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Unlike macroscopic multistable mechanical systems such as snap bracelets or elastic shells that must
be physically manipulated into various conformations, microscopic systems can undergo spontaneous
conformation switching between multistable states due to thermal fluctuations. Here we investigate the
statistical mechanics of shape transitions in small elastic elliptical plates and shells driven by noise. By
assuming that the effects of edges are small, which we justify exactly for plates and shells with a lenticular
section, we decompose the shapes into a few geometric modes whose dynamics are easy to follow. We use
Monte Carlo simulations to characterize the shape transitions between conformational minimal as a
function of noise strength, and corroborate our results using a Fokker-Planck formalism to study the
stationary distribution and the mean first passage time problem. Our results are applicable to objects such as
graphene flakes or protein β sheets, where fluctuations, geometry, and finite size effects are important.
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Many macroscopic elastic systems in nature and engi-
neering are multistable; i.e., they can transition from one
stable state to another in response to external perturbations;
examples range from hair clips and slap bracelets [1,2]
[see Fig. 1(a)] to exotic morphing microair vehicles [3].
Elastic multistability is also seen in microscopic systems,
such as protein β [see Fig. 1(b)] sheets which undergo
conformational changes from a closed to an open state [4,5],
graphene flakes [6], composite lipid bilayers [7], etc., where
geometry and finite size effects are relevant and transitions
between metastable states are effected by thermal fluctua-
tions.Althoughmolecular dynamics can provide an accurate
description of these transient behaviors, the computational
cost makes these approaches unfeasible except for the
smallest of systems. There is thus a need for coarse-grained
dynamical models for the statistical mechanics of small
microscopic plates and shells that focuses on the kinetics of
and transitions between the lowest modes of deformation in
terms of a simple analytical model for the coupled nonlinear
Langevin dynamics of the modes. In this Letter, we focus on
such a minimal model that accounts for the role of fluctua-
tions, finite size effects, and geometry in spatially inhomo-
geneous multistable elastic systems.
Thin elastic plates and shells, with a thickness that is

much smaller than their span, can be characterized in terms
of the in-plane and out-of-plane deflectionmodes.While the
general theory for such a low-dimensional object is math-
ematically formidable [8], the large deflection overdamped
dynamical behavior of thin inhomogeneous shallow shells
may be described by a generalization of the Föppl-von
Kármán theory, sometimes known as the Donnell-Mushtari-
Vlasov equation. For microscopic and nanoscopic plates
and shells where inertial effects are dominated by viscous
forces and thermal effects are important, these read [9]

ΔðBΔ ~wÞþηh∂tw¼ð1−νÞ½B; ~w�þ ½Φ;w�þhσðt; x⃗Þ;

ΔðΔΦ=hÞ¼ ð1þνÞ½1=h;Φ�þE
2
ð½w0;w0�− ½w;w�Þ; (1)

where Δf ¼ ∂xxf þ ∂yyf, ½f; g�≡ ∂xxf∂yygþ ∂yyf∂xxg−2∂xyf∂xyg, hðx; yÞ is the spatially inhomogeneous plate
thickness, η is the viscosity of the solvent, ν is the
Poisson’s ratio, E is the Young’s modulus, B ¼
Eh3=12ð1 − ν2Þ is the bending stiffness of the plate
made of a linear isotropic material [10], w0ðx; yÞ is
the spontaneous (or natural) out-of-plane displacement,
wðx; yÞ is the current out-of-plane displacement,
~w ¼ w − w0, Φ is the Airy stress potential whose second
derivatives yield the components of the in-plane stress

