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Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide
variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be
reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to
fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence
of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size
distributions of disease and death and see that they have qualitatively different properties. We show that aging
patterns are independent of the details of interdependence network structure, which suggests that aging is a
many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the
details of dependency structure or its formation.
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I. INTRODUCTION

For a collection of s radioactive atoms, the probability of
decay is a constant, so that the fraction of atoms that decays per
unit time −(ds/dt)/s = μ does not change in time. In other
words, an old atom is equally likely to decay as a young one.
Contrastingly, in complex structures such as organizations,
organisms, and machines, one finds that the relative fraction
that dies per unit time μ(t) varies, and typically increases
in time. In living systems the mortality rate μ(t) increases
exponentially (commonly known as the Gompertz law) up until
a late-life plateau, after which aging decelerates. Moreover,
the functional form of μ(t) for a wide variety of organisms is
remarkably similar [1–3].

The origins of biological aging has been sought in two
broad classes of nonexclusive theories [4,5]. The first, the
mechanistic approach, aims to understand aging in terms
of mechanical and biochemical processes such as telomere
shortening [6] or reactive oxygen species damage [7]. The
second approach considers aging as the outcome of evolu-
tionary forces [8]. The early evolutionary theories are based
on the observation that selective pressure is larger for traits
that appear earlier in life [9–11]. As a result, aging, it has
been argued, could be due to late-acting deleterious mutations
accumulated over generations [mutation accumulation theory
(MA)] [9,12] or due to mutations that increase fitness early
in life at the cost of decreasing fitness later in life [an-
tagonistic pleiotropy theory (AP)] [10,13,14]. Physiological
variants of AP consider the relative energy cost of avoiding
aging damage versus reproducing [15,16]: Mutations divert-
ing energy away from repair and maintenance activities to
earlier sexual development and high reproduction rate can be
favored.
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These theories are not problem free. The neutral (i.e.,
nonselective, nondirectional) MA theory has two predictions:
a monotonic increase in the mortality rate with age, and an
increased variation (spread) in mortality rate among different
polymorphisms with age, both of which disagree with observa-
tion [17–19]. The non-neutral (i.e., selective, directional) AP
theory predicts that every aging gene comes with an early-life
enhancement of fecundity. While some such genes have been
found, others contradict this prediction [20–23].

Much like the historical development of an engineered
technological device, the complexity of life appears to
have irreversibly increased as a large number of individual
components become linked through their specialized func-
tions [24–27]. Here we argue that a long history of both
selectively neutral or non-neutral evolution inevitably leads
to a convoluted interdependence between components, and it
is this interdependency that causes observed aging patterns in
complex organisms. To this end, we construct random and
nonrandom dependency networks to represent neutral and
non-neutral evolutionary histories, subject both ensembles to
damage and repair, determine μ(t), and compare the outcomes
of our model with the empiric mortality rate of six different
species. Our approach does not exclude earlier mechanistic
and evolutionary theories, and can be interpreted using the
language of either.

Our work combines ideas from the theory of constructive
evolution [24–27], network theory [28–33] and reliability
theory of aging [34,35]. Allowing us to go beyond static
analysis of connectivity and study the dynamics of the
deterioration of a dependence structure.

II. MODEL

To study the dynamics of aging quantitatively, we start
with a simple view of an organism as a set of nodes with
dependencies characterized by directed edges between them.
Each node may be thought as genes in a regulatory network,
or the differentiated cells or tissues in a multicellular organism
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with specific functions. A directed edge from node A to node
B indicates that A provides something to B such as energy,
crucial enzymes, or mechanical support, so that the function of
B relies on the function of A. In this scenario, the evolution of
the network is represented by random addition of new nodes
and edges, leading to a change in the dependency structure
of the network. This then changes the susceptibility of the
network to further changes, including its longevity.

The evolution of populations are governed by neutral
and non-neutral processes that widen or skew phenotype
distributions. If the formation of a dependency is selectively
neutral [26], then a node can depend on any other node i with
equal probability ℘i , regardless of node degree k. Thus uniform
℘i = const. and nonuniform ℘i = ki/

∑
j kj node attachment

probabilities can be interpreted as the outcomes of neutral and
non-neutral evolutionary processes (see Refs. [26] and [36]
for discussion and further empiric justification). These two
processes yield two very different network topologies known
as random (RN) and scale-free (SFN) networks.

