Digital instability of a confined elastic meniscus
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Thin soft elastic layers serving as joints between relatively rigid
bodies may function as sealants, thermal, electrical, or mechanical
insulators, bearings, or adhesives. When such a joint is stressed,
even though perfect adhesion is maintained, the exposed free
meniscus in the thin elastic layer becomes unstable, leading to the
formation of spatially periodic digits of air that invade the elastic
layer, reminiscent of viscous fingering in a thin fluid layer. How-
ever, the elastic instability is reversible and rate-independent, dis-
appearing when the joint is unstressed. We use theory, experiments,
and numerical simulations to show that the transition to the
digital state is sudden (first-order), the wavelength and amplitude
of the fingers are proportional to the thickness of the elastic layer,
and the required separation to trigger the instability is inversely
proportional to the in-plane dimension of the layer. Our study
reveals the energetic origin of this instability and has implications
for the strength of polymeric adhesives; it also suggests a method
for patterning thin films reversibly with any arrangement of
localized fingers in a digital elastic memory, which we confirm
experimentally.

hysteresis | confinement | elastomer | gel

In adhesive joints, the strains and stresses due to joint loading
are magnified by the effects of geometric confinement and scale
separation (1), making them susceptible to stress-driven insta-
bilities that often lead to failure. Joints usually fail in one of two
broad ways: via adhesive failure along the solid—solid interface
(2-5) or via bulk cohesive failure of the glue joint via cavitation
(6-8). Though these modes of failure have been well documented
and studied (see ref. 1 for a review), there is a third mode of
failure, where an elastic instability at the meniscus may lead to
fracture in its vicinity and can arise either when a joint is loaded
under tension (9) or by a fluid that is injected into a cavity in the
confined elastic layer (10). This mode of failure has been largely
overlooked experimentally and is not understood theoretically.
Interestingly, the last experiment is an elastic analog of a well-
studied classical hydrodynamic free-surface instability associated
with the relative motion between liquids of different viscosities in
anarrow gap (11, 12), and provides a point for comparison. As we
will see, the elastic instability is fundamentally different given its
reversible nature and lack of dependence on interfacial forces.
We use a combination of theory, experiment, and computation to
unravel the mechanism behind the elastic meniscus instability, the
threshold strain for its onset, the critical wavelength of the
resulting fingers, and the nonlinear development of its amplitude.

Geometrically, our setup, sketched in Fig. 14, consists of a
thin, highly elastic layer occupying the region —a/2<z<a/2,
—o0 <x <00, 0<y<lwitha/l < 1 thatis adhered to rigid plates at
z= +a/2. Experimentally, we used a layer of polyacrylamide gel
with a shear modulus of 550 Pa, thickness a € [0.28, 10.64]mm,
and width / € [50, 60)mm bound between 10-mm-thick glass plates
that were ~200 mm long. The plates are then pulled apart, in-
creasing their separation to a + Az, while maintaining adhesion.
Experimentally, the separation was increased at a constant speed
of ~200 mm/s. As the rigid plates are separated, the free bound-
aries of the elastomer (at y=0 and y =/) retreat to form an elastic
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meniscus that is curved in the direction perpendicular to the plates
but remains parallel to its original position, thus penetrating into
the elastic film without causing any loss of adhesion to the glass
plates. At a critical separation of the plates, this curved meniscus
loses stability via a sharp transition to an undulatory configuration
in which fingers of air protrude into the elastomer, shown sche-
matically in Fig. 14. To ensure that elastic equilibrium was achieved
at each stage, and to rule out any rate dependence, we also per-
formed experiments at much lower velocities and saw quantitatively
similar results.

Fig. 1B shows the undulatory pattern observed. We note that
this instability is qualitatively different from the crack-like ad-
hesive undulatory instabilities seen at the glass—gel contact line
when adhesion starts to fail (2). In our experiments, adhesion is
maintained everywhere due to the natural propensity of poly-
acrylamide to stick strongly to glass. Thus, fingers appear along
the retreating elastic meniscus. Fig. 1B also shows a loading/
unloading hysteresis loop for the transition, showing that the
instability sets in suddenly past a given threshold in displacement
via a subcritical instability, leading to large amplitude “digits” or
fingers whose amplitude grows further upon further loading
(Movie S1). On unloading, the fingers snap back at a lower value
of the displacement, suggestive of the hysteretic nature of this
first-order transition (Movie S2). We find that the undulatory
transition is fully reversible and has no dependence on the shear
modulus of the elastomer, strongly suggesting that the phe-
nomenon is purely elastic. The similarity in the small smooth
part of the loading and unloading curves, which corresponds to a
plate separation of ~1.5% at most, is likely due to inhomoge-
neities in the meniscus when it was first formed via our molding
protocol. To test this, we waited for up to 30 min after the de-
stabilization of the front, and did not see any additional fingers
form. On retracing the loading/unloading cycle, we saw that the
system traced the same curves as the first time, consistent with
this explanation. Finally, we performed identical experiments in
oil rather than in air to determine the effect of surface tension on
the instability (Movie S3), and find that the system responds just
as when it is in air, eliminating a role for the effects of surface
tension in the phenomenon. It is useful to contrast these ob-
servations with the case of viscous fingering (11), where fingering
is dynamic and out of equilibrium, and surface tension effects
cannot be neglected.

