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A pendulum in a flowing soap film
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We consider the dynamics of a pendulum made of a rigid ring attached to an elastic
filament immersed in a flowing soap film. The system shows an oscillatory instability
whose onset is a function of the flow speed, length of the supporting string, the
ring mass, and ring radius. We characterize this system and show that there are
different regimes where the frequency is dependent or independent of the pendulum
length depending on the relative magnitude of the added-mass. Although the system
is an infinite-dimensional, we can explain many of our results in terms of a one
degree-of-freedom system corresponding to a forced pendulum. Indeed, using the
vorticity measured via particle imaging velocimetry allows us to make the model
quantitative, and a comparison with our experimental results shows we can capture
the basic phenomenology of this system. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4800057]

A systematic study of the simple pendulum commenced with the observations by Galileo and
others, heralding their employment as timekeepers.1 The mechanism driving the oscillations of a
pendulum is the competition between an orienting field and a periodic variable, and is ubiquitous
in a range of phenomena in physics.2 Mathematically, the dynamics of such processes occur on
a circle;3 physically, the effects of forcing, damping, and spatial coupling make the behavior of
the pendulum nontrivial. Here we study one such variant using a combination of experiment and
theory—the dynamics of an annular ring that is suspended by a string and immersed in a moving
quasi-2D fluid represented by a gravity driven soap film tunnel (Fig. 1). The ambient quasi-2D flow
within the soap film hydro-dynamically forces the pendulum, causing it to oscillate above a critical
flow speed like a flapping flag.4 We consider the onset of the oscillatory behavior and the resulting
frequency as a function of the inertial and hydrodynamic parameters in the system.

Our experimental setup consisted of a soap film5 (see Fig. 1(a)) flowing through an entry nozzle
(1 mm diameter) between two laterally spaced nylon wires (diameter 0.5 mm, spacing 9 ≤ W
≤ 12 cm, working height 1.0 m), tensioned by a heavy weight immersed in a bottom reservoir
containing soap solution of density ρ f (2.5% Dawn soap in distilled water). The solution is steadily
pumped to a top reservoir and maintained at constant level ∼0.2 m above the nozzle via a level-
sensitive drainage mechanism (see Fig. 1(a)). As the film height and width are much larger than its
thickness (h ∼ 10 μm), we have approximately 2D flow. Our pendulum consists of a thin fiber (silk
or nylon) with a bending stiffness B0, linear mass density λ, length l, and mass Ms = λl glued at one
end to a stiff polymer ring and introduced at the other end into the film at a point P using a pippete
that does not penetrate the soap film and thus does not have a wake. The ring (thickness t = 100 μm)
was laser cut from Polyethylene terephthalate and Kapton sheets of density ρR with internal radius
Ri, external radius R, and mass MR. The pivot P was located 0.5 m downstream from the nozzle to
allow for the soap solution to reach a steady state with an average velocity V = 0.4–1.5 m/s.
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FIG. 1. (a) Schematic of experimental setup: Soap solution at constant pressure head flows through a nozzle between two
parallel nylon wires that are a width W apart and over a length 1 m to form a soap film. An annular ring of external
radius R = 1.1 × 10−2 m hangs from a flexible string that is pivoted outside the soap film. (b) For a given flow rate, the
pendulum exhibits oscillatory motion above a critical length Lc. Multiple images of oscillations over several periods record
the pendulum amplitude A. (c) A longer pendulum exhibits more complex oscillations, such as one with a node as marked
with the blue circle. (d) Velocity field superposed on raw images shows when it is vertical and (e) when it is at its extremal
position (enhanced online) [URL: http://dx.doi.org/10.1063/1.4800057.1] [URL: http://dx.doi.org/10.1063/1.4800057.2].