The structure of networks is expected to influence the
dynamics of any processes on it, including aging. However
we surprisingly observe that the two very different processes
for network growth lead to very similar average life spans and
mortality curves.

For a given network, we assume that its dynamics are
governed by three parameters and one initial condition: The
failure rate γ0 � 1 and repair rate γ1 � 1 of individual
nodes, total number of nodes N � 1, and the initial fraction
of damaged nodes d � 1. γ0 is controlled by biomolecular
processes, which are the subject of mechanical theories of
aging (e.g., oxidative stress, radiation damage); the damage
due to prenatal or postnatal stress is contained in the initial
condition d. γ1 depends on the activity or inactivity of genes or
their regulators that may be relevant for repair and replacement
of cells. It seems difficult to determine or modulate N ,
though it should roughly correlate with the complexity of an
organism.

We assume that the aging of complex dependency networks
are governed by the following three rules: (i) Every component
in the organism must depend on at least one other node, and
at least one other node must depend on it (i.e., all parts of the
organism must be fully connected). (ii) With certain fixed small
probabilities the components can break (stop functioning) or
be repaired (start functioning). (iii) A node stops functioning
if the majority of those on which it depends (providers) stop
functioning, and cannot be repaired without a majority of its
providers functioning. We specifically implement these rules
as follows:

(i) Create a network model of an organism
(a) Begin with a single node, and i = 1.
(b) Introduce a new (i + 1)th node and make it depend

on any one of the preexisting nodes j � i with probability
P (kj ), where kj is the degree of node j . For the neutral
scheme P (kj ) is taken to be uniform and independent of
kj , whereas for the non-neutral scheme P (kj ) is taken
proportional to kj .

(c) Make any existing node j depend on the (i + 1)th
node with probability P (kj )

(d) Increment i and repeat step (b) and (c) for N − 1
steps.

(ii) Age the resulting network model of an organism
(a) Define the organism state �ψ(t) = {x1(t),x2(t), . . . ,

xN (t)} where every component can take either one of the
values 1 (functional) or 0 (nonfunctional). The vitality of
the organism is defined as φ(t) = �ixi(t)/N . Assign a
value of 0 to a fraction d of randomly selected nodes and 1
to the rest, corresponding to the initial state of an organism.

(b) For all i, update xi = 1 to xi = 0 with probability
γ0, flip xi = 0 to xi = 1 with probability γ1, and do nothing
with probability 1 − γ0 − γ1.

(c) Break a node if the majority of nodes on which it
depends are broken. Recursively repeat until no additional
node breaks.

(d) Set �ψ(t + 1) to the outcome of step (c).
(e) Increment t and repeat (b)–(d) until all nodes are

broken [i.e.,
∑

i xi(t) = 0].
In order to study the network mortalities, we must define

a time of death τ , for which we define a threshold η =
φ(τ ) = 1% below which an organism is defined dead [37].
Our outcomes are unaffected by this choice for large N [38].

To establish the statistical properties of mortality in our
network, we generate an ensemble of networks (organisms)
and age them according to the above rules. In addition to
tracking the vitality of the network characterized by φ(t), we
also determine the fraction of individuals (not components)
s(t) that remain alive at time t so that the time dependent
mortality rate is

μ(t) = −[s(t + 1) − s(t)]/s(t). (1)

We also track the strength of interdependence between
nodes characterized by the ratio

λ[φ(t)] = log[φ(t)]/ log[φ0(t)],

where φ0 = exp{(−γ0 + γ1)t} is the expectation value of the
vitality of an identical size network with all dependency
edges removed. In other words, λ quantifies how fast an
interdependent system decays compared to an independent
one, as a function of time.

Finally, to analyze the magnitudes of functionality loss we
consider the probability distribution S[
φ] of event sizes 
φ

(i.e., changes in φ). Each event represents an individual disease
or recovery, the final one of which is death.

