experiment
at a relatively high Rayleigh number of R = 790. Figure 4 shows an image sequence depicting the
evolution from almost first contact between the KMnO4 and water to an average concentration of
0.65csat over three days.

The first image shows the initial concentration distribution. It is perturbed weakly at rela-
tively long wavelength by inhomogeneities introduced during filling. This initial perturbation is
rapidly smoothed away by diffusion (Figure 4(b)), and the resulting profile appears almost indepen-
dent of the cross-cell coordinate x and is reasonably well described by the error-function solution
Eq. (3) (inset to Figure 4(b)). Eventually, a hint of corrugations appears in the diffusion layer
(Figure 4(c)) with a relatively uniform wavelength. These nascent fingers grow and become clearly
defined (Figure 4(d)).

During this initial growth stage, the fingers grow independently of one another and propagate
vertically at the same speed with little lateral motion. However, gradually fingers begin to interact
(Figure 4(e)). The tips continue to propagate straight downwards, but the roots start to migrate
towards one another. Eventually pairs of roots merge and the fingers zip together. If one finger is
substantially shorter than the other, then it may be subsumed completely (inset to Figure 4(e)), or
one of the fingers may channel the majority of the flow while the other is starved and gradually
diffuses away. This process then repeats for subsequent merging events (up to five generations in
this example). Occasionally, three fingers merge. We suggest that mergers occur when fingers reach
a length commensurate with their spacing and their velocity fields start to interact. When a pair of
fingers are close together, the return upflow generated by one finger is opposed by the downflow
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generated by its neighbor. If a pair is slightly closer to each other than to their neighbors on either
side, then less upwelling fresh fluid can penetrate between them than flows on either side. The fresh
fluid rising up outside the pair rises up to the interface, where it spreads laterally and pushes the pair
together.

Eventually, the first fingers impact the base of the cell (Figure 4(f)) and spread along it locally
as a gravity current of dense fluid, leading to gradual saturation with KMnO4.

Thus far the flow has evolved as a series of merging events between the fingers initiated at
the onset of convection, with the elongating fingers progressively becoming more widely spaced.
The fingers themselves become increasingly dishevelled through interactions; however, between
finger roots there is a relatively uniform diffusive boundary layer. Eventually, mergers of primary
fingers stops. However, reinitiations begin to occur between primary fingers (Figure 4(g)). The new
finger forms as a growing bulge on the boundary layer between primary fingers and propagates
into and merges with a primary finger at speeds between 0.9 and 2μm s−1. Multiple generations of
reinitiation and merging can occur between the same primary fingers. We suggest that reinitiation
events commence when the inter-finger spacing is such that the time taken to traverse the distance
between upwelling and downwelling is enough for perturbations to grow to macroscopic size. The
complete history of finger initiation, merging, and reinitiation is shown in a space–time plot in
Figure 5(a) for a slice 4 mm beneath the KMnO4-water interface.

As the layer saturates, the intensity of convection is reduced, however some motion, finger
reinitiation, and merging continues (Figure 4(h)).

For other inclination angles and cell sizes, the observed behavior is similar; for smaller (larger)
angles, the dynamics are slower (faster) and fingers fatter (skinnier) in such a way that, on rescaling
using the advection–diffusion scales L and TL, the dynamical behavior appears identical at early
times across all experiments. How much of the behavior at later times are observed depends on
the dimensionless layer thickness R, effectively determining how much of the dynamics can be
accommodated before the fingers impact the base. For the lowest R, we observed at most a single
generation of mergers, while for increasing R we see multiple mergers; for R � 300, we begin to
see reinitiation events.24

A. Global measures of convection

Turning to quantitative measures, we plot the amplitude, dissolution flux, total dissolved mass,
and horizontally averaged concentration profile against time for the exemplar experiment described
above in Figure 5.

1. Amplitude

The amplitude (the mean-square difference between the observed concentration profile and
that of pure diffusion) is again calculated according to Eq. (5) as described for the pure diffusion
experiment in Sec. IV A. Since amplitude growth captures the formation of incipient fingers, it
provides an early indicator of convection. Initially the amplitude drops rapidly before reaching a
local minimum after approximately 20 min. Through this time, the profile conforms increasingly
to the error function (inset to Figure 4(b)), while shortly afterwards, corrugations become visible.
The amplitude then starts to grow quasi-exponentially, corresponding to the formation and growth
of fingers. A sudden reduction in the growth rate occurs after about 150 min, corresponding to
nonlinear amplitude saturation (in the sense of perturbations interacting). This occurs well before
fingers impact the base.