Because the deformations involved are large, we resorted to
numerical simulations of the process in terms of a finite element
method, using an incompressible neo-Hookean constitutive
model for the elastic layer. To capture the subcritical nature of
the instability, we needed to carry out a dynamical simulation
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Fig. 1. (A) Schematic of an elastic layer between two rigid plates. Pulling the
plates apart causes the two free menisci to lose stability by forming a series of
undulating digital fingers. (B) The experimentally measured amplitude of the
fingers as a function of plate separation Az, along with a top view of the
undulating meniscus showing the fingers of air (Lower) invading the elastic
layer (Upper). The layer thickness is a=3.05 mm and the width is /=56 mm.
Observe the hysteresis in the transition associated with the difference between
the loading and unloading curves. (C) Numerical results for an identical quasi-
static loading and unloading protocol (S/ Appendix, Numerical Simulations) cal-
culated using a finite element method for an elastic layer of thickness a=1 mm
and width /=40 mm show the same qualitative features—a hysteretic transition
(Upper) associated with the formation of undulating fingers (Lower).

with damping, modeled via a Rayleighian dissipation function.
The boundary conditions were imposed using the symmetry of
the problem, and a small amount of initial noise in the position
of the meniscus was used to seed the instability. All numerical
simulations were carried out using a commercial finite element
package ABAQUS (SI Appendix, Numerical Simulations), allow-
ing us to reproduce this instability. We note that once the fingers
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develop and have a finite amplitude, they may not be described by
a single-valued function, but this is not an issue in our simu-
lations, which use a natural coordinate system for the meniscus.
In Fig. 1C, we show that both the form of the fingers and the
hysteresis loop associated with a loading/unloading loop arise
in a purely elastic simulation.

To understand our experiments and numerical simulations, we
start by estimating the energies and length-scales in the problem.
Displacement of a point in the central plane of the elastomer by
an amount u ~a in the y direction of the x—y plane leads to
a shear strain in the elastomer y ~u/a. Because the subcritical
fingering transition is purely elastic, it is likely to occur at large
strains with a threshold y ~1 when geometrically nonlinear
effects are important. Incompressibility of the elastomer implies
that Azl~ua, so that the instability threshold Az ~O(a?/l),
which vanishes for infinitesimally thin films when //a — co. We
note that this threshold arises from purely geometric consid-
erations and expect that it does not depend on any material
properties, because the only energy scale in the system, the shear
modulus, can be scaled away. Furthermore, if fingers form with
wavelength A and amplitude A, this introduces additional strain
associated with the in-plane distortion of magnitude A /1. At the
onset of the instability, the elastic screening length O(a) must
scale with the thickness of the layer, so that we expect the
wavelength of the instability to also be independent of any ma-
terial parameters, with A~O(a). However, how is it that the
formation of fingers, which are areas that have receded deeply
into the bulk and therefore undergone huge shear strains, can
reduce the total shear energy in the elastomer?

To clarify how fingering can alleviate shear, we first build
a very simple model completely neglecting in-plane strain. Again,
focusing our attention on the central plane of the elastomer, we
assume that it is made of thin strips of width dx, which we treat as
elastically independent. If one of these strips is stretched in-plane
by a factor 4, in the y direction and a factor A, in the x direction, as
shown in Fig. 2 4 and B, the small thickness of the strip guarantees
that the displacements in the x direction are small compared with
a, and therefore do not give rise to large shear strains. However,
a point with coordinate y is moved by an amount (y —//2)(1 - 4,)
and so suffers a strain y ~ (y —1/2)(1 — 4,)/a, and the elastic shear

energy of the strip is therefore E; =« ﬁi yidy o (1— Ay)z. A stretch
in the z direction by a factor of (1 + Az/a), together with volume
conservation requires (14 Az/a)A4, =1, which allows us to re-