In Figures 1(b) and 1(c) we show a superposition of images of the driven pendulum for two
different string lengths; the short one oscillates without a node, while the longer one has a node. We
quantified the fluid flow and pendulum dynamics using two different methods involving high speed
digital imaging at 3500–5500 fps. In the first method, pendulum oscillations were captured with a
high-speed camera (Phantom v7.3) under diffuse (non-coherent) illumination and the images were
analyzed to determine the oscillation frequency and amplitude of motion. In the second method,
hollow glass particles (diameter 8 μm, density 1.05 g/cm3) were suspended in the soap solution and
a laser (4W, 528 nm) sheet illuminated a rectangular section of the film (width W and length of
6–8 cm) in the vicinity of the pendulum to capture light scattered off the glass particles. Parti-
cle Imaging Velocimetry (PIV) algorithms were employed to construct the velocity field around
the pendulum (Figs. 1(d) and 1(e)) and capture the motion of the fluid and the moving ring. In
Figures 1(d) and 1(e) we show this velocity field in the wake of the pendular ring at its central and
extreme positions; both these show the presence of vortical structures with a size comparable to that
of the ring. We see that the motion of the system shows two rotational modes: one that corresponds
to the oscillatory motion of the ring and string pendulum about the pivot where the string enters the
soap film, and the other associated with the motion of the ring as it pivots at the end of the string.
These modes are coupled: indeed their frequencies are the same. However, as we will see, a single
degree of freedom model is sufficient to explain the salient features of the system dynamics.

Unlike the simple pendulum, which can be described in terms of a balance between inertia
and gravity and mediated by fluid damping, here we also have to account for the driving forces and
torques from the flowing fluid. Then the balance of angular momentum for the fluid-driven pendulum
about the out-of-plane ẑ axis yields the equation of motion,

I θ̈ = [ �Lcm × ( �Fd + MP �g) + �τv] · ẑ − νθ̇ . (1)

Here, θ (t) is the angle that the string makes with the vertical, �τv is the torque on the ring arising
from vortex shedding, �Fd is the fluid drag, and MP �g is the weight of the ring. The fluid drag
| �Fd | = CDρ f V 2Lh sin(θ ), where L ∼ (l + R) (assuming that only the first mode is excited6), �Lcm

is the vector joining P to the pendulum’s center of mass, MP is the bare pendulum mass, and νθ̇

is the damping torque arising due to the effects of fluid viscosity. Here and elsewhere, we use the
drag coefficient CD = 0.5. The moment of inertia I = (MR + MA + Ms)L2

cm is the sum of three
terms arising from the ring mass MR, added mass MA ∼ ρ f (l + R)Ah, where A ∼ L is the oscillation
amplitude, and string mass Ms. Since these masses exhibit markedly different dependences on the
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FIG. 2. Dimensionless critical length Lc/L0 vs. dimensionless ring radius R/L0, (where L0 is the smallest length of a fiber
without an attached ring that spontaneously oscillates in a flow) at constant mass MR and flow rate, obtained experimentally
(solid squares). The solid line corresponds to the best fit obtained from the first four points, with Lc/L0 = 1 + 1.2R/L0.

pendulum length, with MR ∼ L0, Ms ∼ L1, and MA ∼ L2, their relative contribution controls how the
oscillation frequency of the pendulum scales with the pendulum length L.

At low flow velocities, or equivalently, when the fiber is short and/or the ring is heavy, the
pendulum is stationary. However, once the length of the suspending fiber is longer than a critical
length Lc, we see the onset of spontaneous oscillations. In the absence of the ring, the problem is
similar to that of flag flutter. A scaling estimate for the critical length L0 above which a bare string
(without a ring at its end) is unstable to flutter follows from a competition between fluid forces and

the elastic bending resistance of the string in the absence of gravity.7 This yields L0 =
(

B0
ρ f V 2h

) 1
3
,

where B0 is the bending stiffness of the string, and V is the far field fluid speed. In the presence of a
ring, three new effects arise—gravity which stabilizes the pendulum, tension in the string induced by
fluid drag which also stabilizes the pendulum, and finally, low frequency vortex shedding from the
ring that can destabilize the pendulum, unlike what typically happens in a flag. In Fig. 2, we show
that Lc increases with the ring radius over the range 0.2 ≤ R ≤ 1.1 cm. To understand this result
qualitatively, we note that the pendulum spontaneously starts to oscillate when the torque induced by
vortex shedding from the string-pendulum system overcomes the stabilizing forces that arise from
gravity and fiber tension.

