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To characterize the diversity of planar shapes in
such instances as insect wings and plant leaves, we
present a method for the generation of a smooth
morphometric mapping between two planar domains
which matches a number of homologous points. Our
approach tries to balance the competing requirements
of a descriptive theory which may not reflect
mechanism and a multi-parameter predictive theory
that may not be well constrained by experimental
data. Specifically, we focus on aspects of shape as
characterized by local rotation and shear, quantified
using quasi-conformal maps that are defined precisely
in terms of these fields. To make our choice optimal,
we impose the condition that the maps vary as
slowly as possible across the domain, minimizing
their integrated squared-gradient. We implement this
algorithm numerically using a variational principle
that optimizes the coefficients of the quasi-conformal
map between the two regions and show results for
the recreation of a sample historical grid deformation
mapping of D’Arcy Thompson. We also deploy
our method to compare a variety of Drosophila
wing shapes and show that our approach allows
us to recover aspects of phylogeny as marked
by morphology.

1. Introduction

Relative growth processes in living systems lead
to changes in size and shape. Morphometry, the
measurement of shape, is often the first descriptive step
towards explaining the development and evolution of
form in animate and inanimate patterns. Morphometrics,
the quantitative study of shape differences between
homologous objects, analyses this in terms of a mapping
that quantifies the relative positioning of specific

(© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. An example of D'’Arcy Thompson’s theory of transformations implemented via a deformable grid. A Cartesian grid
superimposed on (a) Scarus is deformed in such a way that when superimposed on (b) Pomacanthus homologous points in each
fish have similar coordinates on the grid. Reproduced with permission from Thompson [1].

landmarks, point-like features in the shapes or on the boundaries of these structures. The
identification of such a mapping between two homologous shapes has its roots in the seminal
work of D’Arcy Thompson [1], who characterized a ‘theory of transformations” for a class of
planar projections of biological shapes in terms of a grid drawn over a particular shape and then
deformed to approximately fit a second, as seen in the example shown in figure 1.

Thompson’s ambitions for his grid method were twofold. Firstly, he aimed to uncover the
physical basis behind the deformation. In his words [1], once the transformation is known, ‘it
will be a comparatively easy task ... to postulate the direction and magnitude of the force
capable of effecting the required transformation’. The second aim was to ensure that the grid
deformation chosen was as elementary as possible while still matching homologous landmarks
in the grid coordinates. Thompson further said that whatever process caused the deformation, ‘it
is essential that our structure vary in its entirety, or at least that “independent variants” should
be relatively few’, citing Occam’s razor. Although Thompson provided no quantitative way of
calculating the transformations [2], early qualitative approaches included studies of amphibian
larval development and ceratopsian dinosaur skulls [3-5]. Additionally, the images of deformed
grids are useful in pointing out where two homologous structures most differ, using ink-dot
experiments on growing leaves [6] or in simulations of neurulation [7] provided. Stimulated
by D’Arcy Thompson, Medawar [8] proposed that the creation of deformation grids could be
standardized by assuming that the x- and y-coordinates were transformed according to allometric
scaling laws. However, this puts these axes in a privileged position; certainly for an arbitrary
shape comparison it is impractical to assume that there will be one set of axes that remains
orthogonal under the mapping between them. Sneath [9] also developed a method to calculate
a mapping based on the Cartesian grid, but in this case the coordinates of the destination grid
were polynomial functions of the source coordinates. The coefficients of the polynomials were
calculated to match landmarks under the mapping, and correspond to Thompson’s ‘independent
variants’. This appears to be the first method to compute mappings, but in essence it is a two-
dimensional analogue to a polynomial curve-fitting exercise with coefficients that are hard to
relate to local physical or biological quantities. One simple way of constructing a mapping
based on landmark data is to connect the points to form a triangular tessellation, and to
assume that the mapping is affine in each triangle: this is the finite-element scaling method [10].
A drawback of this mapping is that it is not unique, since there is no canonical way to
select the triangular tessellation.

Bookstein’s first studies [11] set out to calculate deformation mappings that ensured the
proper correspondence between the boundaries of the two structures. His initial calculations
approximated the shapes by simple polygons and calculated the correspondence using harmonic
maps, ignoring internal constraints. In a later study [12], he chose a mapping that minimized
the ‘roughness’ of the deformation subject to internal point constraints (equivalent to demanding
that the components of the deformation satisfy biharmonic equations with a point force at each
internal landmark). In both cases, the boundary correspondence was prescribed explicitly, by
interpolating landmark points on the boundary. Eventually, the idea of creating mappings that
were restricted to the interior of the shapes was abandoned in favour of the thin plate spline
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method [13], eliminating the distinction between boundary and interior landmarks, so that the
source and destination objects are defined solely by the positions of these landmark points. This is
analogous to the problem of finding the shape of a thin elastic plate, infinite in extent, constrained
to prescribed elevations at certain landmark points in the plane, and determined by the solution
of the biharmonic equation with a point force at each landmark point. To calculate the thin plate
spline mapping between the source and destination shapes, this equation is solved twice: for both
the x- and y-components of the deformation. Where landmark data on the boundary is sparse,
one may discretize it and use semilandmarks, whose variation is constrained to be tangential
to the boundary. This method has become ubiquitous in the field of morphometry, especially
because its linearity has led to a fruitful synthesis with widely used statistical methods, such as
kriging [14,15].