write the shear energy of our strip as Es o« (1+Az/a —1/(4)).
Plotting this as a function of 4, in Fig. 2C, we see that the energy
has a minimum at A, =1/(1+ Az/a) <1 for Az> 0. However, be-
cause our system is infinite in the x direction, we know that the
average x-stretch (4,) = 1; otherwise, the strips will build up infinite
displacements in the x direction. Inspecting Fig. 2C, we see a large
nonconvex region extending from the minimum till 4, — o, i.e.,
the total energy of the system is minimized when Az > 0 with most
strips being stretched by the optimal value of 4, =1/(1+ Az/a) <1
and a very small number having large 4,; these digits dig deep into
the bulk of the elastomer, leading to the fingering instability. We
note that if the energy was convex, the minimum energy com-
patible with the average stretch (4,) =1 would be achieved by each
strip individually taking A,=1. This simple explanation thus
accounts for how the lack of convexity drives the energetics of
finger formation and predicts a first-order transition to a large-
amplitude state, consistent with the experimentally observed hys-
teresis shown in Fig. 2B.

Though our zero-dimensional model provides a mechanism
for the instability, it is unable to provide information about the
wavelength and threshold for the instability; for this, we now turn
to an asymptotic simplification of the 3D problem by taking
advantage of the small thickness and symmetry of the elastic
layer. We expand the displacement vector U(x,y,z) to leading
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Fig. 2. (A) The simplest model that characterizes the phenomenon focuses on
the central (z=0) plane of the elastomer and considers it to be composed of
many independent thin strips of width dx. (B) A schematic of the deformation
of the strips when stretched perpendicular to the plane of the paper leads
them to undergo independent planar deformations. (C) The constraint of
incompressibility causes the energy of a strip E; to not be a convex function of
Jx 50 the minimal average energy with (,) = 1 is achieved by most strips taking
the optimal value of contraction and a small number taking divergent values
and hence receding deeply into the bulk and forming fingers. This minimal
model highlights the mechanism of instability but provides no information
about the wavelength and threshold for the instability (see text).

order in z and impose the condition that U= + Azz/2 atz= +a/2,
leading to the form

U=(1-2z/a)(1+2z/a)u(x,y) + (zAz/a)z, [1]

where u(x,y) is the 2D displacement of a point on the central
(z=0) plane. With V as the in-plane gradient operator and I as
the 2D identity matrix, we can then write the 3D deformation
gradient, F;; =6; + 9;U;, as

F=I+(1-42%/a*)Vu—-8zuz/a+ (1+ Az/a)iz, [2]

and see the decomposition that results as a consequence of scale
separation.

To characterize the energetic cost of this deformation, we model
the elastomer as an incompressible neo-Hookean solid with volu-
metric elastic energy density $uTr(F.FT), which we can explicitly
integrate in the thickness direction. Here we assume that surface
tension effects are unimportant, as our experiments show. Thus,
when the energy of the system is rescaled by this single constant,
what remains is a purely geometric problem. The constraint of
volume preservation in the elastomer when integrated through the
depth requires us to introduce a 2D pressure field P(x,y) that
constrains the depth-averaged volume change at each point in the
elastomer, and leads us to an effective 2D energy density L:

a/2
L(u,P)=p / %Tr(F.FT) —%
—a/2

1 16 6
ociTr(G.GT)+?\u/a\2—P(Det(G)—1+§Az/a). 3]

Biggins et al.

In carrying out the integral (ST Appendix, Theoretical Model), we have
introduced an effective 2D deformation gradient G =1 +2Vu and,
because we expect Az, ~a?/I <<a, retained only the leading-order
term in Az/a. We note that 2= =2 (G — PDet(G)G™7), so extrem-
izing this energy leads to the following Euler-Lagrange equations
for the planar displacement field u and the pressure P,

4
§V2u —Det(G)G™T - VP =8u/a?

Det(G)=1 —gAz/a. [4]
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Fig. 3. Comparison of experimental and theoretical/numerical pre-
dictions. (A) Threshold separation Az, x width / as a function of thickness
a shows that the experimental and numerical results follow the theoretical
prediction (Eqgs. 13 and 14). (B) Finger wavelength A at instability as
a function of thickness a shows that the experimental and numerical
results follow the theoretical prediction (Egs. 13 and 14). (C) Finger
amplitude A just after threshold as a function of thickness a shows that
the experimental and numerical results agree, but only over a range of
thickness values. For large a, the separation of scales between the thickness
a and width of the film / is less, and the number of wavelengths in the
sample is smaller, leading to end effects that make agreement between
theory and experiment only qualitative.
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It is interesting to note that the form of the depth-integrated Eq. 4
is similar to the Darcy-Brinkman equation for flow through a dilute
porous media (13), with the displacement reinterpreted as a veloc-
ity. Here, the most interesting aspect of the equation is the appear-
ance of the bare displacement of the central plane u. On the free
surfaces y =0, /, we must satisfy the natural boundary condition