Figure 6 shows the evolution of the amplitude for all experiments in which no significant
bubbles were present at the interface. (Bubbles at the interface, occurring in experiments marked
with an asterisk in Table I, result in a local lack of solute and so the profile does not adjust to
the x-independent pure diffusion solution everywhere, polluting this measure of onset.) Although
the time of minimum amplitude varies widely in dimensional units, using the advection–diffusion
scalings, we find that the transition time from diffusion to convection collapses fairly well and
occurs at tL ≈ 60 to 160, close to the theoretical earliest possible onset time10 of 47.9 and consistent
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FIG. 5. “Jan11” convection experiment. Temporal behavior of (a) the concentration profile along the horizontal slice
4 mm below the KMnO4-water interface, (b) the amplitude (the lower curve is a lower bound, subtracting the estimated
measurement-error amplitude), (c) dissolution flux and dissolved mass per unit interfacial-area (the bold dotted curves are
the analytic, pure diffusion solution Eqs. (4)), and (d) horizontally averaged concentration profile as a function of z. Contours
in (d) are at intervals of 0.1csat from 0.05csat. Left panels show early times; right panels show the full time history. For the
flux, circles are raw time-differentiated mass data and the curve is a smooth interpolation.

with the “white noise” initial condition of Ennis-King and Paterson.11 The quasi-exponential growth
regime also collapses fairly well with the advection–diffusion scalings, with the growth rate being
consistent with the value calculated for the “white noise” initial condition11 and the maximum
amplification of Rapaka et al.25 (Figure 6(b)), albeit with a tangible dependence on the details of the
initial perturbation. These experiments appear to be the first verification of the theoretical stability
predictions for time-dependent, diffusively dominated base states.
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FIG. 6. Amplitude against time for all convection experiments without bubbles at the interface in (a) dimensional and
(b) advection–diffusion forms. In (b), the bold dotted line at t = 47.9 is the theoretical lower bound on onset time. The second
dotted line is proportional to e0.008tL , an excellent fit to both the maximum amplification25 across all horizontal wavenumbers
and the growth of “white noise” initial conditions11 for horizontal wavenumber kL = 0.05 and for tL � 200 and R ≥ 100.

2. Flux

The quantity of greatest practical significance is the dissolution flux, shown in Figure 5(c) as a
function of time for our exemplar experiment. Initially, the flux decays diffusively as 1/

√
t . However

after approximately 70 min, a rapid transition occurs and the flux begins to increase as convection
brings fresher water close to the interface. This is after fingers have formed but before nonlinear
amplitude saturation and well before fingers hit the bottom. The flux then briefly increases to a local
maximum at 170 min, shortly after nonlinear amplitude saturation but still before fingers hit the
base, before gradually decaying. The first mergers are roughly synchronous with this maximum.

Figure 7 shows the flux for all experiments in both dimensional and dimensionless forms, using
both the advection–diffusion and layer-thickness scalings. The trends described in the previous
paragraph carry over to all experiments; initially they all show a 1/

√
t decay before a sharp shift

from this behavior associated with the onset of convection. The times for this shift are reasonably
uniform when non-dimensionalized by the advection–diffusion scalings and occur at tL ≈ 400 to 700.
A flux increase then occurs to a local maximum at tL ≈ 800 to 1400, before progressively decaying,
maintaining a reasonable collapse with the advection–diffusion scalings for early times. We suggest
that the remaining variability is due to variations in the initial perturbation and experimental error. At
later times, the collapse becomes poor and a much better collapse is obtained with the layer-thickness
scalings, beyond tH ≈ 7.