A complementary approach borrows ideas from image registration in medical applications
such as MRI and CATscans which involves constructing the deformation that would bring one
image in registration with another—precisely the original aim of Thompson. Such methods have
led to the field of pattern theory [16,17] and its relatives such as computational anatomy [18]
and have become essential tools for analysing images of highly complex organs, primarily
motivated by brain imaging and the calculation of variations in brain shape and the physical
characterizations of certain brain pathologies.

These mappings inspired by Thompson’s original grid deformation have usually concentrated
on only one of Thompson’s aims, namely the parsimony of the mapping, or at least that it should
be as simple as possible. The second aim, that the mapping should lead to insights into the
physical origin of the deformation, has been largely neglected, partly because of the assumption
that shape change is directly linked solely to genetic variation. While this is certainly true at one
level [19], it has also become increasingly clear that the genetic influence on morphogenesis is
mediated by a combination of both developmental and physical processes [20-23]. Indeed, rather
generally, there is increasing evidence in a variety of systems that during development, genes
influence the distribution of biochemical gradients, or morphogenetic fields [24], which could
in turn change the rate of relative growth and rheology of a developing tissue. A growth field
in linear elastic or viscoelastic materials, for instance, appears as a distributed body force in the
equations of equilibrium, providing a possible interpretation for Thompson’s use of the word
“force” in describing the physical basis of shape change, and this has become an area of increasing
study recently [25,26].

Thus, an ideal for morphometry is to provide a framework within which descriptive mappings
that characterize shape may be married to predictive models of the processes that underlie shapes.
Of the methods described earlier, the closest to this philosophy are the physics-based image
registration methods [27,28], containing distributed force fields as hypothesized by Thompson.
For instance, in the method of Bajcsy et al. [27], the source image is treated as an elastic
body which is deformed by means of a distributed body force, chosen so that the result
closely matches the destination image. Alternatively, Christensen et al. [28] treat the image
being deformed as a viscous fluid. Further examples are provided by Holden [29]. Modern-
day implementations of such physics-based registration often take the form of Lagrangian-based
deformation calculations [18], where the physics defines an energy satisfied by the (time-
dependent) deformation. The deformation is found by solving the partial differential equation
(PDE) arising from the minimization of this energy (subject to landmark preservation). However,
the mappings here are over the whole image in question rather than restricted to the deforming
object itself, so the elastic or viscous properties of the deformation cannot be interpreted as
belonging to the object. We may then ask if it is possible to balance the two goals set out by
D’Arcy Thompson, can we derive a simple mapping that allows us to efficiently compare shapes
while also providing a modicum of insight into the underlying physical processes?

Here we present a method to compare two homologous shapes (£29 and £21); we will limit
ourselves to two dimensions in terms of a mapping from £y to £7, with landmark points in
£20 mapped to the corresponding points in §2; both for mathematical simplicity, and because
there are many nice biological planforms where we can still deploy these methods fruitfully.
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Figure 2. A mapping between £2y and £2; can be described mathematically by a relationship between (u, v) and (x, y).
Points A—G are to be kept fixed under the mapping. Inset: definition of the boundary parameter 6. (Online version in colour.)

As desiderata, we would like our mapping to allow us to identify not just points in 29 and
the corresponding points in £21, but also interpolate between the landmark points. Furthermore,
given an infinitesimally small circle in §2y, its image under the mapping should tell us about the
nature of the mapping at that location: in general the image will be an ellipse, with its orientation
characterizing the local rotation, its eccentricity measuring the local shear and the change in
area relative to the original circle describing the local expansion or contraction of the material
at that point. Since the space of dilatations and shears, combined with rotations completely
describes the kinematics of growth and deformations, if our mapping reflects these measures,
they may be naturally correlated with predictive models of the shape difference between
.Q() and .Q].

Mathematically, our mapping between the domains £y and £2; should allow us to fix a
number of points along the boundary and in the interior of the domain, as shown in figure 2,
and are characterized in terms of the functions (u(x,y), v(x,y)) € £21, with (x,y) € £2¢. A predictive
theory of morphometrics would require some dynamical laws for these functions, reflecting their
material properties, the biochemical gradients that drive growth or shrinkage, coupled with the
balance laws for mass and momentum conservation. The genetic or evolutionary influence on
the shape changes is manifested through parameters in these equations. It is in the determination
of these parameters that Thompson’s parsimony requirement should apply (in contrast to the
previously cited models, which choose the deformation itself to be as simple as possible). Thus,
given a biophysical model, we seek the simplest parameter field that can explain the shape
change observed.

It is natural that our mapping between £y and £2; be a bijection, mapping the boundaries
to each other and preserving the positions of homologous landmarks, with some freedom
characterized by a dependence on an underlying parameter field, that encapsulates the influence
of evolutionary or genetic processes. In a complete description, these parameters and the mapping
would follow from genetics, biochemical and biophysical principles. In the more limited setting
considered here, our mapping should reflect as much of these desiderata as possible, and
our morphospaces should be described by parameter fields that are the simplest ones able to
characterize the difference between the shapes.