FIG. 1. (color online). (a) “Closed” and “open” state of a
slap bracelet. (b) Model of the shape of a microscopic sheet such
as a β sheet by a differentiable coarse-grained map wðx; yÞ [see
Eq. (5))]with twobendingmodes κx, κy and a twistingmode κxy. (c)
Saddle with κ⃗ ¼ ðκx; κy; κxyÞT ¼ ð−1; 1; 0ÞT .
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tensor, and σðt; x⃗Þ is a random Gaussian forcing that we
define later. The first equation in (1) describes the slow
dynamics associatedwith the balance of out-of-plane forces,
while the second equation in (1) is a geometric compatibility
relation that follows from the fast equilibration of in-plane
forces. For later use,wepoint out that the elastic strain energy
of the shell energy is the sumof the bending and stretching of
the middle surface [11]:

U ¼
ZZ

B
2
fðΔ ~wÞ2 − ð1 − νÞ½ ~w; ~w�gdA

þ
ZZ

1

2Eh
fðΔΦÞ2 − ð1þ νÞ½Φ;Φ�gdA: (2)

Rather than decomposing the deformations of the shell in
terms of Fourier (or some other) modes without worrying
about the boundaries, as is traditional in infinite systems, for
small plates and shells that fluctuate freely, we must account
for the boundary conditions that state that the edges are free
of torques and forces, so that [9],

B½∂nn þ νð∂ss þ ∂sψ∂nÞ� ~wjΩ ¼ 0;

Bf∂nΔþ ð1 − νÞ∂s½ð∂ns − ∂sψ∂sÞ�
þ ∂nB½∂nn þ νð∂ss þ ∂sψ∂nÞ�
þ 2ð1 − νÞ∂sBð∂ns − ∂sψ∂sÞg ~wjΩ ¼ 0; (3)

where n and s denote the normal and tangential direction
along the plate boundary curve ψðsÞ ∈ Ω with curvature
∂sψ . In general, the conditions given by (3) lead to the
existence of elastic boundary layers near the edge [9] and
thence make the solution of the governing equations diffi-
cult. However, for a special kind of plate, theL plate [11,12],
with a lenticular section that vanishes along the boundary
according to

hðx; yÞ ¼ h0ð1 − x2=a2 − y2=b2Þ; (4)

where h0 is the thickness at the center and a, b are the
semimajor and semiminor axes of the plate, respectively, the
flexural rigidity Bðx; yÞ ¼ B0ð1 − x2=a2 − y2=b2Þ3 where
B0 ¼ Eh30=12ð1 − ν2Þ decreases smoothly to zero at the
boundaries, i.e., Bðx; yÞjΩ ¼ ∂nBjΩ ¼ ∂sBjΩ ¼ 0, and thus
the boundary conditions (3) automatically vanish, eliminat-
ing the boundary layers which would otherwise occur [9].
This simplification can be used together with a geometric

perspective to describe inhomogeneous deformations of
the L plate as follows: given a point p of a surface S,
we can parametrize the local neighborhood with a
differentiable map wðx; yÞ with wð0; 0Þ ¼ ∂xwð0; 0Þ ¼∂ywð0; 0Þ ¼ 0 [13]:

wðx; yÞ ¼ c½ðκx − κ0xÞðx2 − a2=6Þ þ 2ðκxy − κ0xyÞxy
þ ðκy − κ0yÞðy2 − b2=6Þ�; (5)

where c¼ −ðh0=2ab
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2νþ 5ðζ2 þ ζ−2Þ

p
and

ζ ¼ b=a is the aspect ratio of the L plate, and the constant
terms are included to ensure

R R
A hwdxdy ¼ 0. The non-

dimensional curvatures κx, κy correspond to bending in the
x and y directions and κxy corresponds to the twisting mode
[see Fig. 1(c)]. For small plates, these three elementary
modes are sufficient (in a coarse-grained sense) to char-
acterize the shape completely as they capture the large scale
deformations which decay the slowest (and correspond to a
quadratic Galerkin approximation of the deformation). We
choose the hitherto unprescribed form of the random
Gaussian forcing to be of the form