(G—P Det(G)G™") -y=0. [5]

Taking each field to be the sum of a large translationally invariant
base state corresponding to the deformations before the instability
and an infinitesimal oscillation in the x direction, we may write

u=Y(y)y+ecos(kx)Y2(y)y + e sin(kx) X (y)x [6]

P=1+P(y) +ecos(kx)P(y). [7]

Substituting this into [4]— [5] and solving for the translationally
invariant fields, we get

Y1) =2 Az(l~2)/a 18

P1(y) =6yAz(y—1)/a> —gAz/a. [91

At order €, the Euler-Lagrange equations (Eq. 4) can be
solved algebraically for X, and P, to yield a linear fourth-order
eigenvalue equation for Y,, whose solution provides us the
wavelength and threshold for instability (S Appendix, Theoretical
Model). A substantial simplification arises by considering the
limit / > a and, consequently, Az < a, which allows us to drop
all terms proportional to Az except those also containing powers
of [, reducing the final equation to

(a°K* +10)a*k*Y> () + a*v{V(y) = 2(a’k* +5)a’Y; (y),  [10]

which has the allowable decaying solutions

Y, =ciexp (—, /10/a? +k2y) + coexp(—ky). [11]

Substituting this into Eq. 5 gives ¢ =-c2k?/(5/a>+k*) and
a condition which yields the threshold separation Az; for insta-
bility at wavenumber k

o2 (@21 = Va2 +10ak +10)a?k* +25
Aa=T 15ak -

Minimizing this expression with respect to k yields the threshold
of the first unstable mode (Az) and the wavelength (A), which
are given by

Az, ~1.694%/1 [13]
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A=2.74a. [14]

We see that the wavelength of the instability scales with the
thickness of the elastic layer and the threshold displacement is
inversely proportional to the slab width, and are independent of
any material parameters, as we argued earlier based on scaling
arguments.

In Fig. 3, we show a comparison of these predictions with
experiments and numerical simulations (SI Appendix, Numerical
Simulations); the results compare very well. Although our line-
arized analysis cannot extend beyond the point of instability, our
finite element simulations have no such limit. Experimental and
numerical results show that the amplitude of the fingers 4 =~ 1.4a,
and confirm the subcritical nature of the instability with a region
of bistability wherein the homogeneous and undulatory phases of
the interface coexist. In this regard, our elastic instability is
fundamentally different from the hydrodynamic Saffman—Taylor
instability that is supercritical.

Our study has uncovered the form and nature of the confined
elastic meniscus fingering instability in a minimal rectilinear
setting using a combination of theory, experiment, and numerical
simulation. We show the origin of the transition is essentially
geometric and hence likely to be ubiquitous, just as its fluid
counterpart is, and predict and verify the wavelength and thresh-
old of the instability. At a practical level, our results have impli-
cations for the strength of elastic adhesive layers; because the peak
strain jumps very significantly during the fingering transition,
fingering is very likely to lead to fracture and adhesive failure.
From our 2D model, the stored energy per unit area scales as
pa(Azl/a?)?, so that the normal stress that must be applied to the
plates o; ~ ul/a, and predicts that the fracture stress of polymeric
adhesives is inversely proportional to the thickness of the layer,
and that the total strength of the adhesive bond increases faster
than the adhesion area.

We have also shown that the transition is sudden with a region of
bistability between the fingered and flat states. The hysteretic nature
of the transition permits control over the placement of fingers or
digits; if the system is in the bistable regime one may “write” out
arbitrary “bits” onto the interface by applying a large perturbation at
the desired location (Movie S4). These bits are completely reversible
localized elastic structures, so that this fingering transition might be
used to build a digital mechanical memory. Because our system
produces fingers with wavelength proportional to the smallest
length-scale in the problem—namely, the thickness of the layer—
without any prepatterning on this length-scale, this mechanism may
also have uses in microfabrication. Although the digitization in-
stability is fully reversible, it may be easily made permanent by further
cross-linking; additionally, the use of a nematic elastomer may allow
the transition to be driven by heat or light rather than separation.
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1 DMovies

The enclosed movies show the formation of the instability and our ability to
pattern it in the bistable regime.

Moviel:

Typical experiment for a gap a = 3.05mm, showing a sinusoidal desta-
bilization just before the sudden nucleation of a finger. Dimension of slab
29 x 20mm. The movie is slowed down by a factor of 20.