The various different regimes of oscillatory behavior pit inertia against the sum of various
stabilizing and destabilizing influences. We start by ignoring the effects of gravity, and instead
focus on the case when the fluid drag ρ f V 2(l + R)h � MRg. In the limit of a heavy ring at the
end of a relatively long fiber where R ≤ l, the moment of inertia about the pivot I ∼ (l + R)2MR.
Then, balancing the rotatory inertial torque Iω2θ ∼ MR(l + R)2ω2θ with the fluid-induced torque
ρ f V 2(l + R)2hθ , we get

ω ∼ V

√
ρ f h

MR
, (2)

i.e., the oscillation frequency for heavy rings is length independent, in contrast with the result for a
simple pendulum. In Fig. 3(a) we show that this result is consistent with our experiments.

When the string mass exceeds the ring mass and added mass, i.e., MS > MR, MA, our earlier
result (2) remains valid, but with MR replaced by MS ∼ λl, so that

ω ∼ V

√
ρ f h

λl
. (3)
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FIG. 3. (a) Dimensionless frequency ω/ω0 vs. dimensionless length L/R (bottom horizontal axis) when MR > MA

(MR = 1.48 × 10−4 kg). Experimental data are shown as solid circles and a fit based on Eq. (2) is shown as a solid
line; ω0 = 9.44 s−1 is the natural frequency for a gravity pendulum of length L = 10R. Top horizontal axis shows the regime
when MR < MA, with the ring radius held constant at R = 1.1 × 10−2 m while increasing mass MR by adding plasticine,
with Mρ = πR2ρh being the mass of a disc of liquid of radius R. Experiment (solid squares) and theory fit (dashed line) from
Eq. (4). (b) Dimensionless frequency ω/ωr vs. rescaled velocity V/(ALω2

r )1/2 based on Eq. (4) in the added mass regime
MA > MR & Ms. Here ωr = 19.08 s−1 is the offset frequency corresponding to the mode where the ring oscillates around its
pivot.

When MA � Ms, MR, the rotational inertia associated with the added mass is ρ f (l + R)2Ahθω2.
Balancing this with the fluid torque ρ f V 2(l + R)hθ yields

ω ∼ V

√
1

(l + R)A
. (4)

We see that for long strings, when L ∼ l + R ≈ l, the frequency ω ∼ L−1/2, a regime previously
observed for a flexible loop oscillating in a soap film.8 In all cases, the effect of an increased tension
in the string effectively stiffens it,9 thus increasing the critical length, while the vortex shedding can
trigger the resonant motion of the pendulum. Although we have couched our results in Eqs. (2)–(4),
in terms of a frequency, we can immediately convert them to a dimensionless form in terms of a
Strouhal number St = ωR

V for each regime, as in Ref. 10.
We now turn to explore the role of added mass from an experimental perspective comple-

menting previous theoretical aspects in the study of flags.7, 11 We used thin rings with (R − Ri)
∼ 50 μm, and measured the oscillation frequency as a function of the rescaled velocity based on
Eq. (4); in Fig. 3(b) we show that our experiments are in agreement with our minimal scaling
theory. Further confirmation of our scaling law comes from extracting the prefactor in Eq. (4) from
Fig. 3(b) which yields V = 0.625 m/s, a value close to that determined experimentally using PIV,
VP I V = 0.69 ± 0.15 m/s. However, we note that as V → 0 (equivalently as L → ∞), there is a
finite frequency offset ωr in contrast with prior studies.8 To understand this, we note that although
there are at least two rotational modes in the system as discussed at the start and observable in our
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FIG. 4. Comparison between experimentally obtained angular dynamics shown with open circles (red) and the simple theory
based on a driven oscillator model (solid black curve) given by Eq. (5) with the following parameters: MR = 0.12 × 10−3

kg, h = 10 μm, V = 1 m/s, L = 5.5 × 10−2 m, γ = 80 s−1, R = 1.1 × 10−2 m. The numerical curve is intentionally offset
by 
θ = 0.1 for clarity.