σðt; x⃗Þ ¼ c1½γxðx2 − a2=6Þ þ 2γxyxyþ γyðy2 − b2=6Þ�;
(6)

to allow the white noise to also be spatiotemporally
decoupled, with c1 ¼ 12B0c=h0a2b2, and γi’s (i ¼ x, y,
xy) being independent stochastic noise terms that are
Gaussian distributed with zero mean hγiðtÞi ¼ 0, and
covariance hγiðtÞγjðt0Þi ¼ 2αDijδðt − t0Þ with D being
the diffusion tensor that characterizes the strength of the
thermal noise and α ¼ ηh0a2b2=12B0.
Assuming that the Airy stress function has the form

Φ ¼ Bðx; yÞβðtÞ [14] for an elastic shell with spontaneous
curvatures described in terms of the constants κ0x, κ0xy, κ0y,
and substituting this form along with the deflection wðx; yÞ
given by (5) into (1), (3) yields the resulting Langevin
equation for the evolution of the curvature components
κ⃗ ¼ ðκx; κy; κxyÞT :

κ⃗
:
¼ v⃗ðτ; κ⃗ 0; κ⃗ðτÞÞ þ γ⃗ðτÞ; (7)

where v⃗ðτ; κ⃗ 0; κ⃗ðτÞÞ ¼ Aðκ⃗0 − κ⃗ðτÞÞ þ β∂f=∂τ is the cur-
vature velocity, with τ ¼ α−1t, and

βðτÞ ¼ ðκ0xκ0y − ðκ0xyÞ2Þ − ðκxðτÞκyðτÞ − κ2xyðτÞÞ; (8)

A ¼
0
@ 5ζ2 þ ν 1þ 5νζ2 0

1þ 5νζ−2 5ζ−2 þ ν 0

0 0 4ð1 − νÞ

1
A; (9)

f⃗ðτÞ ¼
0
@ κx þ 5ζ2κy

5ζ−2κx þ κy−4κxy

1
A ; γ⃗ðτÞ ¼

0
@ γx

γy
γxy

1
A . (10)

We note that the curvature velocity v⃗ ¼ −μ∇κU, where∇κ ≡ ∂=∂κ⃗, and the elastic energy of the L plate, given by
(2), reads
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U ¼ U0½−2ð1 − νÞfðκx − κ0xÞðκy − κ0yÞ − ðκxy − κ0xyÞ2g
þ ðκx þ κy − κ0x − κ0yÞ2 þ β2�; (11)

with U0 ¼ πB0abc2=2. Then, it follows that

μ ¼
0
@ 5ζ2=2U0 1=2U0 0

1=2U0 5ζ−2=2U0 0

0 0 1=U0

1
A; (12)

so that the diffusion tensor D ¼ μkBT, following from the
Einstein-Smoluchowski relation. This allows us to visual-
ize the geometrical dynamics of κ⃗ evolving on a landscape
determined by the elastic energy (11).
Since the governing curvature potential given by Eq. (11)

is quartic in κ (β is quadratic in κ), there can be a maximum
of 3 extrema. When the spontaneous curvature κ⃗ 0 vanishes,
we find that the elastic energy adopts a simplified form

U ¼ U0½ð2HÞ2 − 2ð1 − νÞK þ K2�; (13)

with the mean curvatureH ¼ ðκx þ κyÞ=2 and the Gaussian
curvature K ¼ κxκy − κ2xy having a single minimum at
H ¼ K ¼ 0, i.e., a planar state. Thus for an naturally flat
plate, the plate follows a simple stochastic motion around
the stable flat state. Likewise, a naturally parabolic plate
(K0 ¼ 0, H0 ≠ 0) has only one minimum, and the stochas-
tic dynamics is similar to that for a flat plate, and an
intrinsically hyperbolic shell (K0 < 0) has one minimum
and two saddles. However, when the shell is elliptic,
(K0 > 0), the system is bistable, with two minima, κ⃗0