III. RESULTS

Typically, an organism starts its life with a slow decay
of live cells φ at a rate of 〈a〉γ0, where the dimensionless
number 〈a〉 = 1.80 for scale-free networks and 〈a〉 = 1.75 for
random networks. As an increasing number of nodes die, the
system approaches a critical vitality φ(τ ) = φc when all live
nodes suddenly collapse. Typical trajectories for both network
topologies as well as the values of 〈a〉 and φc are shown in
Fig. 1.

We observe that even if γ1 is set equal to γ0 the system
decays steadily despite the seeming reversibility in dynamics.
This is because while any live node can break, not all the
dead nodes will have the sufficient number of live providers to
sustain a repair.
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FIG. 1. (Color online) Fraction φ(t) of live nodes, 100 runs.
Dependency structures grown via non-neutral (left column) and
neutral (right column) evolutionary schemes yield scale-free (SFN)
and random degree (RN) distributions P (k). Although SFNs have
high-degree hubs (black nodes) absent in RN, their aging character-
istics share remarkable similarity. We plot 100 runs of φ(t) for each
network size N and topology. Inset shows lifetime τ distributions
f (τ ). Increasing N = 2500 (light purple and pink) to N = 106 (dark
blue and red) sharpens f (τ ). The black lines mark our theoretical
predictions for initial slope p0 (=1.80γ0 for SFN and =1.75γ0 for
RN) and critical fraction φc (=0.6 for SFN and =0.5 for RN), which
agree well with simulations. Here {γ0,γ1,d} = {0.0025,0,0}.

In Fig. 2 we quantitatively compare the mortality curves
generated by our digital populations to that of a variety of
organisms, C. elegans, drosophila, medflies, beetles, mice,
Himalayan goats (Tahr), using data compiled from [1–3], and
see reasonable agreement between simulation and data.

To show that our parameters are individually relevant we fit
the empirical mortality curves for a long-lived mutant and wild
type of a fixed organism C. elegans. These two polymorphisms
must have similar N values, and since they are subject to
the same environmental conditions must be subject to similar
kinds of damage and initial conditions. The difference between
their mortality curves can be accounted for by fixing N ,γ0, and
d constant while varying the repair rate γ1 (Fig. 3). Since it is
not possible to account for the difference by varying γ0 while
keeping the other parameters constant one can deduce that the
enhanced longevity of the mutant must be due to higher repair
metabolism rather than lower susceptibility to damage.

Since complex interdependency is not exclusive to living
organisms, we also fit the empirical aging curves to our
model of two kind of automobiles, the 1980 Toyota and 1980
Chevrolet obtained from Ref. [3] and find good agreement
(Fig. 4).
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FIG. 2. (Color online) Empirical mortality data (black dots) fit to
present theory (red lines). The mortality curves of (left to right) C.
elegans, drosophila, medflies, beetles, mice, Himalayan goats from
Refs. [1–3]. The horizontal axis and units of 1/γ0,1 is time in units
of days for C. elegans, drosophila, medflies, and beetles; days/10 for
mice and years for tahr. Varying three of the four parameters (N , γ 1
and d) simultaneously produces similar μ(t) curves (cf. Appendix);
therefore we fix N (arbitrarily) and fit the remaining three parameters.

The effects of the system parameters on the mortality rate
for both scale-free and random networks can be summarized
as follows (Fig. 5): Increasing γ0 shifts μ(t) left; increasing γ1

decreases the value of μ0 = μ(t → ∞) at the late-life plateau;
increasing N increases the slope of μ in the aging (Gompertz)
regime; in other words, larger systems age rapidly and
suddenly, while small systems with few component systems
are virtually nonaging. Increasing the initial damage d simply

FIG. 3. (Color online) Mortality rate of mutant and wild-type
nematodes. We fit the data (square markers) from Fig. 3E of
Ref. [3] using our model (solid lines). To demonstrate that our model
parameters have individual relevance we fit the mortality curves of a
wild-type and long-lived mutant by only altering the repair rate.
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FIG. 4. (Color online) Empiric mortality rates of cars (black
dots) fit to present theory (red lines). The data for 1980 Toyota (left)
and 1980 Chevrolet (right) from Ref. [3] is fitted with {N,γ0,γ1,d} =
{200,0.023,0.023,0} and {200,0.02,0.02,0} respectively. The
horizontal axis denotes years.

elevates the initial (infant) mortality rate. Our simulations
yield a negative correlation between damage and increase in
mortality rate; the high initial damage populations age slower
than the low initial damage populations to eventually converge
to the same μ0 consistent with Strehler-Mildvan correlation
law [39].