Movie2:

Movie showing the reversibility of the instability and its hysteretic char-
acter. The transient domain is relatively small compared to the size of a
finger. Gap a = 3.04dmm. Dimension of slab 13 x 19mm. Real speed.

Movie3:

Movie showing that identical fingering occurs even when the air-elastomer
interface is replaced by an air-oil interface. The change in interfacial ten-
sion does not change either the onset of the instability or its wavelength,
suggesting that the effects of interfacial tension are unimportant at leading
order in determining this phenomenon.

Movied:

Movie showing the possibility to nucleate a finger wherever along the
front in the hysteretic region, when the two plates have been separated by
a distance Az = 0.36mm. The needle used to poke the gel is made of
hydrophobic plastic. Gap a = 3.04mm. Dimension of slab 27 x 19mm. Real
speed.



2 Theoretical model

Our two-dimensional elastic model of the instability successfully predicts the
wavelength and threshold without any fitting parameters. Here, we provide
further details of the theory associated with the calculations of the thickness
integral of the energy and the stability analysis of the model.

We recall that we are modeling an elastic solid initially occupying the
region of space —oo < x < 00, 0 < y < I, —a/2 < z < a/2 where a << [
and which is perfectly adhered to rigid glass plates at z = +a/2. The glass
plates are then moved further apart by an amount Az so that they are at
z = £(a+ Az)/2 and we seek to understand the response of the elastomer
to this loading.

2.1 Quadratic form of the displacement and deformation
gradient (eqns. (1) and (2))

The displacement of a point in the elastomer initially at (x,y, 2) is U(z, y, 2).
Taking advantage of the thinness of the elastomer, we Taylor expand this
displacement to quadratic order in z giving

U(z,y,2) = Az,y) + 2B(2,y) + 2°C(z,y) + ... (S.1)

Imposing symmetry about z = 0 we see that B lies in the Z direction while
A and C lie in the z — y plane. Requiring that U(z,y, £a/2) = +Az2%/2
so that the displacement on the boundaries matches that of the plates, we
see that B = Az%/a and that A = —(a?/4)C. Since A is the displacement
of a point in the z = 0 plane and lies entirely in the z = 0 plane, we write
A = u so the entire displacement becomes

U(z,y,2) = (1 — 422 /a®)u(z,y) + (2Az/a)z, (S.2)

which corresponds to eqn. (1) in the article.

The deformation gradient F' is defined as Fj; = 0;; + 0;U;. Using V as
the in-plane gradient operator (i.e. V = )28% + ya%) and I as the in-plane
identity (I = XX + §¥) we can evaluate F' as

F =T+ (1-42*/a*)Vu —8zuz/a® + (1 + Az/a)z2, (S.3)

which is eqn. (2) in the article.



Working in an  — y — 2z basis and breaking u into components as u =
uzX + uyy we can write I explicitly as

2 2
+HA-E)% - %
— U U ZU
F=l a-%% 1+0-%% | 64
0 0 1+ Az/a

2.2 2-D Energy Function (eqn. (3))

We write our two dimensional elastic energy as

a/2 . . B
L(u, P) = M/a/2 v (F.FT) - P( a?i)iDAtsi) 1)

dz, (S.5)

where the first term is a standard neo-hookean energy density for a deformed
elastomer, and the second term models the elastomers incompressibility by
imposing thickness averaged incompressibility at every point in the x — y
plane via a pressure-like Lagrange multiplier field P(z,y). The coefficient
of this term is simply for algebraic convenience. Evaluating the first term
in this integral is a simple matter of expanding Tr (FFT) and integrating
each term separately:

Tr (FFT) =2+ (1 — 422 /a*)*Tr (Vu(Vu)") + (S.6)
64z%u-u/a* + (1 + Az/a)® +2(1 — 42%/a*>)V - u

a/2 4
/ Tr (F.FT)dz:a(2+(1+Az/a)2)_|_gv.u

—a/2
8a T 16
1
= %Tr (G.GT) + £u - u + const (S.8)

In the last line we have introduced an effective two dimensional deformation
gradient G = I + %Vu.

The second term in the energy can be treated in a similar way. We first
note that Det(F) = (14 Az/a)Det(I + (1 — 422/a?)Vu). Secondly, we use
the (two-dimensional) relation that Det(I + ¢B) = 1 + ¢Tr (B) + ¢?Det(B)



to expand Det(F') then integrate each term separately giving:
a/2 A
/ Det(F) dz —a (1 + z) (S.9)
—a/2 a

2 8
14+ =Tr —Det .
X ( +3 (Vu) + 15 De (Vu))
Applying the same identity, this can be rewritten as a(1+ Az/a)(5Det(G) +
1)/6. Assembling these two results, we can write the entire integrated energy
as

_opa (1 7, 6u-u
L= <2Tr (G.G") + 52 (S.10)
6Az
-P <Det(G) -1+ 5(Q—|-AZ>> + COIISt) .