3. Horizontally averaged concentration field

To understand the flux better, we also consider the horizontally averaged concentration field,
shown in Figure 5(d) for our exemplar experiment. For a short time, the profile appears purely
diffusive, though after 70 to 80 min, the diffusive boundary layer starts to thin and dissolved KMnO4

starts to extend further from the interface. This process happens as fingers drag contaminated
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FIG. 7. Flux against time across all convection experiments in (a) dimensional, (b) advection–diffusion, and (c) layer-
thickness formulations. In (a), the bold dotted curve is the analytic, pure diffusion solution Eq. (4b). In (c), the bold dotted
curve is the late-time phenomenologically derived scaling Eq. (9c). Fluxes have been smoothed to improve readability.

water further from the interface and bring fresher water closer to the interface (observe also the
lower concentration, lighter patches appearing in the space-time plot Figure 5(a) at around 100 to
200 min). The latter sharpens the effective boundary layer gradient at the interface and so increases
the flux of KMnO4. An overshoot in the flux is observed because it takes time for the fingers to
amplify sufficiently to strip dense material from the interface effectively. While the fingers grow,
the diffusion layer thickens beyond its unstable value (achieved at amplitude onset) so that the flux
drops below what it would have been if fully developed fingers formed instantaneously. However
once fingers are fully formed they strip this excess dense material from the interface to establish a
thinner diffusive boundary layer between fingers, with a concomitant increase in the flux.

Eventually, the horizontally averaged concentration field at the bottom of the cell begins to
increase when fingers first make impact there. The concentration is now slightly higher at the base as
gravity currents spread along it. However gradually a profile is established in which the bulk of the
cell has a z-independent horizontally averaged concentration with a boundary layer at the interface
that progressively thickens (Figure 8).



024101-14 Slim et al. Phys. Fluids 25, 024101 (2013)

FIG. 8. Horizontally averaged concentration profile against vertical coordinate for the “Jan11” experiment at times t = 13.5,
26.0, 51.1, 63.6, and 76.1 h in the direction of the arrow (tH = 8.0, 15, 30, 38, and 45). Fingers first impact the base of the
cell at t ≈ 10 h (tH ≈ 6). The bold dotted profiles are the bulk concentration estimates from the phenomenological relation
Eq. (9a).

4. A minimal model for the flux

Using these last observations, we adapt the Howard phenomenology15, 16 for thermal convection
to the time-dependent solutal-convection case and characterize the flux at late times. Using the
layer-thickness scaled variables, we assume that the bulk of the fluid has a uniform concentration
cbulk(tH ) and that there is an upper boundary layer with a linear concentration gradient and thickness
δ(tH) (see Figure 8 inset). Then the total dissolved mass is

m H (tH ) = cbulk + 1

2
δ(1 − cbulk) (6)

and the flux into the system is

FH (tH ) = 1

R
1 − cbulk

δ
= dmH

dtH
. (7)

A key physical ingredient of the theory is the assumption that the boundary layer always has critical
thickness for convection: if the boundary layer is thinner, then it is stable and thickens by diffusion,
whereas if the boundary layer is thicker, then perturbations grow, convective plumes strip away
material, and it thins. Thus

R(1 − cbulk)δ = Rc. (8)

The value of Rc is not clearly defined in the analysis: a naı̈ve estimate would be Rc = 4π2,
the critical Rayleigh number for steady convection in a layer with impermeable boundaries and
prescribed concentrations at top and bottom.26 The analysis of Slim and Ramakrishnan10 yields a
minimum value Rc = 13.8, with an error function profile for the boundary layer, however this does
not account for upflow between fingers stabilizing the boundary layer. Here, we use the ad hoc value
Rc = 20, which agrees well with simulations for thermal convection in a porous medium.16

Combining Eqs. (6)–(8), we obtain the ordinary differential equation

dcbulk

dtH
= 1

Rc
(1 − cbulk)2,
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FIG. 9. Dissolved mass per unit interfacial-area against time across all convection experiments in (a) dimensional and
(b) layer-thickness forms. The thick, dotted curve in (a) is the analytic, pure diffusion solution Eq. (4a) and in (b) is the
late-time phenomenologically derived scaling Eq. (9d), omitting the Rc/2R term.

with the solution

cbulk = tH

Rc + tH
, (9a)

δ = Rc + tH

R , (9b)

FH = Rc

(Rc + tH )2
, (9c)

m H = cbulk + Rc

2R . (9d)

Here we have taken cbulk = 0 at tH = 0. This provides a good description of the late-time flux
(Figure 7(c)), the horizontally averaged concentration profile (Figure 8), and the total dissolved
mass (Figure 9).

