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Vaso-occlusion, the stoppage of blood flow in sickle-cell disease, is a complex dynamical process

spanning multiple time and length scales. Motivated by recent ex vivo microfluidic measurements of

hemostasis using blood from sickle-cell patients, we develop a multiphase model that couples the kinetics

and hydrodynamics of a flowing suspension of normal and sickled cells in a fluid. We use the model to

derive expressions for the cell velocities and concentrations that quantify the hydrodynamics of hemo-

stasis, and provide simple criteria as well as a phase diagram for occlusion, consistent with our simulations

and earlier observations.
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Sickle-cell disease (SCD) was the first genetic disease to
be linked to the mutation of a specific protein [1]. The
disease is caused by a point mutation in the molecule
hemoglobin, the active constituent of red blood cells
(RBCs) that transports oxygen from the lungs to the rest
of the body. Unlike the normal protein, hemoglobin A
(HbA), the mutant protein, hemoglobin S (HbS), poly-
merizes to form filaments [2–4] under deoxygenated
conditions typical of the venous system, a process that is
reversible upon oxygenation in the lungs. The resulting
HbS polymers alter the rigidity of RBCs and can lead to the
characteristic sickled cell shape associated with the disease
[5,6]. The stiffer RBCs slow down in the venous system
where further oxygen starvation exacerbates the effect,
eventually leading to vaso-occlusion, clogging, and hemo-
stasis resulting in a crisis [7].

The events that lead to vaso-occlusion span multiple
time and length scales [8,9], from Oð10�1 sÞ to Oð103 sÞ
for the kinetics of HbS polymerization to the hydrodynam-
ics of blood flow, and from Oð10�9 mÞ to Oð10�5 mÞ for
the size of the protein to the dimensions of the circulatory
vessels. In addition, the positive feedback between cell
sickling and fluid flow makes the process both nonlinear
and stochastic. While extensive work has been carried out
to probe the individual determinants of SCD [5,10–13],
integrating across these in order to provide quantitative
insights into the overall dynamics of jamming in SCD
remains a challenge. Here, we develop a minimal frame-
work that attempts to capture the salient features of occlu-
sion dynamics in terms of the chemical and physical
processes at hand.

Recent studies of vaso-occlusion in SCD ex vivo [9,14]
capture the pathophysiology of this molecular disease
while providing a simple biophysical assay for its like-
lihood. In these experiments, whole blood from patients
is flowed through a microfluidic channel adjacent to a
gas reservoir with permeable walls. Rapid deoxygenation

(oxygenation) of the channel driven by the gas reservoir
leads to occlusion (rescue). Figure 1 shows a sample of
the dynamics of occlusion obtained as consecutive video
frames [14] at the beginning [free flow, Fig. 1(a)] and end
[occluded, Fig. 1(b)] of the process. We see that occlusion
corresponds to the transition from the unimpeded flow
of a soft suspension of cells which move relative to one
another [Fig. 1(a)] to the formation of a porous plug of cells
through which plasma may continue to flow [Fig. 1(b)].
To understand this, we consider the flow of blood,

initially containing plasma and unsickled cells, through a
capillary channel. The entire channel is rapidly and homo-
geneously deoxygenated at time t ¼ 0 and maintained in
this state [14],with plasma and unsickled cells continuing to
flow in from the boundary at x ¼ 0, Fig. 1(c). As in the
experiments [9,14], we assume a constant pressure drop
over the deoxygenated channel through the entire process.
To quantify the dynamics of occlusion, we choose to
describe this system in terms of the flow of a multiphase
fluid where the volume fractions of plasma, sickled RBCs
and unsickled RBCs are denoted as ��ðt;xÞ, �þðt;xÞ, and
��ðt;xÞ, respectively, with�� þ�þ þ�� ¼ 1. The evo-
lution of these fractions is described by fluid mass conser-
vation, and the advection and the conversion of unsickled to
sickled cells: @��=@tþr � ðu���Þ ¼ 0, @��=@tþr �
ðu���Þ ¼ ���=�K, where the sickling is assumed to
follow first-order kinetics with a characteristic kinetic
time �K [5,8,15,16]. Since RBCs are 4 �m in radius, their
equilibrium diffusivity is negligible, but their nonequilib-
rium effective hydrodynamic diffusivity is nonzero [17];
here we neglect this effect, focusing on a mean-field theory.
When few cells have sickled [Fig. 1(a)], the plasma