The qualitative dependence of average lifetime on damage
and repair rate is as intuitively expected [Fig. 6(a)]. When
γ1 = 0 the average lifespan perfectly fits the curve 〈τ 〉 = β/γ0

for both scale-free and random networks. Curiously, when the
repair rate exceeds a critical value γ ∗ our model allows for
immortality. However the weak dependence of τ on γ1 � γ ∗

1
implies little return for an increasingly large cost, suggesting
why biological immortality is uncommon.

We intuitively expect the onset of death to differ drastically
from the early aging process (referred to as disease). This

difference will be reflected in the distribution of the number
of living nodes that die in a particular time step [
φ =
φ(t) − φ(t − 1)]. In order to tell whether death is just the last
disease or a qualitatively different phenomenon, we analyze
the distribution S(
φ) of event sizes before, after, and of the
largest drop and notice that the latter is qualitatively as well
as quantitatively very different from the former two. Death
and disease occupy an entirely different region of the event
spectrum [Fig. 6(b)]. What is even more remarkable is that
the disease distribution for both evolutionary schemes RN and
SFN are quantitatively similar over a wide range of 
φ, and
obey a power law S(
φ) ∼ 1/
φ2.7 [Fig. 6(c)]. We do not
have an explanation for this striking similarity, nor the value
of the critical exponent.

We have seen that varying model parameters one at a time
produces distinct changes to the mortality curves (Figs. 3
and 5). However we cautiously note that although the model
parameters uniquely determine μ(t), the converse is not true;
i.e., species with different attributes can have similar aging
curves. To quantitatively establish the degree of uniqueness of
μ(t) we isolate four defining characteristics (initial slope, the
plateau value μ0, average life span τ , and crossover time from
an aging to nonaging regime) and see what combination of
parameters produce similar characteristics (see Ref. [40] and
Appendix).

IV. ANALYTIC THEORY

We now aim to obtain the values of initial decay rates
〈a〉γ0, the critical vitality φc, and understand why dependency
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FIG. 5. (Color online) Mortality rate μ(t) = −∂t s/s as a function of time. In each panel we test the effect of one single parameter, keeping
the others constant. While random networks (open markers) seem to age slightly faster compared to scale-free networks (filled markers),
network topology does not seem to have a significant effect on the qualitative features of μ, in line with experimentally observed universality
of mortality curves of different species. We average over 100 networks with 1000 simulations each; thus the lowest probability event we can
resolve is of the order ∼10−5, and fluctuations on that order are likely noise. (a) A higher damage probability γ0 shifts the life-span distribution
and mortality curve to the right (b) Repair rate changes the plateau value μ0 (c) Increasing N increases the slope of μ in the aging (Gompertz)
regime. Only for large, complex networks do we find μ varying significantly with t ; the simpler the organism the less it ages. (d) The initial
damage causes a high infant mortality, but the damage is efficiently repaired soon after birth.
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critical repair rate γ ∗ for which expected lifespan diverges. Note
the remarkable independence of the curves with respect to network
structure. (b) λ(t) = log[φ(t)]/γ0t as a function of t (left) and φ (right)
for 100 trajectories on the scale-free (blue) and random (red) networks
with N = 106 pictured in Fig. 1 (γ1 = 0). The interdependence
parameter λ varies strongly with both t and φ, and roughly doubles
as more damage is accumulated, until the sudden collapse depicted
in Fig. 1 leads to a diverging interdependence. Scale-free networks
show a relatively large variation in λ for short times, but rapidly
converge on a monotonic increase as the network accumulates
damage. Interestingly, scale-free networks begin with a larger value
of λ, but random networks become more interdependent rapidly.
The interdependence of a set of disconnected nodes (completely
independent) have λ0 = 1 shown in the dashed line. (c) Probability S

that φ drops by 
φ for scale-free (open markers) and random (dashed
and solid curves) networks. We analyze the distribution of events
before the catastrophic failure (blue circles and blue solid curve) of
the catastrophic failure itself (red squares and red short dashes) and
events after the catastrophic failure, if there are any (black diamonds
and black long dashes). Note that different network topologies show
remarkable similarity. The largest drop distribution of both random
and scale-free networks obey a power law with exponent −2.7, (thick
gray line marks slope). Note that the disease (blue) distribution is
qualitatively different from death (red). Simulation parameters are
{N,γ0,γ1,d} = {2500,0.0025,0,0}.

networks collapse suddenly. On the way, we also hope to
understand why these quantities are so similar for both
scale-free and random networks, and determine the origin of
the Gompertz-like law.