Quasi-conformal mappings are relatively simple mappings that satisfy the properties above:
they are not as rigid as conformal maps or thin plate splines in that they have free parameters,
indeed they have an entire function that is unknown, and yet they are relatively simple to
compute numerically. The equations governing such mappings incorporate a parameter field
which prescribes the orientation and eccentricity of local patches characterized in terms of
ellipses, and thus reflect the natural physical processes associated with planar tissue shaping, but
are not as complex as a complete description of the biophysics would entail in terms of material
rheology and relative growth rates as embedded in a continuum mechanical field theory. Given
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the freedom associated with the infinite choices of the parameter field that can describe any given
shape change, we postulate our choice of one based on a simple criterion: choose one that varies
spatially as little as possible, postulated as an optimization principle.

In §2, we set the stage by describing the basic properties of quasi-conformal maps that we
require. In §§3 and 4, we describe the construction of optimal quasi-conformal maps, while in §5,
we discuss a numerical method for their determination and present a number of examples that
illuminate our theory, drawn from D’Arcy Thompson’s work as well as recent work on insect-
wing shape.

2. A primer on quasi-conformal maps

We start with a brief summary of some of the properties of quasi-conformal maps that we need
for our exposition; a complete introduction can be found in the monograph of Ahlfors [30]. Quasi-
conformal maps were originally developed as a generalization of the well-known conformal maps
by relaxing the condition of conformality that does not allow for any shear deformations, and yet
still well suited to treatment by complex analysis. For a general mapping u = u(x,y), v =v(x,y)
between two planar regions, we may immediately write w=u +iv and z=x 4+ iy, so that the
mapping can be represented by w = w(z, z) where z = x — iy. For infinitesimally small regions of
(x,v) space, characterized by the differentials (dx, dy), the mapping becomes

du=uydx +uydy and dv=uvydx+uv,dy, (2.1)

which is an affine map that takes infinitesimally small circles to infinitesimally small ellipses,
with subscripts representing partial differentiation, i.e. a, = da/0b. Equivalently, we have dw =
w, dz 4+ w; dz, and so if an infinitesimal circle in £2 is represented as dz = drel?, then

dw = drel@*h)/2 [|wz\ exp (i (9 - (B ; oz))) + |wz| exp <—i <9 - (B ;a)))] , (2.2)

where w, = |w;|e® and ws = |ws|ef. This equation represents an ellipse whose long axis is at an
angle (« + p)/2 to the horizontal, and with a ratio of long axis to short axis given by

lws] + [ws

= ) 2.3
|wz| — wz| @3)

w
We note that Dy, =1 if and only if wz; =0, which are just the Cauchy-Riemann equations for
conformal maps wherein infinitesimally small circles are mapped to infinitesimally small circles.
We may write Dy = (1+ |u|)/(1 —|u]), where the quantity u =wz;/w, is often misleadingly
known as the complex dilatation or the first complex dilatation (misleading because in common
usage, ‘dilatation” commonly refers to area changes, whereas ;1 only encodes the eccentricity and
orientation of image ellipses), although we will persist with this usage. For later use, we also note
that the second complex dilatation is another important parameter, given by v =ws/(w,), with
Il = [v].

With these properties defined, a mapping w =w(z,2) is said to be quasi-conformal if Dy, is
bounded, and specifically it is called K-quasi-conformal if D, < K. It follows immediately that a
1-quasi-conformal map is a conformal map. This condition on Dy, naturally induces a condition
on |u| (and on |v]): we need |u| = [v| <M < 1 for the map to be defined as quasi-conformal, where
M= (K —-1)/(K+ 1). Two further properties of quasi-conformal maps that we will find useful are
(i) they can be composed to produce further quasi-conformal mappings; thus the composition
of a Kj-quasi-conformal and a Kj-quasi-conformal mapping is K1 K>-quasi-conformal, and (i) the
inverse of a quasi-conformal map is also a quasi-conformal map.

From the definitions of 1 and v, we obtain the following differential equations for w:

d _ 0 a _ (0
f?}:u(z,z)—w and —?:v(z,z)(—w
z 0z 0z

> e (2.4)

\._/
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known as the Beltrami equation and the conjugate Beltrami equation, respectively, whose
solutions (with the restriction on |u| or |v]) are quasi-conformal maps. We note that if p=v =0,
Dy =1 and hence the mappings are conformal—and indeed in this limit both the Beltrami
equations reduce to the Cauchy-Riemann equation dw/dz = 0.

While either of the equations in (2.4) can be solved to give a quasi-conformal map with the
desired shear properties, the conjugate Beltrami equation may be derived naturally from a simple
variational principle (presented in §4). This makes it amenable to solve (2.4),, given v and the
boundary of the image (9£21) using a Galerkin or finite-element method, and thus find a quasi-
conformal map from §2y to §£21. However, we must note the map will not be unique, as we can
always compose the computed map with a conformal map, which has three degrees of freedom,
and the composite map will have the same distribution of v. With this caveat, we may write
k(x,y) =NRW), A(x,y) =I(v), and thus the required quasi-conformal map solution as

u=u(x,y;«k,r;0821) (2.5)
and

v=uv(x,y;k, A 0821). (2.6)

3. Optimal quasi-conformal mappings

For quasi-conformal mappings between two homologous shapes that reflect both the descriptive
and the predictive properties desired in a morphometric measure, we note that the local shear
properties of the mapping are controlled by the parameter v =« + iA. If the landmark points in
20 are (%;,1/;) and are to be matched to (il;, 0;) in £2; (for i=1,...,N), then mathematically we
would like to find a distribution of « (x,y), A(x, y) for (x,y) € §2g such that

i =u(X;, Ji; 6, »; 0821) (3.1)
and

0 = vy, Pk, A5 0821) (3.2)

fori=1,...,N.