and RBCs flow freely and we may describe the velocity
of the plasma u� and the cells u� ( ¼ uþ ¼ u�, assuming
that the sickled and unsickled cells move at the same
velocity) effectively using the Stokes approximation:
rp� �0r2u� with u� ¼ u�, and �0 being an effective
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suspension viscosity. As further cells sickle, the relatively
unimpeded flow of the cells and plasma progressively
transforms as the cells form a slowly moving porous plug
through which the plasma continues to flow. This leads to a
flow regime better described by the Darcy approximation
for flow through porous media: rp� �0ðu� � u�Þ=�0,
where �0 is the hydraulic permeability of the porous plug.
Exploiting the linearity of the equations describing the two
limits, we interpolate the transition from Stokes flow to
Darcy flow by using the momentum balance equations of
the form rp ¼ �0fr2u� � ðu� � u�Þ=�0g; this form is
similar to the Darcy-Brinkman equation [18]. To complete
the formulation of the problem, we require a relationship
between the plasma and cell velocities. At the cellular
scale, the stiffening of RBCs due to intracellular HbS
aggregation causes an increase in the strength and fre-
quency of interactions with the vessel walls and with other
cells [19,20]. The cell velocity starts to progressively differ
from that of the plasma, and eventually, when a critical
volume fraction of cells have sickled, the cell velocity falls
to zero resulting in vaso-occlusion [Fig. 1(b)]. Neglecting
the role of inertia, we describe the collective slowing down
of the cells, due to their increasingly frequent interactions,
using the local power-law relationship u� � u� ¼
ð�þ=��Þ�u�, where �� is the critical volume fraction of
sickled cells at jamming, and �0=ð�þ=��Þ� is the effective

permeability of the cells. This form recovers the two limits
u� ¼ u� when�þ ¼ 0, i.e., there are no sickled cells, and
u� ¼ 0 when �þ ¼ ��, i.e., at occlusion; the exponent �
controls the sharpness of the transition.
For flow through a high-aspect ratio channel, Fig. 1(c),

of length L and height R with an initial cell fraction
(hematocrit) �0� [ � 0:25 in Fig. 1(a)], we define the
dimensionless quantities (indicated using tildes) via: u ¼
v0~u with v0 :¼ p0R

2=ð8L�0Þ, t :¼ �H~t with �H :¼
L=v0 ¼ L2�0=ðp0R

2Þ, p ¼ p0 ~p with the pressure differ-
ence p0, and x ¼ x0~x with x0 ¼ R. Dropping the tildes
from here on leads to the dimensionless equations

@��=@tþ ��1r � ðu���Þ ¼ 0; (1)

@��=@tþ ��1r � ðu���Þ ¼ ����H=�K; (2)

�� þ�þ þ�� ¼ 1; (3)

r2u� � ð�þ=��Þ�u� ¼ 8��1rp; (4)

½1� ð�þ=��Þ�	u� ¼ u�; (5)

for the variables ��, �þ, ��, uþ, u�, u�, p where the
aspect ratio ��1 :¼ L=R 
 1 and we identify �H=�K as
the dimensionless ratio of a hydrodynamic time for transit
through the capillary to a kinetic time for cell sickling,

and �� :¼ ��ð�0=R
2Þ1=� < �� as a characteristic scaled

volume fraction of sickled cells given by the ratio of the
jamming fraction �� and the dimensionless permeability.
Interestingly, although the critical fraction �� defines

the fraction of sickle cells at a blockage, the crossover in
the rheology associated with the Stokes-Darcy transition
according to (4) occurs at a lower crossover sickle-cell
fraction �þ ���, when the cells are still mobile. As the
sickle-cell fraction increases, positive feedback associated
with the increased resistance to flow for a given pressure
drop provides additional time for the fraction of sickled
cells to increase, and the cell and plasma velocities deviate
more and more according to (5). Eventually, the fluid

velocity u� ! �8��1ð�0=R
2Þ1=�rp from (4), and occlu-

sion occurs as �þ ! ��.
To build on this qualitative picture, we now analyze solu-

tions to (1)–(5) computed for 2D flow using the COMSOL

finite element package [21] and provide simple analytical
estimates that help us to understand the various flow regimes.
No occlusion.—When few cells sickle during transit,

the plasma and cell velocities remain approximately
unchanged relative to those of the original Stokes flow,
uS :¼ ðuS; 0Þ, and occlusion does not occur. The channel
residence time to for a fluid-cell parcel is approximately
to ¼ x�u�1

