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On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their

mechanical response. We show that by controlling the type, number, and distribution of defects on a

spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical

simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs

of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere

which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the

transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests

methods to engineer shape into soft spherical shells using a frozen defect topology.
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The continuum theory of elastic shells is applicable to
the study of the mechanical response of systems across a
wide range of length scales, from viruses (25 nm), vesicles
(1 �m) [1,2], pollen grains (10–100 �m) [3], armored
bubbles (10–100 �m) [4] to the behavior of macroscopic
shells seen in aircraft fuselages (10 m) and even megascale
lithospheric dynamics [5]. While the only geometric pa-
rameter in the study of these systems is their size-to-
thickness ratio (which also translates into the only material
parameter as well), on microscopic scales, the effects of
crystallinity and defects may be important in determining
the mechanical response of these shells. Indeed, isolated
fivefold disclinations in flexible membranes with internal
crystalline order are responsible for the buckling of a flat
membrane [6], an effect that manifests itself in the distinc-
tive icosahedral structure of virus capsids (100 nm) [7–9],
the shape of colloidal shells [10], etc. To study these
systems where crystallinity is potentially important, we
need to account for the dynamics of the defects while
simultaneously following the dynamics of the embedding
shell, which might engender new defects. The two extreme
limits correspond to the cases when the topography is
frozen, but the defects are mobile [11–13], and the case
when then the defects are frozen but the topography is
mobile [8,9]. We focus here on the latter case, and show
that by playing with the number, type, and arrangement of
defects on a soft spherical shell, and then deflating it, we
can derive controllable morphologies that resemble the
platonic solids.

For crystalline complete spherical shells, topological
considerations pose constraints that dictate that the number
and type of disclinations must satisfy the condition known
as Euler’s formula,

P
zð6� zÞNz ¼

P
zqzNz ¼ 12 [14],

where Nz is the number of vertices with z-coordination
number and qz ¼ 6� z is the topological charge of a
vertex, as shown in the examples in Fig. 1(a). We assume
that the core energies of disclinations are large so that a

crystalline shell prefers to have the minimum number of
isolated disclinations that satisfy Euler’s formula and
denote the number of three-, four-, and fivefold disclina-
tions by ~n ¼ fn3; n4; n5g; e.g., f0; 6; 0g refers to a shell with
six fourfold disclinations; a regular octahedron is an espe-
cially simple example. There are a total of 19 different
possibilities that satisfy Euler’s formula and they fall into
three distinct universality classes [14]. We will further
assume that the set of disclinations obeys some group
symmetry G; i.e., the set of topological defects is invariant
under the action of group G. Then, ~n and G maps any
spherical surface with defects onto a unique polyhedron
(many-to-one map) and henceforth, we will identify each
surface with the corresponding polyhedron. The shape of
the deformed shell depends sensitively on the thickness of
the shell h, the radius of the shell R, and the average vertex
spacing a from which we can form two dimensionless
parameters h=R (aspect ratio), which characterizes the
slenderness of the shell and R=a (lattice ratio) which
characterizes the discreteness of the shell.

FIG. 1 (color online). Difference between frozen topography
and frozen defects. (a) Frozen topography: There is a fourfold
(green square), a fivefold (red pentagon), and a sevenfold
disclination (blue heptagon) that are free to move on a fixed
surface composed of sixfold sites (gray hexagons), often at the
expense of creating additional defects [12]. (b) Frozen defects:
The defects are frozen and the shape of the shell can freely
change. (c) Phase diagram of buckled membranes as function of
h=R and R=a.
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We drive the formation of the polyhedral morphologies
of these thin spherical shells by deflating them gradually
[15]. This naturally leads to shapes that minimize the total
energy of a thin two-dimensional shell that is the sum of
the stretching energy and the bending energy, i.e., UT ¼
US þUB [16]. Because of the slenderness of the shell, it is
energetically favorable to bend rather than to stretch,
resulting in a highly faceted shape [17] from which the
energy, which is initially smoothly distributed, becomes
more and more nonuniform, with high energy concentrated
in the bent regions (edges and vertices). Owing to the
geometrical nonlinearity of the resulting energy densities,
we used a numerical approach to determine the morphol-
ogies using SURFACE EVOLVER [18]. We construct a spheri-
cal shell with crystalline order containing a certain set of
fixed defects of different types that satisfy Euler’s formula
and then decrease the volume in small decrements and
equilibrate the elastic energy in each step. We find that
beyond a critical decrement in the volume, the shell
buckles into different faceted shapes such as that shown
in Fig. 1(b); the specific form is constrained by the number,
type, and orientation of the defects in the original spherical
shell. As we vary the aspect ratio h=R, we find that thick
spheres (h=R * 0:1) deform isotropically and the shell is
always smooth with no noticeable faceting; thin spherical
shells tend to buckle into highly faceted structures. On the
other hand, at low lattice ratioR=a,we generally get simpler
buckled structures since there are fewer degrees of freedom;
as we increaseR=a, we get more complicated structures. At
intermediate values of h=R and R=a, we get structures that
resemble regular polyhedra [19]. In general, we expect to
see various morphologies as a function of the two geomet-
rical parameters corresponding to the aspect ratio and the
lattice ratio as schematized in Fig. 1(c) [14]. In this Letter,
we will consider R=a & 10 since at large lattice ratio, grain
boundary scars become important [11,20].