However, since « and A are continuous functions of (x,y) and the 2N constraints are discrete,
there will be an infinite number of possible quasi-conformal maps. To choose an optimal mapping
with characteristics that are mathematically regular and also biologically relevant still leaves us
with too many choices. For example, one such map is that of an extremal quasi-conformal map
that minimizes the maximum value of |v| = v/k2 + A2. In the absence of point constraints such an
optimization would lead to a conformal map (v = 0). With these constraints however, minimizing
the maximum value of a function over a domain is numerically problematic. To see why, we
note that the solution method proceeds by making trial changes in the values of ¥ and A at
discretized points in the domain. For most of these trial changes, max |v| is unchanged and so the
optimization scheme is unable to find an appropriate direction in which to search for a solution.
Another possibility is to consider minimizing [[[ (k? + 22)P/2 dS]V/P, which in the limit p — oo
would tend towards max+/«2 + 2. However, numerical experimentation indicates that optimal
solutions of such a process leads to mappings with |v| = const. almost everywhere, except in the
neighbourhood of the point constraints, where |v| has localized peaks near the point constraints,
which is unsatisfactory given that the choice of landmark points can be somewhat arbitrary. This
leads us to consider minimizing the gradient of v/«2 + A2, so that an optimal solution will have
constant |v| across the domain, and thus a constant local shear. This is indeed what we find;
however, the angle of shear would still vary greatly across the domain as it is not penalized.
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To prevent this, we finally settled on a proposal that the gradients of both « and A should be
minimized, giving rise to the following objective function:

I:H (Vi + [VA[2) dS. (3.3)
29

This suggests the following mathematical procedure: find « and A, defined on 2y, that minimizes
7 and satisfy the 2N point constraints (3.1) and (3.2). This requires us to find the mappings u, v
given the distributions of the functions «, A. Numerically, the solution is found in the following
way. Given a guess for « and 1, the quasi-conformal map is calculated, giving u and v, and hence
the destination of the landmarks under the mapping. Then the optimization procedure calculates
a new guess for ¥ and A based on minimizing 7 subject to the mapped landmark points being
coincident with their actual positions in the destination domain.

It is possible to replace the hard constraints of (3.1) and (3.2) by soft constraints of the
form x|it; — u(X;, §i; 6, 1; 0§21) |2 added to the objective functional Z. However, this would involve
making a choice of the parameter x, which would probably be a problem-dependent action.

4. Variational principle for quasi-conformal mappings

While quasi-conformal maps can be defined as solutions to a Beltrami equation, this does not
directly lead to a computational method of solution. One way to arrive at such a method is to
develop a variational principle, similar to that for conformal mappings [31] that can give rise
to the formulae (2.5) and (2.6) in weak form, which are amenable to numerical solution via,
for example, the finite element method. However, extending the conformal mapping methods
to quasi-conformal methods is not obvious. For example, while Mastin & Thompson [32]
minimized the functional ”S?o [aujzc + 2Buxuy + yuﬁ] dS, where «, g, y are related to p, together
with boundary conditions on 9£2p and showed that this was equivalent to solving the Beltrami
equations, this method works when the geometry of the original domain §2 is a rectangle, with
boundary conditions that were simple to implement. However, it is not immediately clear how
their method would extend to more general domains such as ours.

Here, we follow a method inspired by Garabedian [33], which does not suffer from this
defect, and follows from the observation that the inverse of the equation (2.4); follows from a
variational principle. Since the composition of two quasi-conformal maps is quasi-conformal,
the inverse to the solution of the Beltrami equation is also a quasi-conformal map, given by
the solution to a conjugate Beltrami equation. We start with the conjugate Beltrami equation
dw/0z = v(z,z)(dw/dz) which can be rewritten—usingw=u +iv,z=x+iyandv=« + ik —asa
system of PDEs:

3l ou
ay | (A B ox
_81 _(B C) al , 4.1)
ay x
where
k=12 422 42)
11— (k222 '
21
B=—————— 4.3
1— (k2 4+ A2) *3)
(c + 12 +22
d =, 4.4
an 1— (k2 +12) @4
Next, we consider the following functional:
1
F= Eﬂ [A|Vul?> + 2BVu - Vv + C|Vv|?] dS. (4.5)
20

Then, it follows that among all homeomorphisms (i, v) that map £2p to §21, those that minimize
F are also the solutions to the conjugate Beltrami system (4.1), as justified in appendix A.
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In order to obtain an expression for u and v from (4.5), we must obtain the Euler-Lagrange
equations associated with the extremization of (4.5), or an equivalent weak form that is amenable
to the finite-element method. Letting F = F[u, v], the first variation of F is given by

1
8F = lim —(Flu+eil,v + 9] Flu,v)), (4.6)
e—~>0¢&
where ii, U is an admissible virtual mapping, so that

SF = {Vii -[AVu + BVv] + Vi - [BVu + CVv]} dS, (4.7)
20

and u, v are found by setting § =0 for all admissible virtual mappings i, o which are not
independent at the boundary, as shown in §5.