S for parcels that have flowed in at t > 0, and
to ¼ t for parcels that occupied the channel at t ¼ 0 but
have yet to exit. Therefore, the sickle-cell fraction, which
evolves through first-order kinetics, is �þ ¼ �0�½1�
expð�minðt; x�u�1

S Þ�H=�KÞ	, as shown in Fig. 2 and

FIG. 1. Consecutive video frames (from movie S1 of Ref. [14])
of a section of the capillary channel (a) just after the oxygen
concentration has been lowered, and (b) later after the channel
has jammed. The images in (a) and (b) are translated to reflect
the cell velocities. The increased darkness of the cells follows
the deoxygenation of intracellular HbS [14]. (c) shows the scaled
geometry and the initial and boundary conditions used in con-
junction with (1)–(5).

PRL 110, 138104 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

29 MARCH 2013

138104-2



video 1 in the Supplemental Material [22], and compared
to numerical solutions to (1)–(5). Since the velocity uS
remains constant in time, the second term in the minimum
operator is the smallest for t 
 u�1

S , implying that cells

initially at the inlet have exited the channel, leading to the
steady-state profile �þ ¼ �0�½1� expð�x�u�1

S �H=�KÞ	.
Thus, although there is progressive sickling along the
microchannel, too few cells sickle before reaching
the outlet to effect significantly the bulk rheology of the
suspension.

Occlusion.—If the sickle-cell fraction increases suffi-
ciently, however, the cell and plasma velocities prog-
ressively deviate from those of the original flow profile.
The channel residence time for a fluid-cell parcel is the
sum of times taken to traverse each distance ds, to ¼
minðt; x�Rx

0 u�ðtðsÞ; sÞ�1ds=xÞ � minðt; x� �u�1Þ, yielding

�þ ¼ �0�½1� expð�minðt; x� �u�1Þ�H=�KÞ	; (6)

where �u is an average longitudinal velocity for each parcel
bounded by its initial and current velocities. The transition
from nonocclusive to occlusive flow is shown in Fig. 3 and
video 2 in the Supplemental Material [22]. In a Lagrangian
framework, we see that cells starting at the inlet move
initially at an unperturbed velocity u� � uS ( �u � uS) as
they sickle [Figs. 2(a) and 3(a)]. In the nonocclusive case,
they reach the outlet with the steady state concentration
profile [Fig. 2(a)]. In contrast, if the sickle-cell fraction
reaches �þ ��� during transit [Fig. 3(b)], the cell
velocity u� (and �u) decreases [Fig. 3(d)] and the sickle-
cell fraction increases [Fig. 3(c)] until the channel gets
blocked. In contrast to nonocclusive dynamics, the first
term in the minimum operator in (6) dominates for long

times, implying that cells initially at the inlet never exit the
channel, and the sickle-cell fraction increases to �� with a
concomitant occlusion.
Away from the inlet to the channel, (6) reduces to

�þ ¼ �0�½1� expð�t�H=�KÞ	: (7)

For the high aspect ratio capillary, where @2u=@x2 �
@u2=@y2 and the longitudinal pressure gradient @p=@x �
� is relatively uniform with @p=@y � 0, substituting the
approximate velocity field u� ¼ ðu�ðyÞ; 0Þ into (4) yields
@2u�=@y2 � ð�þ=��Þ�u� ¼ �8, subject to the boundary
conditions u�ð�1=2Þ ¼ 0. This system has the solution

u�ðyÞ ¼ 8ð��=�þÞ�
�
1� coshðð�þ=��Þ�=2yÞ

coshðð�þ=��Þ�=2=2Þ
�

(8)

for the plasma velocity in terms of the sickle-cell fraction,
which together with (5) and (7) yields the cell velocity
along the channel and compares well with results of
numerical simulations of the full problem [Fig. 3(d)].