Finally, we neglect the constant, drop the pre-factor and, since Az ~
a’/l << 1, replace Az/(a + Az) by Az/a, to write

Lo iTr (G.GT) + Eju/a|® — P (Det(G) — 1+ $Az/a),

which corresponds to eqn. (3) in the main article.

2.3 Bulk equations and boundary conditions (eqns. (4)-(5))

We now seek to minimize the total energy of the elastomer, so we find the
Euler-Lagrange equations for u and P:

oL oL
. - A1
oL
= 12
5p =0 (5.12)
The second of these straightforwardly evaluates to give
Det(G) =1 — Az/a. (S.13)

The right-hand side of the first equation is also straightforward: 0L/0u; =
(51a/6)(32/5)u;/a. The left-hand side can be evaluated using the result
that 0Det(A) /0A;; = Det(A) Ai_jT, so we have
oL  Spa
68jui N 6

(4G, - tPDet(@) GT). (8.14)

)



To construct the whole equation we need one final result, 9;Det(G) Gi_jT =0,
which is easily seen by explicitly writing out G. We can then write the entire
equation as

2a°V*u — Det(G) G~ - a®VP = 8u. (S.15)

Equations and correspond to eqn. (4) in the main article.

Since our problem does not impose any additional constraints at y = 0,1
we take the natural boundary conditions, corresponding to an unconstrained
minimization of the energy, given by %ﬁj = 0 where 1 is the unit normal
vector at the boundary. In our case i = ¥ on both boundaries. We have
already evaluated this derivative, so we can immediately write the boundary
condition as

(G — PDet(G)G™T) -y = 0. (S.16)

corresponding to eqn. (5) in the main article.

2.4 Solving the model (eqns. (6) to (14))

To solve our model, we introduce a trial form for the solutions consisting of
a large translationally invariant part and an infinitesimal oscillatory part:

u=Yi(y)y + ecos (kx)Ya(y)§y + esin (kx) X2 (y)x (S.17)
P =1+ Pi(y) + ecos (kx) P (y). (S.18)

The translationally invariant part corresponds to the deformations before
the fingering instability, which we call the base-state. Working in the z —y
coordinate system we have

1 0
G = ( 0 1+ %Y{(y) ) ’ (S.19)
and s
Det(Gh) 77 = < L+ Eoyl(y) " ) . (S.20)

Substituting G; into eqn. we get
1y/(y) = ~8Az/a, (s.21)
which we can solve for Y] to get

~ 3Az(1 - 2y)

Yi(y) o (S.22)



in which we have fixed the constant on integration by requiring that Y1 (1/2) =
0 to preserve the symmetry about y = [/2. This corresponds to eqn. (8) in
the main article. Since VP = P{(y)y , we can write eqn. as

162Y{'(y) — aP(y) = 8Yi (y). (5.23)
This can be integrated to find
Pi(y) = 6yAz(y —1)/a® — gAz/a. (S.24)

This corresponds to eqn. (9) in the main article. The constant of integration
has been found by applying the boundary condition (eqn.|S.16|) which reads:

5Y{() = PLw))|,—g, = O- (S.25)

We consider adding an infinitesimal oscillatory perturbation to the base-
state to examine its stability. We now have

_ de [ kcos (kx)Xa(y) sin (kx)Xy(y)
G‘@+5<—mmwmaM<m@@ﬁ@>’ (5.26)
Det(G)G™T = Det(Gy) Gy T (S.27)

de cos (kz)Yy(y)  ksin (kz)Ya(y)
T3 < —sin (ka:);(é(y) k cos (kx) X2 (y) )

Substituting G into eqn. and expanding to first (linear) order in e gives
e cos (k) (1 + Y7 (y))kX2(y) + Y3(y)) =0 (5.28)

Recalling the form of Yj(y) we see that

3Az
Yi(y) = ———

=5 (S.29)

We expect the threshold value of Az to scale as Az; ~ a2/l so, in the limit
of a << I, we expect Az; << a and hence Y] (y) << 1. This means we can
neglect Y{(y) in the above equation, so the solution for X5 (y) is simply

Xo(y) = —Y3(y)/k. (S.30)

We can also write VP as

B —ek sin (kx) Py (y)
Vb= < P/ (y) + €Pj(y) cos (kx) > ' (8:31)
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so the x component of eqn. is, to linear order in e,
50° (X3 (y) — kX2 (y)) (S-32)
+a?((1+ 5Y{(y)kPa(y) — 5kY2(y) Pi(y)) = 8X2(y)