Since the solution of our primary problem—the minimization of Z—is coupled to the solution
of $F =0 (i.e. the extremization of F), one may ask whether we should solve a constrained
variational problem by minimizing 7 + tF with a Lagrange multiplier . However, this is not
optimal for two reasons: (i) minimizing Z 4 tF would require adding u and v to « and X as
minimization variables, increasing the search space and hence the computation time enormously,
and (ii) for any finite ¢, any solution of the extermination problem does not satisfy § 7 = 0 exactly
so that the calculated values of x and A may not bear any relation to the properties of the mapping
(1, v). Of course, this limitation would become less true as f increased, and as f — oo we recover
the original formulation. Since the singular limit ¢ — oo is not ideal for numerical computations,
we use a nested optimization approach wherein for each trial value of « and A, F is minimized
first, and the results then used to extremize 7.

5. Numerical implementation

In order to solve the optimization problem introduced above, we first introduce a triangulation
of the domain §2p with Nj interior points and Np boundary points. For the finite-element
implementation of the weak form equation §F =0, we approximate the mapping functions u, v
by piecewise affine functions. The discretized mapping functions u", v" (dependent on the mesh
size h) are

Ni N
W'=Y i) + Y un@m ) 5.1)
i=1 k=1
and
N Np
o= Z vidi(x,y) + Z vB (6K dBr (X, V). (5.2)
i=1 k=1

Here u;, v; are the values of 1 and v at the interior nodes of the triangulation, and ¢;(x, y) are the
piecewise affine basis functions, being affine on each triangle, taking the value 1 at node i and
vanishing on every other node. Since the shape of the boundary of £21 is known in the parametric
form ug(#), vg(f), the mapping at the boundary node k is thus given by a specific value 6 of the
parametrizing variable #, multiplied by piecewise affine basis functions ¢g(x, ).

The resulting approximations u", v/ are thus piecewise affine functions over £2, and so
the gradients Vi and V' are discontinuous, taking a constant value on each element in the
triangulated domain. We assume that « and A are likewise approximated by piecewise affine
functions,

Ni+Ng Ni+Ng

=Y gy, M=) ki y). (53)

j=1 j=1
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In this discretized format, the admissible trial mappings i, v are obtained by allowing for
variations in the 2N} + Np coefficients u;, v; and 6y

Ny Ng
0" =" i, y) + Y O (O Ppi(x, ) (5.4)
i=1 k=1
and
N Np )
"= "B, y) + Y OO bai(x, ). (5.5)
i=1 k=1

Substituting these for ii, v in (4.7), we obtain the three finite-element equations for u;, v; and 6

Np Np

sl = H V- 3 Y (Aui+ Bv) Ve + Y (Au(O) + Bu(6)) Vg  dS =0, (5.6)
520 i=1 k=1
NI NB
S =ﬂ Vom - { D (Bui + Cvop) Ve + Y (Bu()) + Cv(Bp)) Ve { S =0 (5.7)
2 i=1 k=1
N[ NB
and Si= . Aupon+ B von - | Y uvei+ Y usevon
0 i=1 k=1
Ni Ng
+ (Bug(6n) + Cvp(6n)Vopn - | D viVei+ ) v Vep | 1dS=0,  (58)
i=1 k=1

for each m=1,...,Ny and n=1,...,Np, which are 2N| + Np equations to solve for the same

number of coefficients. Since x and A are affine over each triangle in the discretization, the

coefficients A, B and C will be nonlinear functions in the same domain. However, we can

approximate A, B and C by affine functions generated from their values at each triangle vertex.
Finally, we note that Z is replaced by its discretized counterpart

7= H (|Vlch|2 n |vxh|2) . (5.9)
£20

Thus, the optimization process reduces to minimizing Z by varying Kj, Aj, uj, vi and 6, with
constraints S} = 52 =0, S3 =0, and

&, §is e, 25 0821) = (5.10)
and
W (R, Jis e, 1 9821) = By (5.11)

We note that the equations (5.6) and (5.7) given by both S}, and S% are linear in u; and v;.
Therefore, given a set of values for Kj, Aj and 6, we can calculate the internal values of ©; and
v; by inverting the linear system (5.6) and (5.7) thus allowing us to eliminate #; and v; from the
search space for the minimization. It is worth emphasizing that our point matching constraints
associated with the landmarks do not distinguish between those defined in the interior and those
defined on the boundary, unlike previous approaches. In particular, of the N point constraints
embodied in (5.10) and (5.11), there will be Ngr defined on the boundary that force the value
of 6 to be fixed at those points, and Nir defined in the interior. Furthermore, if 6 is fixed, then
the equation (5.8) given by S3 =0 does not hold there since this condition is predicated on 6
being allowed to vary. Thus we consolidate these conditions: define 53 = S3 if ,, is not fixed, and
S% =0, — 0, if 6, is fixed. This condition of course depends on the fixed boundary conditions
being nodes of the triangulation, but is not difficult to implement in the mesh generation routine.
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Thus the optimization process reduces to the following;:

Minimize 7 by varying «, A, 0, (5.12)
$3=0 n=1,...,Ng,
with constraints { 1/ (%, Ukike, A 0821) =i k=1,...,Nif, (5.13)

Ve, Gk, 2021 =0 k=1,..., N,

where 1", v are defined in (5.1) and (5.2), with u;, v; found by solving the linear system
Sl =82 =0.