In Fig. 2, we see that all shells corresponding to platonic
solids arise as a function of the nature, number, and location
of the defects on a sphere. Limiting ourselves to the case of a
single class of defects, we use the classical Caspar-Klug
notation (P, Q) [7], where P, Q 2 N. Thus, for ~n ¼
f0; 0; 12g and (P, 0), we get an icosahedron shell; for ~n ¼
f0; 0; 12g and (P, P), we get its dual dodecahedron shell;
for ~n ¼ f0; 6; 0g and (P, 0), we get an octahedron shell; for
~n ¼ f0; 6; 0g and (P,P) we get its dual cube shell and finally
~n ¼ f4; 0; 0g and (P, 0), yields a tetrahedron shell. We can
analyze the shapes of the buckled shells quantitatively by
looking at the spherical harmonic expansion of the shape as
characterized by the position of the vertices [8,21,22]

Dð�;�Þ ¼ XN
i¼1

Ri�ð���iÞ�ðcos�� cos�iÞ

� XL
‘¼0

X‘
m¼�‘

am‘ Y
m
‘ ð�;�Þ; (1)

where (�i,�i,Ri) represents the polar coordinates of vertex
i (i ¼ 1; . . .N). Since am‘ ’s are coordinate dependent, we

consider rotationally invariant quantities formed from am‘ ’s
that measure the angular projection onto the different ‘’s
[21,22]. Two such quantities are

Q‘ ¼ 1

a00

�
1

2‘þ 1

X‘
m¼�‘

jam‘ j2
�
1=2

(2)

and

W‘ ¼
P

�

‘ ‘ ‘

m1 m2 m3

 !
am1

‘ am2

‘ a
m3

‘

ðPm jam‘ j2Þ3=2
; (3)

where� denotes the set ofm’s such thatm1þm2þm3¼0
and the parenthesis term in Eq. (3) is theWigner 3j symbol.
These parameters allow us to carry out a ‘‘shape spectros-
copy.’’ For example, Q‘ with ‘ > 0 measures the aspher-
icity of the shell; Q4 measures tetrahedral or cubic

FIG. 2 (color online). (a) Difference between (P, 0) and (P, P)
shells illustrating the importance of the orientation of defects
relative to the crystallographic axes. (b)–(d) Simulations of
crystalline shells with different topological defects. The black
dotted line shows the path between two disclinations and
the number indicates the coordination number. The top
(bottom) panel of each box denotes the initial (final) state. The
final state is at volume fraction � 0:8. (b) Icosahedron shell.
(c) Dodecahedron shell. (d) Cube shell. (e) Octahedron shell.
(f) Tetrahedron shell.
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symmetry and Q6 is an icosahedral order parameter
[22–24], while W‘ measures the orientational symmetry
type of the buckled membrane; W4 and W8 vanish for
icosahedra and dodecahedra, and have different relative
weights for the other platonic solids. They are normalized
such that their magnitude is invariant to overall rescaling in
am‘ ’s and Q0 ¼ W0 ¼ 1. In general, for a crystalline shell,

we can evaluate its orientational symmetry by evaluating
Q‘=W‘’s and then compare them with the Q‘=W‘’s of the
corresponding platonic solid, for which the spherical har-
monic representation can be calculated using known alge-
braic formulas [25]. The initial crystalline shell has nearly
perfect spherical symmetry, i.e.,Q‘ � �‘;0. However, as the

membrane buckles, the deformed shell starts to take on
interesting shapes, with nonvanishing Q‘’s for ‘ > 0. We
calculate the Q‘’s for the various buckled crystalline shells
in Fig. 2. The buckled icosahedron shell and dodecahedron
shell have nonzero spherical harmonics only for ‘ ¼
0; 6; 10; 12; . . . ; the cube shell and octahedron shell have
nonvanishing spherical harmonics for ‘ ¼ 0; 4; 6; 8; 10; . . . ;
the tetrahedron shell has ‘ ¼ 0; 3; 4; 6; 7; 8; 9; 10; . . . .