experiments, as L → ∞, the large added mass impedes the pendulum from oscillating as a whole.
However, the remaining mode associated with the soft degree of freedom when the ring pivots about
its attachment to the string persists. In the absence of flow, this mode has a resonant frequency
ωr = √

g/R, set by the balance between gravity and inertia; indeed it is this mode that is forced by
the flowing fluid when the pendulum is very long. For rings of radius R = 1.1 cm, ωr = 21.11 s−1,
in agreement with the offset obtained from experiments ωr = 19.08 s−1.

With the exception of the ring rotation mode just considered, we have so far assumed that gravity
is negligible, a valid assumption for relatively fast flows. However, when gravity becomes comparable
to fluid drag, there is a cross-over from fluid-driven to gravity-dominated oscillations. This transition
occurs when the gravitational pendulum frequency (g/ (l + R))1/2 ∼ (ρ f V 2h/MR)1/2, the fluid-
driven oscillation frequency given in Eq. (2), so that the cross-over ring mass Mcross

R ∼ ρ f V 2(l +
R)h/g. For typical experimental values of l + R ∼ 10 cm, V ∼ 1 m/s, and h ∼ 10 μm, this yields
Mcross

R ∼ 0.1 g. To test our predictions in this regime, we increased the ring mass (MR) by attaching
dense plasticine at the center of the ring so that MR = 0.15 g. When the length of the composite
pendulum is in the range 12.5 ≤ (l + R) ≤ 15.5 cm, and V = 1.3 m/s, the oscillation frequency ω

= 13.20–13.70 s−1 in good agreement with our experimental data shown in Fig. 3(a).
We close with a brief discussion of the dynamics of the fluid-driven pendulum in the limit

where the moment of inertia of the system is dominated by that of the ring. With I = MRL2 and
MR ∼ Mcross

R , so that drag and gravity are comparable, the equation of motion (1) for the pendulum
reads

I θ̈ = −
(

MRgL + ρ f

2
V 2L2h

)
sin θ + τv sin ωt − νθ̇, (5)

where the last two terms in Eq. (5) correspond to the torques from vortex shedding and viscous
damping. The driving torque has an amplitude τv = ρ f V γ R2hl (obtained by noting that the force
due to fluid motion is ρ f V �h, where � ∼ γ R2 is the circulation, where γ is the vorticity obtained
from PIV measurements like those shown in Figs. 1(d) and 1(e)). The damping torque is obtained
using experiments to measure the relaxation time of a short pendulum (L < Lc) that is perturbed and
allowed to come to rest in a static soap film, and yields the result ν ∼ 4I s−1. In Fig. 4, we show the
solution of Eq. (5), using the measured parameter values γ ∼ 80 s−1, and see that our experimental
measurements for the amplitude of the driven pendulum are in good agreement with that of the
theory with a single fitting parameter for the driving torque.

Our study of the fluid-driven pendulum in a soap film shows that there is a critical speed of the
flow above which spontaneous oscillations arise. A simple scaling theory allows us to characterize
the transition to oscillations, and is qualitatively consistent with our experiments. Furthermore, we
find various regimes for the oscillation frequency by accounting for the relative contributions of
the torques from the ring, filament, added mass, fluid drag, and gravity, also consistent with our
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measurements. A model of a pendulum forced periodically by vortex shedding and damped by fluid
drag allows us to quantitatively compare our results with observations, given the experimentally
measured vorticity. Our findings complement earlier work on the dynamics of continuous objects
such as strings and loops in flowing soap films, by focusing on the dynamics of an effectively low-
dimensional system, but also raise questions about how different modes are coupled. Of particular
interest is the coupling of the motion of the ring with its own wake, that causes it to bounce as it
oscillates, presumably as a consequence of the impulsive loading due to vortex shedding when the
ring is in its extremal positions, a problem worthy of further study.
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