The triangulation was generated by DistMesh [34], a mesh-generation code (implemented in
MATLAB), while the optimization algorithm was programmed through an interface to SNOPT, a
general-purpose nonlinear constrained optimization program [35].

The optimization algorithm requires a parametrization ug(6), vg(f) of the boundary curve.
The simplest way to encode this is to identify each point on the curve with the angle made
between the x-axis and the line from the point to a fixed reference point, as seen in figure 2 (inset).
This approach only works for star-shaped domains, but this does not appear to be a significant
restriction. For many simple shapes, the functions ug(6), vg(f) are known analytically. For more
general shapes, such as the biological shapes analysed later, we can fit ug(0) and vg(0) to the
boundary curve, assuming that the functions are represented as truncated Fourier series (thus
preserving periodicity in 0). If the boundaries have well-defined corners, the functions are defined
piecewise with different Fourier series in each section. In all cases, the endpoints of the curves are
fitted exactly. The details of the numerical implementation are given in appendix B.

6. Results and applications

To illustrate the results that the method produces, we will discuss three examples: (i) a test
problem to calibrate the method, (ii) a recreation of the Thompsonian mapping displayed in
figure 1, and (iii) a comparison of the morphology of wings from a number of Drosophila species.

The test case corresponds to mapping a circle with unit radius to an ellipse with semi-major
axes in a ratio 1:2, generated by the affine mapping u =2x, v =y, which has w = (3z+2)/2 and
hence |v| = 1. To ensure that our method returns an approximation to this particular choice
of coordinates in the mapping, we need to prescribe some fixed points, and we pick four
boundary points and two interior points, as indicated in figure 3. For the domain 29, we use
the triangulation in figure 3a, so that the deformation calculated by the mapping should yield the
mesh in £21. The triangles have been shaded (both in §29 and £21) according to their average value
of |v|, which is close to % for all triangles—as expected.

As our next example, we apply our method to D’Arcy Thompson’s transformation theory in
the context of two fish species displayed in figure 1. Using the outline of the entire fish is not
practical in our case, as it is not a star-shaped domain. Therefore, we omit the fins to obtain
a nearly convex shape, which is amenable to analysis. Our boundary fixed points are taken
to be the mouth, the anterior ends of the three fins and the two points at which the tail fin
meets the body. Interior fixed points are taken to be the eye centre and the upper attachment
point of the side fin. The results of the optimization procedure can be seen in figure 4a-b, and
show that the value of |v| over the domain is largely constant, with a slightly greater value
near the tail. A different visualization of the mapping is shown in figure 4c-d, where we have
reproduced the original image from Thompson [1] as displayed in figure 1. Just as Thompson
superimposed a grid on his image of Scarus, we have superimposed a grid of circles, and follow
these circles under our numerically calculated optimal quasi-conformal map on the image of
Pomacanthus. By tracking the positions of the centres of the circles, and distorting them as if they
were infinitesimally small, to indicate the shear inherent in the mapping allows us to compare
the results of our mapping with Thompson’s deformed grid. While we do not expect the grids to
match completely, as Thompson was explicitly looking for simple (affine) deformations, such as
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(b)
0.3324
0.3323

0.3322
0.3321
0.3320

-0.3319
-0.3318

-0.3317

Figure 3. (a) Optimal map between a circle and (b) an ellipse, with correspondence of internal and boundary fixed points.

Shading is according to the local value of |v|. (Online version in colour.)

é( o = 10.235

== -0.230
-0.225

Figure 4. Optimal map between the species of fish drawn in figure 1, with the source geometry for (a) Scarus and the
deformed mesh for (b) Pomacanthus. Correspondence of internal and boundary fixed points are displayed. Below, an indication
of the distortion applied to infinitesimal circles on the source domain (c) on becoming deformed ellipses (). The mapping is
superimposed on the images from figure 1. Shading is according to the local value of |v|. (Online version in colour.)

those giving rise to circular arcs in this case, we do in fact obtain a qualitatively similar mapping,
the main difference being that the images of the vertical lines under the mapping have a smaller
curvature in Pomacanthus than that conjectured by Thompson.

As our final example, we compare wing specimens from different members of the genus
Drosophila, a favourite of developmental geneticists, and a nice example of a non-trivial flat
shape with many variations induced by genetic mutations. We use the database of the wings
created by Edwards ef al. [36] for Drosophila species living on the Hawaiian island chain, which
have diversified over many millions of years to fill a number of ecological niches. Two example
wings (D. discreta and D. primaeva) are displayed in figure 5a-b, where we have indicated
the landmark points that we preserve under the mapping from one species to another: the
intersection of the veins with each other or the wing edge, which are preserved in the Drosophila
genus. Since the proximal edge of the wing is rather irregular, extending the shape analysis
to this region may cause misleading results. However, as our analysis only works for closed
shapes, we must provide a curve which will close the boundary and so choose the curve with
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Figure5. Images of the wings of two species, (a) Drosophila discreta and (b) D. primaeva, taken from Edwards et al. [36]. We have
indicated both boundary and internal landmarks to be preserved under the mapping. Optimal map between (c) D. discreta and
(d) D. primaeva, with correspondence of internal and boundary fixed points. (e, f) Are as for (c) and (d), respectively, indicating
the distortion to infinitesimal circles in (e). Shading is according to the local value of |v|. (Online version in colour.)