(global), κ⃗m (local) separated by a saddle κ⃗s. If the initial
configuration of the L-shell is near κ⃗m, the system will be
trapped in this local basin of attraction unless the temper-
ature is high enough, in which case it will sample the global
minimum κ⃗0 as well.
To understand the stochastic dynamics of conformational

switching in naturally elliptic L plates and shells, we
perform Monte Carlo simulations by discretizing (7) in
the time domain, with τ ¼ NΔτ, and write

κ⃗nþ1 ¼ κ⃗n þ v⃗ðκ⃗0; κ⃗nÞΔτ þ
ffiffiffiffiffiffiffiffi
2Δτ

p
Lξ⃗n; n ∈ Z; (14)

where v⃗ðκ⃗0; κ⃗nÞ is the deterministic velocity term evaluated
at κ⃗n, L is the Cholesky decomposition of the diffusion
tensor D and ξ⃗n is a random vector with entries drawn from
standard normal distribution [15]. We assume that the L
plate is initially at the local minimum configuration κ⃗m and
let the curvatures evolve in time via (14). Each stochastic
realization consists of 104 Monte Carlo time steps, of which
the first 80% is devoted to equilibration and there is a total
of 103 realizations for each temperature considered. This
allows us to understand (1) the equilibrium statistics of the
L plate and (2) the mean survival time of the metastable
initial state κ⃗m, namely, the time it takes the plate to go from
the metastable initial state κ⃗m to the stable state κ⃗0.

For the case of a shell with a circular boundary, i.e.,
ζ ¼ 1, and natural curvature κ⃗0 ¼ ð3; 3; 0ÞT corresponding
to a naturally spherical shell with K0 ¼ 3,H0 ¼ 9, neglect-
ing the dynamics of κxy for the moment, i.e., with principal
directions are invariant in time, we can view the stochastic
dynamics of the two principal curvatures κx and κy. The
system contains two minima and a saddle point as shown
in Fig. 2(a). If the shell curvature is initially at the local
minimum κ⃗m, when the scaled temperature T ¼ 0.1, it
remains distributed close to this potential minimum.
However, when T ¼ 1, the shape will diffuse into the
basin of the global minimum and the distribution of the
curvature is very spread out as shown in Fig. 2(b). At
equilibrium (data from 103 runs), the shape remains
distributed close to its natural minima when it is cold, but
becomes spread out when it is hot, as shown in Figs. 2(c)
and 2(d), respectively.
Next, we consider a shell with a circular boundary,

i.e., ζ ¼ 1, with κ⃗0 ¼ ð3; 3;−1ÞT and initial curvature
κ⃗m ¼ ð−2.2;−2.2;−0.2ÞT . Since K0 ¼ 3 and H0 ¼ 8, this
is an naturally elliptic plate. The energy landscape contains
two minima denoted by κ⃗0 and κ⃗m and a saddle point.
In Fig. 3, we show the steady state probability density
function (PDF) for κx, κy and κxy (conditional on the plate
being initially at κ⃗m) from 103 stochastic realizations.
Under cold conditions (T ¼ 0.1), the equilibrium curva-
tures of the plate remains distributed close to its local
minimum κ⃗m as shown in Fig. 3(a). In this case, the system
is trapped in the local minimum and the effect of thermal

FIG. 2 (color online). (a) Contour plot of the elastic energy as a
function of κx and κy. Point 1 is the local minimum, point 2 is the
saddle point, and point 3 is the global minimum. (b) Two separate
stochastic realizations with plate initially at point 1 and T ¼
0.1=1 (blue and red histogram). (c) Histogram of equilibrium
statistics consisting of 103 stochastic realizations under cold
conditions (T ¼ 0.1) with the plate initially at point 1. (d) Same
as (c) but under hot conditions (T ¼ 1).
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fluctuations is negligible. As we increase the thermal noise
(T ¼ 0.5), the distribution of the steady state plate curva-
tures spreads and spends a significant amount of time in
both minima as reflected by the bimodal PDF in Fig. 3(b).
In this case, the thermal fluctuations cause the system to
diffuse out of the local minimum into the global minimum.
At even hotter conditions (T ¼ 5), the equilibrium con-
formations of the plate have a large spread centered around
its global minimum κ⃗0 as shown in Fig. 3(c). In this case,
the thermal noise causes the system to become very spread
out, similar to a diffusive process.
In order to understand these results quantitatively, we