5. Landmark times

Figure 10 gives a summary of landmark times across all experiments in the two different
scalings. We find the advection–diffusion scalings appropriately collapse the amplitude onset and
nonlinear amplitude saturation and the flux minimum and maximum to within inter-experiment
variability and measurement error. The flux maximum and first mergers (not plotted for clarity but
occurring at tL ≈ 600 to 1600) coincide to within variability and error. The layer-thickness scalings
are, unsurprisingly, appropriate for times at which fingers extend halfway and the full height of the
cell, and the average saturation reaching 50%. Fingers reach half-way down the cell at tH ≈ 4 and
hit the bottom at tH ≈ 7 ± 2. The latter is also when the flux begins to collapse better with the
layer-thickness scalings. A saturation of 50% is reached at tH ≈ 20 to 25.
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FIG. 10. Landmark times. (a) Amplitude onset (+), flux onset (�), flux maximum (�), and nonlinear amplitude saturation
(×) in advection–diffusion scalings. (b) Fingers half-way down the cell (�), fingers impacting bottom (�), and 50% average
saturation (�) in layer-thickness scalings. Finger location measures are taken when the horizontally averaged concentration
reaches 0.05csat at that location.

B. Local measures of convection: Wavelengths and finger velocities

Our discussion thus far has focused primarily on global variables. We now turn to smaller-
scale features of the flow, starting with the wavelength defined as the average distance between
concentration peaks. In Figure 11, we show the wavelength for all experiments using the advection–
diffusion scalings. Initially, fingers have the relatively short wavelength λL ≈ 60 to 110, reasonably
close to the stability theory prediction λL ≈ 120. Some of the experimental undershoot may result
from incorrectly identifying small bumps as true fingers. This wavelength is set by a competi-
tion between horizontal diffusion smoothing short waves and insufficient dense material having

FIG. 11. Wavelength in time in the advection–diffusion framework across all convection experiments. The bold dotted curve
is the stability theory prediction10 λL ≈ 120. Experimental wavelengths are defined as the average distance between peaks
on a horizontal slice 4 mm beneath the interface.
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FIG. 12. Vertical fingertip locations against (a) time and (b) horizontal coordinate in the advection–diffusion framework for
the “Jan 11” experiment. In (a), the bold dotted line is zL = 0.2tL; the inset shows the same plot logarithmically and includes
the curve zL = −2.5

√
tL.

accumulated to drive long waves.10 As has already been described, it subsequently coarsens through
mergers.

In Figure 12, we also follow the behavior of the fingertips in the advection–diffusion scalings,
defining the tips as local minima of the 0.05csat contour. Initially, all fingers behave similarly and
fall in a diffusive fashion as approximately zL = −(2.5 ± 0.5)

√
tL until tL ≈ 600, corresponding to

the time of minimum flux. This further emphasizes that earlier behaviour is still primarily diffusive,
superposed with relatively small amplitude perturbations. After this time, behaviors diverge, with
some fingers accelerating and achieving an almost constant speed while others decelerate further and
may even retreat. The fastest fingers descend with a speed of approximately 0.2L all the way to the
bottom, often with surprisingly little retardation before impact. These pioneers have relatively little
lateral motion (Figure 12(b)). In contrast, slower fingers are often significantly deflected; they may
merge laterally with neighbors or retreat. In the advection–diffusion framework, the same scenario
is observed for all experiments; in particular, the initial diffusive scaling and maximum velocity
appear universal.

VI. SUMMARY AND CONCLUSIONS

We have presented a high spatial and temporal resolution experimental study of dissolution-
driven convection in a Hele–Shaw cell from first contact between KMnO4 solute and water solvent
through to 65% saturation. We described dynamical details and quantified global measures through-
out the evolution. Our work confirms features of earlier experimental and numerical studies, but also
goes beyond them in providing details of the dynamics at both a local and global level in a single
unifying, universal framework through the advection–diffusion scalings (based on the distance over
which advection and diffusion balance) and shows that aspects of the behavior can be captured by a
simple coarse-grained Howard-style model.