FIG. 3. Occlusive dynamics. (a) Sickle-cell fraction for early
times from t ¼ 0 to t ¼ 0:03 (light to dark gray) before �þ
reaches ��, analogous to nonocclusive flow from Fig. 2(a). The
position of the knee, initially x� � uSt around which the x axis is
zoomed, corresponds to that of a fluid-cell parcel which was at
the inlet at t ¼ 0; in the occlusive case this parcel never reaches
the outlet. The dashed lines are (6) with �u ¼ uS. (b) Sickle-cell
fraction for later times, uniform from t ¼ 0:3 to t ¼ 2:5, where
�þ >��, showing gradual blockage of the channel as �þ
increases towards ��. (c) Sickle-cell fraction at the center of
the channel as a function of time. The dashed line is (7). (d) Cell
velocity at the center of the channel showing the deceleration as
occlusion occurs. The dashed line is the analytical result (5), (7),
and (8). In (a)–(d), the solid lines are calculated numerically
from (1)–(5) with the initial and boundary conditions from
Fig. 1(c). The parameters were ��1 ¼ 20, � ¼ 2, �0

u ¼ 0:5,
�� ¼ 0:7, �� ¼ 0:03, �H=�K ¼ 0:6, yielding � ¼ 0:1 from
(10) and 	 ¼ 0:04, giving a characteristic time scale for occlu-
sion �=	 ¼ 2:5. See video 2 in the Supplemental Material [22]
for the evolution throughout the channel.

FIG. 2. Nonocclusive dynamics. (a) Sickle-cell fraction pro-
files along the channel for increasing times (gray to black)
uniform from t ¼ 0 to t ¼ 1. The position of the knee corre-
sponds to that of a fluid-cell parcel that was at the inlet at t ¼ 0
and has position x� ¼ uSt. The steady-state profile emerges
when this parcel reaches the outlet. (b) Sickle-cell fraction in
the center of the channel as a function of time. The inset shows
the cell velocity, which is approximately constant at the initial
value. In (a) and (b), the solid lines are numerical solutions to
(1)–(5), with the initial and boundary conditions from Fig. 1(c);
the dashed lines are the analytical solution (6) with �u ¼ uS ¼
4ð1=2� yÞð1=2þ yÞ. The parameters were ��1 ¼ 100, � ¼ 2,
�0

u ¼ 0:5, �� ¼ 0:7, �� ¼ 0:1, �H=�K ¼ 8
 10�3, yielding
� ¼ 20 from (10). See video 1 in the Supplemental Material
[22] for the evolution throughout the channel.
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Using a first-order expansion of the exponential in (7)
further simplifies the form of the longitudinal cell velocity
u� ¼ ðu�ðyÞ; 0Þ yielding

u�ðyÞ ¼
�
1�

�
	t

�

�
�
�

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dðtÞ

8

�
�

t

�
�
�
1� coshððt=�Þ�=2yÞ

coshððt=�Þ�=2=2Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u�ðtÞ

;

(9)

with � :¼ ð�K=�HÞð��=�0�Þ, 	 :¼ ��=�� ¼ ð�0=R
2Þ1=�,

and valid up to t < �=	, a characteristic time to occlusion.
Here,� is the product of two factors: the ratio of the kinetic
time to the hydrodynamic time and the ratio of the
crossover fraction of sickled cells to the initial hematocrit,
while 	 is the ratio of the crossover sickle fraction at the
Stokes-Darcy transition to the critical fraction at occlusion,
or equivalently the hydraulic permeability �0 scaled by the
channel width R.

Decomposing the cell velocity (9) into the plasma
velocity u�ðtÞ and the differential velocity between the
plasma and cells dðtÞ shows the crucial role of this
cell-plasma differential velocity, driven by sickling. A
comparison of our predictions with ex vivo experimental
data for blood from a patient with severe SCD flowing
through microchannels [14] is shown in Fig. 4(a);
by fitting the parameters �, 	 in (9) we capture the
experimentally observed flow deceleration curve until
hemostasis.