We can again neglect Y/(y) << 1 term so, substituting in our solution for
Xa(y), we can solve for algebraically for Py to get

4 10

Pt = 5 (BAw) - (14 s ) 0+ 250 ) . s39)

Finally, we can evaluate the y component of eqn. to linear order in € to
get

507 (Y3'(y) — K*Ya(y)) — a*(Py(y)+5kX2(y) Pi(y))
_ 8¥a(y). (8.34)
Substituting in our results for Xs(y) and Ps(y) gives
K2Ya(y) (10 + a2k + a2 Pl (y)) + a*V{V () (S.35)
=2(5+a’k*) Y3'(y).
Recalling the form of P;, we see that
a®P}'(y) = 12Az/a (S.36)

so, as with Y] (y), we see that a?P/'(y) << 1 when a << [ so we can ignore
P/'(y) in the above equation giving
a®k*Ya(y) (10 + k%) + a* vy (y) (S.37)
=2 (5+ a’k?) a®Yy (y),
which corresponds to eqn. (10) in the main article. We focus on the bound-

ary at y = 0 and so look for solutions that decay as y — co. We write Y3 as
a linear sum of the two such solutions

Y5 = ciexp (— 10/a? + k2y> + caexp (—ky), (S.38)

which is equation (11) in the main article.

We impose the boundary condition at ¥ = 0. Since these solutions decay
as y — oo we can neglect the boundary condition at y = [. The linear
correction to the boundary condition at y = 0 (eqn. [S.16)) is

4 ( Xh0)\ 0 1EY5(0)
E ( vi(0) ) = P5(0) 1 + (1 + P1(0)) EX(0) ) (S.39)

5

o
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However, P1(0) = —2Az/a — 0 when a << [ so the  component, after
substituting for Xo, is

—Y5'(0) = k*Y>(0). (S.40)
Substituting in our result for Y5 we solve for co to get
a’k?
Ccl1 = —Cgm. (S41)

The y component requires us to evaluate P»(0). To do this we first note that

10 ., Y}"(0)  10cy
and secondly that P{(0) = —6lAz/a®, which does not vanish for a << I

because it contains a power of [. Assembling the entire boundary condition

then gives
6lAz 10c¢
Y3(0) = — =57 Y2(0) + 5" — Y3(0), (S.43)
which, upon substituting for Y5 and ¢; and solving algebraically for Az
gives

2225+ a2 (10 + ak (ak — VIO + ak?) )
fa=T 15ak

which corresponds to eqn. (12) in the main article. This result tells us the
threshold Az at which a mode with wave-number k becomes unstable. We
find the first unstable mode by minimizing this result over k, to predict that
the first unstable mode has

(S.44)

A~ 2.74..a (S.45)
Az ~ 1.69...a%/1. (S.46)

which correspond to equations (13)-(14) in the main article.

3 Numerical Simulations

All simulations were performed using the commercial finite element soft-
ware ABAQUS 6.11. A sketch of the simulation domain is shown in Fig.
S.1. Although the transition under examination is purely elastic, its subcrit-
ical nature means that it cannot be simulated using equilibrium methods,
so instead we use Newtonian dynamics with both numerical and viscous
damping. We ran two types of simulations: lower resolution simulations



with many wavelengths to capture the behavior at onset and high reso-
lution simulations focusing on a single digit to capture the profile of the
fingers.

1. Material properties

The gel is modeled as an incompressible neo Hookean material with
shear modulus of 500Pa and a density 103Kg/m3. We used a large
Rayleigh damping model to ensure that the system is overdamped. For
a given mode ¢ the fraction of critical damping, &;, can be expressed
in terms of the damping factors ag and (g as:

_ ar | Brwi
2(,02' 2 ’

&i (S.47)
where w; is the natural frequency at this mode, ap is for mass propor-
tional damping and Sg is for stiffness proportional damping. To define
Rayleigh damping, we need to specify ar and Sr. We load the bound-
ary near the critical displacement and perform a linear perturbation
procedure to extract w;, ¢ = 1 to 5, and correspondingly specify apr
to make & around 5. This is only a crude estimation of the damping
coefficient as the stiffness matrix is a function of strain. When the
fingers are fully grown, we expect the natural frequency is different
from that of the onset state. After a try and error, we set ap = 8000
to 10000 to damp out the lowest frequency oscillation. For the highest
frequency, we rely on numerical damping (which will be documented
later) and set Sr = 0.