switch from a stochastic Langevin formalism to a determin-
istic Fokker-Planck formalism, writing the probability
pðκ⃗; τÞ of finding the plate with curvature κ⃗ as given by
the continuity equation, p

: þ∇κ · j⃗ ¼ 0, with probability
current j⃗ ¼ v⃗p −D∇κp, leading to the Fokker-Planck
equation [16],

p
: ðκ⃗; τÞ ¼ −∇κ · ðv⃗pðκ⃗; τÞ − D∇κpðκ⃗; τÞÞ; (15)

with initial condition pðκ⃗; 0Þ ¼ δðκ⃗ − κ⃗mÞ. For stationary
processes, j⃗ ¼ 0, and the steady state probability density
follows a Boltzmann distribution, peq ∝ expð−U=kBTÞ.
The shell, in switching between the two minima,
spends most of its time in the neighborhood of the saddle
point, with the escape rate through the saddle depending
on the Hessian of the elastic energy around it [17],
given by

H¼
� ∂2U
∂κi∂κj

�

¼2U0

0
B@

1þκ2y ν−βþκxκy −2κyκxy
ν−βþκxκy 1þκ2x −2κxκxy
−2κyκxy −2κxκxy 2ð1−νþβÞþ4κ2xy

1
CA:

(16)

Denoting the Hessian at the saddle by Hs and its
counterpart at the local minimum by Hm, respectively,
we write the transition matrix M ¼ −μHs [16–18] which
has a single positive eigenvalue λþ that characterizes the
barrier crossing rate. In the overdamped limit, the inverse
escape rate Γ−1 ¼ Π, the mean first passage time, is given
by [16–18]

Π ≈
2π

λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det½Hs�j
det½Hm�

s
expðΔU=kBTÞ; (17)

where ΔU ¼ Us −Um is the energy difference between
the saddle and local minimum. The exponential factor
represents the probability that the energy will exceed that
of the barrier when the system is in thermal equilibrium
and is the only term in (17) that is temperature dependent.
To verify this asymptotic formula, for each temperature

T, we perform 103 Monte Carlo simulations of the first

FIG. 3 (color online). The steady-state PDF pðκxÞ, pðκyÞ, and pðκxyÞ, at (a) cold conditions (T ¼ 0.1), (b) mild conditions (T ¼ 0.5),
and (c) hot conditions (T ¼ 5) for a circular plate with κ⃗0 ¼ ð3; 3;−1ÞT and κ⃗m ¼ ð−2.2;−2.2;−0.2ÞT .
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passsage time (FPT) and then calculate the mean and
standard deviation. In Fig. 4 we show that our simulations
and our theoretical estimate in (17) agree well. Our
simulations also allow us to determine the mean and
standard deviation of the FPT over the full range of
temperatures investigated, which are best expressed as
Π ¼ E½FPT� ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½FPT�p
, with the distribution of FPT

following an exponential distribution with parameter λ ¼
1=Π [19].
Our study exposes the stochastic switching dynamics

between conformations of mesoscale membranelike objects
whose deformations can be described in terms of just a
small number of modes. By using an analytically tractable
elastic model for weakly curved plates and shells, the L
plate with a lenticular section, we avoid the complications
of elastic boundary layers, and can reduce the spatiotem-
poral evolution of morphologies to the interplay between
geometry and thermal fluctuations on a curvature energy
landscape. This allows us to characterize the equilibrium
statistics and mean survival time of the metastable states
for elliptic shells using a combination of numerical sim-
ulations and simple analytical estimates. Our model shows
how geometrical shape transitions can be actuated by
thermal noise in microscopic systems, and is amenable
to experimental tests in a variety of physical and biological
systems.
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I. AUTOCORRELATION