When the system is far from collapse, the probability
that two providers of a single node dying at once O[γ 2

0 ] is
negligible compared to that of a single provider dying O[γ0].
Then the total probability p0 that a node dies is γ0 plus the
probability that the last vital provider of a node dies. If m(φ)
is the probability that a node is left with one last vital provider,
we can self-consistently evaluate p0

p0 = γ0 + m(φ)p0(1 − γ0). (2)

In a single step associated with the aging of the network, the
probability that a node is repaired is p1 = h(φ)γ1, where h(φ)
is the probability that a node has at least the minimum number
of providers required to function. Then, the change in the
fraction of nodes that are alive is given by


φ = p0φ − p1(1 − φ)

= − γ0φ

1 − m(φ)(1 − γ0)
+ γ1h(φ)(1 − φ), (3)

where we have used the expression for p0 as obtained from (2).
From (3), we see the origin of the catastrophic (and universal)
nature of death. For any arbitrary fully connected network
and monotonically decreasing φ(t), the vital fraction m(φ)
must always start from a finite value in the domain [0,1] and
increases towards unity as φ decreases, inevitably to cause
the first term to dominate the second (γ0 � 1), and thus
leading to a sudden drop in the expected vitality. This is true
in general, although the detailed form of the evolution of φ

depends on the fraction m(φ) of vital providers and repairable
fraction h(φ) that will vary for different network structures.
It is very interesting however, that γ0 is the same for the
reference curve and all overlapping curves, indicating that
the somatic damage rate γ0 can be uniquely determined from
an experimental μ curve without knowing any of the other
parameters describing the system. Equation (3) also indicates
an asymptote in longevity for large repair rates, as seen in
Fig. 6(a). If we set 
φ = 0, we find that the system lives
indefinitely when the repair rate γ1 is set to

γ ∗
1 = γ0φ

∗

h(φ∗)(1 − φ∗)[1 − m(φ∗)(1 − γ0)]

for any given φ∗ ∈ [φc,1], i.e., for a vitality larger than the
critical vitality φc. In this case the system damage increases
while the vitality decreases until it reaches φ = φ∗, but
maintains that damage (level of connectivity) forever. Of
course, (3) governs the expectation value of φ(t), which is the
actual value only in the thermodynamic limit N → ∞; any
finite-size system will die at least with probability γ

N(φ(t)−φc)
0

due to statistical fluctuations.
In general, it is a nontrivial task to obtain the exact forms of

m(φ) and h(φ) and thence the average lifetime, the critical
damage fraction, etc. However we can obtain the initial
slope 〈a〉γ0 = p0|t=0 with which the vitality decreases, and
the critical vitality φc at which the whole system collapses
(see dashed lines in Fig. 1) for the case γ1 = 0: Let the
probability that a node with k providers die be σ (k). Then
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we can recursively obtain σ (1) in terms of the others [41],

σ (1) = γ0 + P (1,1)σ (1) + P (1,2)σ (2) + P (1,3)σ (3) + · · · ,

(4)

where P (1,i) is the probability that a node is provided by
one other node, and that the provider itself has i providers.
The first term corresponds to the probability that a node dies
independent of its connectivity.

Since we neglect probabilities of order O[γ 2
0 ], initially only

degree-1 nodes can be killed by the death of their providers.
Thus substituting σ (k) = γ0 for all k apart from k = 1, and
using

∑
i P (1,i) = P (1) we can obtain from (4) the initial

probability that a degree-1 node dies,

σ (1) = (2 − P (1,1))γ0

1 − P (1,1)
. (5)

To find the expectation value of the initial slope we must
average over the damage rate of all degrees, including σ (k) =
γ0 for k > 1

〈a〉γ0 =
∑

k

P (k)σ (k)

∣∣∣∣∣
t=0

= γ0

(
1 + P (1)

1 − P (1,1)

)
. (6)

Upon substituting the numerical values of P (1) and P (1,1) for
the networks we evolved, we obtain 〈a〉 = 1.75 for the neutral
scheme and 〈a〉 = 1.80 for non-neutral scheme, i.e., only a
∼2.8% difference between two topologies. These initial slopes
are consistent with our aging simulations (Fig. 1).