Despite their rather different shapes, we find that the
icosahedron shell and dodecahedron shell have identical
magnitudes of W‘’s, as they belong to the same symmetry
group G and these parameters characterize the symmetry
of the vertices. We also compare the set of jW‘j’s of the
buckled shells with their values for the ideal platonic solids
as shown in Table I. In the case of the icosahedron shell and
dodecahedron shell, we find that the first two nonzeroW‘’s
are jW6j ¼ 0:1697 and jW10j ¼ 0:0940; furthermore
ða06Þ2 ¼ ð11=7Þja�5

6 j2, with all the other am6 vanishing,

coefficients which maximize jW6j [22–24]. Similarly, for
the cube shell and octahedron shell, we find that ða04Þ2 ¼ð14=5Þja�4

4 j2, with all other am4 ¼ 0, coefficients which

maximize jW4j [22–24]. For the self-dual tetrahedron W3

vanishes even though Q3 � 0 [26]. Our analysis of the
numerical simulations shows that the simplest shape pa-
rameters Q‘ and W‘ for the 5 platonic shells converge to
that of the actual platonic solids. Thus, as long as the
crystalline shell has frozen defects, this symmetry leads
to buckled shapes with the same symmetry.

Having considered the symmetry of the buckled shells,
we now consider their mechanical response as they buckle,
focusing our attention on the (P, 0) icosadeltahedral shell
[8,9] which deforms into an icosahedral structure first.
We focus on the case ðP; 0Þ ¼ ð8; 0Þ, although the behavior

for P & 10 is similar. On isotropic compression of a hol-
low spherical shell, it buckles and becomes faceted into an
increasingly icosahedral shape, until eventually, at a scaled
upper critical buckling pressure pu

b � 210, the shell col-

lapses abruptly into a structure with the symmetry of a
squashed cube shown in Fig. 3. A transition from an
icosahedral to squashed cubic symmetry is plausible,
because an icosahedron can be dissected into three
orthogonal golden rectangles [27]. The snap-through tran-
sition presumably selects one of five equivalent dissections
and then squashes along one of the three orthogonal direc-
tions. Classical continuum elastic theory shows that the
buckling pressure of an ideal sphere under hydrostatic

pressure is pc
b ¼ 4

ffiffiffiffiffiffiffi
�Y

p
=R2 � 230 [28], surprisingly close

TABLE I. Normalized invariant W‘ for the platonic solids.

Type W4 W6 W8 W10

Icosahedron � � � �0:1697 � � � þ0:0940
Dodecahedron � � � þ0:1697 � � � �0:0940
Cube �0:1593 þ0:0132 þ0:0584 �0:0901
Octahedron þ0:1593 �0:0132 þ0:0584 �0:0901
Tetrahedron þ0:1593 þ0:0132 þ0:0584 �0:0901

FIG. 3 (color online). (a) Mechanical response of a crushed
icosahedral shell during the loading or unloading (LU) cycle.
The labels (1) to (8) show the shape of the shell at different
points during the LU cycle. As the pressure is gradually in-
creased, the shell becomes more undulating as reflected in (2). At
the upper critical buckling pressure pu

b � 210, the icosahedral-

like shell undergoes an abrupt collapse into a cubelike shell in
(4). As the pressure is decreased, the shell does not return to the
inflated condition by the same path at the pressure-volume
diagram, but slowly inflates via a different pathway as reflected
by Eqs. (6) and (7). The dotted arrows denote the direction of the
LU cycle. (b) Plot of Q‘ during the LU cycle. We see significant
deviation from icosahedral symmetry and the emergence of
octahedral symmetry. The asymmetry of the curves about point
4 reflects the hysteretic behavior of the system. (c) Plot of jW‘j
during the LU cycle.
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to our simulation results despite differing from the contin-
uum theory in two important ways: our shells are crystal-
line and have topological defects. These two features
evidently partially compensate. Next, we reduce the ambi-
ent pressure and we find that the shell remains cubelike
with the six bulges becoming less pronounced, until even-
tually, at a lower critical pressure pl

b � 50, the bulges pop
back out and the shell recovers its icosahedral shape (see
Fig. 3). Thus we see a strongly hysteretic transition in the
morphology of these platonic shells as a function of pres-
sure (or volume) in our simulations [29].