The autocorrelation [1] of a random process describes the correlation between values

of the process at different times, as a function of the two times or of the time difference

and is useful for detecting non-randomness in data. It is a useful mathematical tool for

finding repeating patterns, such as the presence of a periodic signal which has been buried

under noise, or identifying the missing fundamental frequency in a signal implied by its

harmonic frequencies. Given measurements, X1, X2, . . .XN at time t1, t2, . . . , tN , the lag k

autocorrelation function is defined as

R(k) =

∑N−k

i=1
(Xi − X̄)(Xi+k − X̄)
∑N

i=1
(Xi − X̄)2

(1)

FIG. 1. (a) Autocorrelation Function (ACF) as a function of lag k for stochastic plate under cold

conditions (T = 0.1). Horizontal axis: Time lag k = 1, 2, 3, . . . (b) Same as (a) but at T = 5.

For our system, described by

~κn+1 = ~κn + ~v(~κ0, ~κn)∆τ +
√
2∆τL ~ξn, n ∈ Z, (2)

where ~κ = (κx, κy, κxy)
T , the ACF plot for the different κ’s starts with autocorrelation of

1 at lag 1 that gradually decreases with lag k. The decreasing autocorrelation is smooth

with small oscillatory behavior and we say that such pattern exhibits a plot signature of

“high autocorrelation”. Although ~κn depends only on ~κn−1, the correlations at large lags

are, nevertheless, nonzero. This should not be surprising because ~κn−1 depends on ~κn−2,

and in turn ~κn−2 on ~κn−3, and so on, leading to an indirect dependence of ~κn on ~κn−k where

n > k.
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FIG. 2. (a) Partial autocorrelation function (PACF) vs lag k at T = 0.1. (b) Same as (a) but at

T = 5.

Consider the conditional expectation E(XnXn−2|Xn−1) of an autoregressive process of

order 1, i.e. AR(1) [1] defined as,

Xn = φ1Xn−1 + Zt, (3)

where Xn is a random process at time step n, φ1 is a constant and Zt is a white noise. That

is, given Xn−1, what is the correlation between Xn and Xn−2? It is clearly zero since Xn

is not influenced by Xn−2 given Xn−1. The partial autocorrelation between Xn and Xn−k

is defined as the correlation between the two random variables with all variables in the

intervening time t− 1, t− 2, ..., t− k +1 assumed to be fixed. Let LX1,X2,...XN
(XN+1) denote

the best (in terms of minimizing MSE) linear predictor of XN+1 based on X1, X2, . . .XN .

X̂N+1 = LX1,X2,...XN
(XN+1) = a1X1 + · · ·+ aNXN , (4)

where a1, a2, . . . , aN are determined by minimizing

E[(XN+1 − X̂N+1)
2]. (5)

The partial autocorrelation function (PACF) at lag k of a stationary process{Xt} is defined

as [1]

ρ(1) = Corr(Xt, Xt+1) (6)

and

ρ(h) = Corr(Xt − LXt+1,...,Xt+h−1
(Xt), Xt+h − LXt+1,...,Xt+h−1

(Xt+h) (7)
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for h ≥ 2. The PACF at lag h may be interpreted as the correlation between Xt and Xt+h

with the effect of the intermediate variables Xt+1, ..., Xt+h−1 “filtered out”. Clearly, for an

AR(p) process the partial correlation so defined is zero at lags greater than the AR order

p. This fact is often used in attempts to identify the order of an AR process. For our

simulation, we find that the PACF has a sharp cutoff at lag k = 2 and this is not surprising

since our Langevin equation is a first order stochastic differential equation and hence an

AR(1) process.

[1] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control,

4th ed. (Wiley, New Jersey, 2008).
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