2. Boundary conditions

Symmetric boundary conditions are applied on the two lateral planes
(highlighted in yellow), the middle plane (light grey), and the back
plane (blue). Therefore only a quarter of the physical thin slab is sim-
ulated to save computational power. The front surface (green) is stress
free and Gaussian white noise is applied on its initial y coordinate in or-
der to trigger the instability at the critical loading displacement. The
mean magnitude of the noise is 2% of the smallest mesh size inside
the system. The top surface is pulled apart at such a small constant
velocity that it always takes 5 to 10 minutes before the top surface is
loaded up to the critical displacement. Once oscillations of the front
surface ore detected., the pulling is stopped and the top surface is held
still while the system evolves freely.



3. Meshes and elements

First, to get the displacement and wavelength of the onset of the in-
stability, we run the simulation in a long cell (which contains 8 to 9
wavelengths) containing 401 nodes for the length, 76 nodes for the
half-width and 26 nodes for the half-gap. This is more than adequate
to detect the point of onset and the wavelength of the unstable mode,
but, as the fingers grow, the strain at the tip of the fingers becomes
very large (greater than 7) so we need a finer mesh. In order to cap-
ture the profile of the fully grown finger, we set the length of gel slab
as half the previously calculated wavelength, and keep the boundary
conditions the same. We use 201 x 76 x 26 nodes to a quarter of a single
finger, which is sufficient to resolve its full profile, even with the very
large strains at its tip. Mesh density is geometrically biased towards
the free front and middle plane, where the nonlinearity is the most pro-
nounced after instability happens. C3D8H (8-node linear brick, hybrid
with constant pressure) elements are adopted. The pressure penalty
serves as an additional degree of freedom to ensure the constraint of
incompressibility.

4. Time integrator

As the material is incompressible, it is impossible to simulate the dy-
namic response with an explicit method as the stable time increment
would be inversely proportional to the bulk modulus. Therefore we use
an implicit method. Both the Hilber-Hughes-Taylor (HHT) integrator
and backward Euler integrator gave the same onset of instability and
fastest growing mode. In our system, we did not resolve the high-
frequency vibrations and used a large numerical dissipation to obtain
convergence during the loading history. In the HHT scheme, we choose
a=-1/3,8=1/4(1—-a)? and v = 1/2 — « to achieve the maximum
numerical damping [I] with an adaptive time step which is reduced in
the neighborhood of instability.

5. Dimensions of the samples

We choose layer dimensions to ensure that the ratio of the width to
the gap thickness is large (over 10) so that the layer can reasonably be
thought of as thin. Our choice of length containing 8-9 wavelengths
was determined to keep a low overhead on the computational costs. We
note that this causes some end-effects in our simulation, which explains
why the calculated wavelength is slightly below our experimentally
observed wavelength. Tab. [1|shows the sample dimensions used, while
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Figure S.1: Sketch of the simulation domain. Only a quarter of the thin
slab is simulated. To detect whether the front surface (green) is oscillatory,
we extract the displacement at the intersection line (red) where the middle
plan (light grey) and front surface meet.

Table 1: Sample Dimensions (mm
length 10 [ 20 | 30 | 40 | 50 | 60 | 70 | 80 | 100.2 | 149
width 40 | 40 | 40 | 40 | 60 | 60 | 80 | 80 | 58.5 | 55.8
gap thickness | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 5.04 | 7.45

Fig. shows the 3D geometry of the fully grown finger right after
the instability. Only one finger with periodic boundary conditions was

actually simulated.
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Figure S.2: 3D geometry of a single finger right after the instability. Only
one finger was simulated with periodic boundary conditions. ADOBE
READER allows for the manipulation of this interactive figure.
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Movie S1. Typical experiment for a gap a = 3.05 mm, showing a sinusoidal destabilization just before the sudden nucleation of a finger. Dimension of slab:
29 x 20 mm. The movie is slowed down by a factor of 20.

Movie S1

Movie S2. Movie showing the reversibility of the instability and its hysteretic character. The transient domain is relatively small compared to the size of
a finger. Gap a = 3.04 mm. Dimension of slab: 13 x 19 mm. Real speed.
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Movie S3. Movie showing that identical fingering occurs even when the air-elastomer interface is replaced by an air-oil interface. The change in interfacial
tension does not change either the onset of the instability or its wavelength, suggesting that the effects of interfacial tension are unimportant at leading order
in determining this phenomenon.

Movie S3
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Movie S4. Movie showing the possibility to nucleate a finger wherever along the front in the hysteretic region, when the two plates have been separated by
a distance Az = 0.36 mm. The needle used to poke the gel is made of hydrophobic plastic. Gap a = 3.04 mm. Dimension of slab: 27 x 19 mm. Real speed.

Movie S4

Other Supporting Information Files

SI Appendix (PDF)
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