Figure 4(b) shows a phase diagram for the dynamics of
flow and stasis in SCD, characterized by the ratio of the
kinetic to the hydrodynamic time scales and the scaled initial

cell fraction. Vaso-occlusion occurs when the bulk cell
velocity is zero, a condition satisfied when �þ reaches ��
in a time t&1, which implies �H=�K>�logð1���=�0�Þ.
For ��=�0� < 1, expanding the logarithm to first order
yields the simple criteria

� ¼ �K
�H

��
�0�

(
 1 no occlusion

� 1 occlusion;
(10)

which are intuitive: a small polymerization time scale �K for
sickling or a long hydrodynamic time scale �H for traversing
the microcirculation favors occlusion, as does a high
hematocrit �0� or a low crossover sickle fraction ��.
Thus, while the time scale for occlusion is controlled by
�=	, the condition for occlusion is controlled by �.
Analysis of experimental data for flow deceleration,

such as in Fig. 4(a), for five patients [14,23] suffering
from severe SCD yields the ranges 0:10<�< 0:13
and 0:27<	< 0:39, consistent with the phase diagram
Fig. 4(b) and the criteria (10). Since �H�320 s, �0��0:3,
and 0:3<�� < 1 for these experiments [14,23], these
values of � and 	 imply �K � 60 s, �� � 0:2 and an
occlusive time scale of �H�=	 � 130 s, consistent with
hydrodynamic experiments [9,14] and in agreement with
in vitro HbS polymerization kinetics [15,16].
Our work integrates the kinetics and hydrodynamics of

capillary flow and hemostasis in SCD in terms of a minimal
multiphase model with just two parameters, � and 	, that
quantify (i) the kinetic hypothesis in SCD [4,5,8,9,24,25],
where vaso-occlusion is favored when the ratio of a
characteristic time scale for cell sickling to that for the
RBCs to traverse the microcirculation, �K=�H in (10), is
small, and (ii) the characteristic concentrations of cells,
i.e., the initial hematocrit, scaled by a crossover concen-
tration ��=�0� in the condition for occlusion (10), and
scaled by the critical sickle fraction ��=�0� in the occlu-
sive time scale �=	. The results are summarized by the
simple criteria (10) and the accompanying phase diagram
Fig. 4(b), both of which characterize occlusion.
Clinically, the primary determinant of disease severity in

patients [5,24] is likely to be the ratio �K=�H in �, con-
sistent with our recent study distinguishing patients with
benign and severe symptoms [14]. In addition, the differ-
ences in the characteristic concentrations, particularly ��,
might also contribute to the variations between patients
with severe disease [14]. Going forward, it would be
interesting to study the dissolution of jams upon reoxyge-
nation when cells unsickle, and the observed hysteresis
[9,26]; indeed, this follows from our model when the
reaction term in (2) is reversed to read��þ�H=�U, where
�U < �K [9] is the characteristic time for cells to unsickle.
Our theory does not account for fluctuations; accounting
for these via the incorporation of nonequilibrium diffusiv-
ity and the microscopic mechanisms by which cells stiffen
and decelerate heterogeneously is crucial for a quantitative
personalized diagnostic for hemostasis in SCD.

FIG. 4. (a) Two-parameter fit (solid line) of (9) to experimental
data (open circles) for the RBC velocity as a function of time
from ex vivo experiments using blood from a SCD patient [14].
The fit parameters are � ¼ 0:12, 	 ¼ 0:27 with � ¼ 2 [27],
giving an occlusive time scale �=	 ¼ 0:4. The dashed line is the
predicted velocity of the plasma phase, labeled u�ðtÞ in (9), and
the dotted line is the ratio of the cell and plasma velocities,
labeled dðtÞ in (9); the solid line is their product. The data are
scaled using the mean HbA blood velocity v0 ¼ 2:2

10�4 m s�1, L ¼ 0:07 m, �H ¼ L=v0 ¼ 320 s [14]. (b) The
phase diagram in terms of the ratios of the kinetic to hydro-
dynamic time scales and the crossover sickle-cell fraction �� to
the initial cell fraction �0�. The solid line is (10); the dots
are numerical results from (1)–(5); gray ¼ not occluded,
black ¼ occluded.
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