(u,v) = (ug, vg) + (11, v1) cosd + (up,vp) sin @, where the coefficients are chosen so that the curve
passes through all of the leftmost three red points in figure 5a-b. In figure 5c—f, we display the
results of performing an analysis to find a mapping between the two species D. discreta and
D. primaeva. We observe that |v| appears to be considerably greater on the proximal side of the
wing compared with the distal side, and furthermore, there appears to be some contraction in the
mapping near the distal edge of the wing.

The change in shape between the two wings reflects the different evolutionary pressures on
the two populations that cause differential rates of growth in different parts of the wing. These
results shed light on the changes that have occurred in these growth rates as the two species have
diverged. We can extend this result to consider mappings between all possible pairs of wings in
a given collection. The results for a subset of eight Drosophila wings are displayed in figure 6,
with four wings from one phylogenetic grouping (D. montgomeryi, D. digressa, D. basisetae and
D. discreta), and four from a second grouping (D. cilifera, D. truncipenna, D. ornata and D. adiastola).
Each row represents a source domain (£2p) and each column a destination (£21). Displaying results
in this manner produces a block structure, with 4 x 4 blocks on the diagonal representing intra-
grouping mappings, and off-diagonal blocks representing cross-grouping mappings.

The wing shading in figure 6 according to the value of |v| shows no obvious pattern. However,
one observes that the local variation for comparisons within a particular grouping is smaller than
for comparisons between the groupings. Thus, we may consider the scaled discrete H; norm of
the quasi-conformal mapping 7 /area(§2g) as a measure of this local variation or shear gradient
(where 7 is given in (5.9)). This leads to the heatmap seen in figure 7, where light colors represent
low values of T /area(§2p), and thus a high match between the shapes. In this context, a match
means that the two shapes can be transformed from one to the other by an affine mapping,
i.e. a combination of a constant shear, an expansion, a rotation and a translation. While the
correspondence is not exact, there is a distinct separation of the two populations according to their
phylogenetic grouping (although D. cilifera appears to be less similar to the other members of its
grouping), with the mappings between wings of the same grouping being closer to affine than
cross-grouping mappings. Moreover, figure 6 shows that, in general, the dissimilarity between
the two populations is due to the positioning of the two distal internal landmarks.
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Figure 6. The array of pairwise quasi-conformal mappings between eight of the Hawaiian Drosophila wing shapes. Each row

corresponds to a source wing and each column a destination. Shading corresponds to the local value of | v|. (Online version in
colour.)
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Figure7. Thevalue of Z /area(£2y) for each of the pairwise comparisons of eight Drosophila species. (Online version in colour.)

7. Conclusions

Growing laminae such as wings and leaves often lead to fairly reproducible patterns. To
characterize the differences between these planar shapes, we have introduced a new method
which provides a mapping between two planar regions, while preserving the positions of
homologous points and ensuring that the amount of local shear varies as little as possible.

Our method minimizes gradients in shear but does not penalize extensional deformations,
thus lying somewhere between a purely descriptive approach and a completely mechanistic
predictive one. The former does not respect any mechanistic constraints and is chosen for
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mathematical convenience. The latter represents the ideal case where some mechanical and
chemical laws are placed on changes in the metric of the mapping based on the mechanical,
physical or biological properties of the system being analysed. However, for most systems the
underlying physical and regulatory causes of the shape changes are not completely known, and
so a completely mechanistic approach is currently out of reach. The advantage of our approach
is that it retains the notion that the shape comparison should be based on a constrained mapping
using a metric constraint (minimization of 7) that is a step towards—and yet vastly simpler
than—a complete genetic, biochemical and biophysical mechanistic theory. In particular, the
quasi-conformal mapping is not as rigid as a conformal mapping, and allows us to vary an
underlying parameter field that mimics the influence of intrinsic physical quantities driving the
shape change, and could be useful in morphometric studies, where we have a full description
of the shape outline, but only sparse data for interior points. This approach should be contrasted
with existing mapping techniques such as the thin-plate spline and finite-element scaling method,
which select their mapping based on the simplicity of the deformation itself, and are not focused
on the processes driving that deformation. Thus, while the simplicity of the existing methods
have advantages for statistical analyses, a potential strength of our method is in building a bridge
between the evo-devo approaches [19] that link morphometrics to genetics and the biophysical
processes which induce shape change.

By applying this method to study two-dimensional biological structures such as insect wings,
we can uncover correlations between shapes in terms of properties of the optimal quasi-conformal
maps that link them, and thus connect shape-associated phenotypic data with phylogeny and
eventually even the genotype. Simultaneously, it allows us to see if any local features of the
numerically generated mapping (characterized by the local ellipticity and rotation) correlate
with physically observed characteristics, such as cell movement, shape change or tissue stiffness.
Through this route one may begin formulating models that capture the physical mechanisms
behind the shape differences. As we learn more about mechanisms, our hope is that the
statistical and mechanistic approaches will eventually converge, yielding both a descriptive and
a prescriptive quantitative view of natural morphospaces.