Quantitatively, as the shell becomes highly buckled, we
see the emergence of ‘ ¼ 4; 8; . . . modes, typically asso-
ciated with octahedral symmetry as well as the ‘ ¼ 2mode
which does not belong to the icosahedral group, tetrahedral
group, or the octahedral group. During the snap-through
transition, akin to a first order phase transition, the ‘ ¼ 2, 4
modes are excited as seen from Fig. 3(b) and remain
significant even as the pressure is reduced. The W‘’s high-
light this effect wherein at high external pressure we see
the emergence of approximate octahedral symmetry.
Indeed, at point 4, we find that jW4j ¼ 0:1529, a value
very close to that of the octahedron. Evidently, there is a
spontaneous breaking of icosahedral symmetry during this
abrupt buckling transition and an emergence of another
symmetry group corresponding to a d-wave excitation
(‘ ¼ 2) mode.We find thatW2 � �0:233 during the return
portion of the hysteresis loop which also exhibits return
point memory [30]; i.e., the system returns to the original
curve at exactly the same state that it left. The negative
value of W2 indicates a reduced symmetry which is oblate
as opposed to prolate, scaling with Y0

2 / ð3cos2�� 1Þ,
averaged over all the vertices [31]. Similar effects are
seen for the large deformation behavior of other platonic
shells (see [14]).

To understand these transitions, we note that for a fea-
tureless spherical shell with perfect symmetry, Q‘ ¼ �‘;0.

As the shell buckles, some of the am‘ for ‘ � 0will become

nonzero. A shell with a broken spherical symmetry is
characterized by a set of dominant ‘ modes � that char-
acterizes the buckled shape

�Dð�;�Þ ¼ Dð�;�Þ � a00Y
0
0

� X
‘2�

X‘
m¼�‘

am‘ Y
m
‘ ð�;�Þ þ � � � : (4)

This observation allows us to use a Landau-like theory
of phase transitions [21,22,32], by writing down a free
energy involving rotationally invariant combinations of
am‘ ’s given by

F ¼ X
‘i2�

F‘i þ
X

‘i;‘j2�;i�j

F‘i;‘j þ � � � ; (5)

where

F‘ ¼ �‘

X‘
m¼�‘

jam‘ j2 þ �‘

X
�

‘ ‘ ‘

m1 m2 m3

 !
am1

‘ am2

‘ a
m3

‘

(6)

and

F‘i;‘j ¼ �‘i;‘j

X
�

‘i ‘i ‘j

m1 m2 m3

 !
am1

‘i
am2

‘i
am3

‘j
: (7)

Here �‘ and �‘ are pressure-dependent parameters whose
signs determine the order of the shape transition and �‘i;‘j

measures the coupling between the modes ‘i and ‘j. The

presence of the coupling term F‘i;‘j implies that nonzero ‘i
spherical harmonics can generate ‘j modes if these are not

already nonzero [33]. This coupling term is unnecessary
during the slow deformation phase, but is important during
the abrupt collapse phase [see Figs. 3(b) and 3(c)].
During the slow buckling process of the icosahedron

shell or dodecahedron shell, a single mode free energy
F ¼ F6 suffices; likewise, the slow buckling of the cube
shell and octahedron shell can be described by F ¼ F4. If
the second-order coupling constant �‘ðpÞ becomes non-
zero with increasing pressure, then F‘ will be minimized
by a state such that am‘ � 0 where the quadratic term in

Eq. (6) dominates the free energy. Furthermore, if the third-
order coupling constant �‘ � 0, Landau theory predicts
that this will be a first-order transition that leads to hys-
teresis [21,22,32]. For single mode shape transitions, if we
fix the magnitude of Q‘ and assume the transition is
weakly first order, then the preferred state can be found
by minimizing the third order term in Eq. (6), with the
second order term held fixed [22]. In general, the form of
the transition is determined by finding extrema of the
symmetry invariantW‘ [22–24]; more details can be found
in [14]. However, to understand the full loading cycle, the
complete free energy expression as given by Eq. (5) is
required.
Our analysis of the buckling process of crystalline shells

with different topological defects in the frozen defect limit
shows that the number, type, and symmetry of the defects
allows us to generate elastic platonic solids. This interplay
of topology, geometry, and mechanics suggests a novel
way to create polyhedra that differs from previous work
[34], where the authors use two-component elastic shells,
in contrast to using defects to pattern and drive the faceting
transition. The buckling process underlying shape transi-
tions can be understood by studying rotational invariant
quantities, which quantifies the symmetry of the structure
in terms of a Landau free energy model that captures the
symmetry-breaking transition of the shell during the full
loading and unloading cycle of the crystalline shell. Our
results for athermal shells are naturally applicable to mac-
roscopic shells that are made of discrete elements and
suggest a simple way to trigger shape changes between
smooth and faceted structures on all scales.
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