We can summarize our results into a discussion of six reasonably distinct regimes, shown
schematically in Figure 13. The first four of these are understood in terms of the advection–diffusion
scaling and the last is understood in terms of the layer-thickness scaling (in which the layer thickness
is the dominant length scale). The scalings appropriate for the penultimate regime are as yet unclear.
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FIG. 13. Summary of the six distinct regimes as a function of Rayleigh number and advection–diffusion time.

1. Initially, there is a diffusive regime in which the concentration profile is close to a one-
dimensional diffusive error function. The flux decays as 1/

√
t .

2. When time in the advection–diffusion scalings satisfies tL ≈ 60 to 160, the flow transitions to
a linear growth regime in which the mean-square of the difference between the observed
concentration profile and the error function starts to grow and rapidly achieves quasi-
exponential growth. Convective fingers grow independently of one another with little or no
lateral motion and tip positions evolve as zL ≈ −(2.5 ± 0.5)

√
tL. The time of transition, growth

rate, and the observed wavelength λL ≈ 60 to 110 are in reasonable agreement with theoretical
stability analyses.

3. The flow then enters a flux growth regime in which the flux begins to deviate significantly from
pure diffusion at tL ≈ 400 to 700 and grows to a local maximum at tL ≈ 800 to 1400. Note
that this flux-onset condition is intermediate between previously reported experimental results4

and simulations.12–14 This inherently nonlinear phenomenon does not occur until the fingers
are well defined. Fingers begin to accelerate, however they still have little lateral motion.

4. The flow next transitions into a merging regime, with neighboring fingers zipping together
from the root downwards, suggesting a secondary instability. The first mergers occur roughly
concurrently with the flux maximum and can continue for at least five generations. During this
regime the flux gradually decays.

5. Next, there is a reinitiation regime. Once primary fingers are sufficiently widely spaced, no
further annihilation appears to occur, however new fingers form (reinitiate) between them.
These immature fingers are rapidly swept into primary fingers by the intervening upflow.
Subsequent reinitiations tend to occur further from the attracting primary than the first. This
regime is qualitatively similar to that observed for classical thermal convection in a porous
medium.27, 28 Throughout, the flux gradually decays. Unfortunately, we have limited data on
this regime because we either did not run the relevant experiment to conclusion (the “Dec
30” experiment) or R was not large enough for this regime to be well-established prior to the
bottom boundary influencing the dynamics.

6. After fingers impact the bottom, at tH ≈ 7 ± 2, the flow enters a saturating regime. Beyond this
time the layer-thickness scalings apply. Progressively the flow adjusts so that the horizontally
averaged concentration field becomes vertically uniform in the bulk with a progressively
broadening upper boundary layer. The decaying flux is now well-described by a modified
Howard-style phenomenology.

The behavior described is universal across our experiments in the intrinsic advection–diffusion
scalings (in which the layer thickness only appears as the dimensionless location of the lower
boundary) until fingers impact the base, at which point the progression through the advection–
diffusion regimes is interrupted. Thus how much of the picture is observed depends on R, the
dimensionless layer thickness, and single parameter of the problem. Our smaller R experiments
barely reach the merging regime; the reinitiation regime is observed for R � 300.
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A number of intriguing questions remain. Although we postulated explanations, why precisely
does merging begin and end and why do reinitiations begin? Why does the coarse-grained Howard
description work so well? How universal is the early collapse and when precisely do transitions
between regimes occur and for which Rayleigh number are they observed? For larger R than we
obtained, there is also the potential for further regimes between merging and saturating (which in
turn might affect the nature of the saturating regime), such as the apparent constant flux regime
observed5, 6, 14 at very high R.

Our setup provides an analog for dissolution-driven convection in an ideal, homogeneous porous
medium. As such, it is expected to provide lower bounds on dissolution rates and upper bounds on
time scales for the CO2 dissolution process in a real, heterogeneous formation.11, 29, 30 A result of
particular interest is the phenomenological description of the flux, providing a first step towards a
dissolution-rate parameterization for reservoir-scale simulators where convection is a sub-grid-scale
process. However, in this application it is also necessary to understand how robust the results are
in conjunction with concurrent supercritical CO2 evolution, as well as the nature of the boundary
dividing the two-phase region from the underlying convecting brine layer. Hence significant work
is still required.
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