Appendix A. Variational principle for quasi-conformal maps

In this section, we provide a justification for the claim that minimizers in the space of
homeomorphisms {(1, v) : 20 — £21} of F as given in (4.5) satisfy the conjugate Beltrami system
(4.1), following Dierkes et al. [37, pp. 263-275] who show that minimizers of the Dirichlet integral
%H_QO(WMZ +1Vv[?)dS in the space of homeomorphisms are conformal mappings, i.e. they
satisfy the Cauchy-Riemann system vy, =y, vy = —uy.

Setting (11, up) = (1, v) and (x1,x2) = (x,y), the inner variation of a functional

&= HQ F(xl(/ U (X2), Ui, (x1)) ds (A 1)
0
is given by
. oF oF
sNE = P —8aF | Aa g — — Ao | dS, A2
o [(au%ﬁ Uy,a = Bup ) b a} (A2)

where 1, is an infinitesimal variation made in the independent variable x,, with the summation
convention implied, and the notation u, 5 = du, /9x;.
For the functional F defined in (4.5), we have F = %Aaﬂ Ug,y g,y for the matrix Ayg defined by

(Aap) = (;‘ ﬁ) . (a3)
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Then the inner variation becomes

: 1
SIMF = 3 HQ [, — 222) (Aapiia1tip] — Aaplia,21ip2)
0

+ (M2 4 A2,1)(Agpiiatip2 + Aapli21ip1)] dS. (A4)

The minimizing mapping (1, v) is that for which 61" =0 for all A,. Following the argument in
Dierkes et al. [37] for conformal maps, this condition is equivalent to

and

Agp (g upgy — Ugup2) =0 and Aaﬁu(,/luﬂlz =0. (A5)

Rewriting these, we obtain
A(u,z( — u;) + 2B(uxvy — uyvy) + C(vﬁ — vﬁ) =0 (A6)
Aty + B(uxvy + tyvy) + Coyvy =0. (A7)

Equation (A 7) implies that (ty, vy) - (Autx + Boy, Buy + Cuy) =0, or

vy = x(Auy + Bvy) and uy = —yx (Buy + Cuvy) (A 8)

for some x € R. Substituting for u, and vy in (A 6) gives us x2=1,and the root x = +1 is identified
by demanding that the Jacobian of the mapping, u,v, — uyvy, is positive. We thus obtain the
Beltrami system (4.1) as required.

Appendix B. Optimization problem solution procedure

(a) Obtain parametric representations of the boundary shape for the source
(xg(0),yB(#)) and destination (13 (), vg(6)) shapes, using image analysis techniques.

(b) Find the coordinates of the internal landmarks for the source (%;, ;) and destination
(W;,0;),i=1,...,Ni.

(c) Identify the fixed boundary landmarks by finding the source parameter values éks
and the corresponding destination values ék, k=1,...,Ngg.

. Use (xg(0),yB(#)) to find a triangulation of the source domain 2y, with (xg (ka ),yB(G’,;g ))

prescribed as nodes of the mesh.

. For each triangle a in the triangulation, and for k=1,2, 3, calculate the basis functions

P (x, ).

. Use the basis functions and the values of (x;,7;) to find the Nir x (N] + Np) matrix M;;

such that the destination of (;,;) under a discretized mapping u;, v; (where j are the

Ni+N
N B(M,-ju]-,M,-]-vj).

nodal points) is ijl

. Initialize the state variables: let «;, A; be zero at each nodal point i; let 6; be a linear

interpolation of the destination parameter values f;. Ensure 6; is a boundary landmark.

. Main solution routine. SNOPT calculates the optimal y; (j=1,...,m) such that F1(y)) is

minimized subject to F?‘in <Fiy) < Frefori=2,...,n.
(a) Subroutine: calculate F; given y;.
i. Let kj=y; and Aj =ynyyngti for i=1,...,Ni + Np; let 0; = yovy4ny)+j for j=
1,...,Ng.
ii. Use k;, A; and ¢} to calculate 7.
iii. Given 0, find the values of the mapping on the boundary: ug ) and vp ().
iv. Use these with «;, A;, ¢{ to calculate the matrix and right-hand side of the linear
system (5.6)—(5.7).
v. Invert the system to give the values of u and v at the interior nodes. Combine
with the boundary values to give u;, v; defined on eachnode (i=1, ..., N1 + Np).
vi. Use u;, vj, ki, A, ¢,‘f_ to calculate 5,31 forn=1,...,Ng.
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vii. Let
F1=1,
Fiui1 =Sfl forn=1,...,Ng,
Np+Np
FNB+1+k = Z Mkjuj for k= 1,...,N,
j=1
Np+Np
FNg+Np+1+k = Z Myju; fork=1,...,Nip
j=1
and FNgt2Ngt14j =041 —6; forj=1,...,Np—1.
(b) Let
FPN=FMX =0 fori=2,...,Nps1,
min __ rmax . j —
Fz’+NB+1 _Fi+NB+1 =u; fori=1,..., N,
min __ rmax _ 5. i —
FiNs N1 = FifNg Ny =0 fori=1,..., Nip
min _ max _ P
and Fi+NB+2Nm+1 =0, Fi+NB+2NIF+1 =o0 fori=1,...,Ng — 1.

7. Use the output «j, A;, 6 from the SNOPT routine to calculate the mapping u;, v; by solving
the same linear system as in the subroutine.
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