To heuristically estimate the critical vitality φc, we suppose
that there exists a unique value of φc regardless of the history
of the network. If so, then the collapse can occur not only if
φ approaches φc in τ steps, it can also occur in precisely one
step due to a larger damage, γ0c = 1 − φc. Thus if we substitute
γ0 → 1 − φc in (4) and let σ (i) → 1 for all i to obtain a simple
but interesting result,

φc = P (1).

For the networks we evolved, P (1) is 0.5 for the neutral scheme
and 0.6 for the non-neutral scheme. These values are consistent
with the critical vitalities we observed in our aging simulations
(Fig. 1).

Having estimated the average damage rate and the critical
vitality of the network, we now consider the nature of life-span
distributions. The probability of network survival s(t) is equal
to the probability of δφ being not greater than φ − φc. Since
each node dies with probability p0,

s(t) = 1 − Prob(
φ > φ − φc)

= 1 −
Nφc∑
k=0

(
Nφ

N (φ − φc) + k

)
p

N(φ−φc)+k

0 (1 − p0)Nφc−k.

(7)

Since 1.75γ0 < p0 < 1 is a constant, in the limit N → ∞
the probability of death 1 − s(t) simply becomes a unit step
function. On the other hand for finite N , the step function
softens, and we empirically interpret the rapid transition
from s = 1 to s = 0 as aging. We see that by passing from
finite size to infinite size, we also pass from the stochastic to
deterministic, and from gradual slow aging to instant aging.

Finally, we consider the sharpness of the transition from
s = 1 to s = 0 to see if there is any relation between our results
and the classical Gompertz law for mortality. An approximate
evaluation of (7) is carried out and plotted in the Appendix.

V. DISCUSSION

We have built on a similarity between large networks and
complex organisms (and machines) to create a minimal model
for how large networks (and thence organisms or machines)
might age. It is thus important to be self-critical here by
comparing our study both with reality and with previous
attempts. Any theory that aims to account for a phenomenon
as universal as aging, spanning both animate and inanimate
objects, needs to be robust, i.e., it should not have such strong
assumptions and results that sensitively depend on it. The
weak sensitivity of our outcomes to the details of biologically
justifiable dependency network structures (Figs. 1–6) seems to
satisfy this requirement.

Our analysis differs significantly from earlier theoretical
investigations of network failure [29–32] in which nodes are
simply removed one by one (systematically or randomly)
until networks get fragmented. In these approaches the nodes
do not influence the performance of one other, and are not
allowed to be repaired. Curiously, the lack of interactions in
these models leads to fundamentally different fragmentation
dynamics in scale-free and random networks. In contrast,
the survival curves we observe are remarkably independent
of the network topology (cf. Figs. 1, 5, and 6). The strong
interactions between components may indeed be the reason
behind the strong similarity of mortality curves among so many
organisms. Indeed, this is also consistent with a class of models
that do account for strong interactions, though very differently
than ours, and have been proposed to explain electrical gird
failures [32]. Much still remains to be done in understanding
how the form of these interactions leads to differences or
similarities in the dynamics.

Our study has focused on the dynamics of networks that age
as a consequence of increasing interdependency, and thus leads
naturally to the question of how this might be controlled. Since
the repair rate, and perhaps the damage rate (to a lesser extent)
are experimentally controllable, one might ask if it is possible
to vary their temporal character while keeping their average
constant. Are there optimal strategies for repair—either in the
time domain or in space (i.e., looking at nodes with varying
connectivity)? For example, Fig. 6(a) shows that if the system
is repaired uniformly, the degree of repair does not make a
significant difference for γ1 < γ ∗

1 . It would be very useful to
know if and how a (temporal or spatial) nonuniform repair
strategy improves life span. In networks that are dynamically
heterogeneous, we may ask what would be the consequences
of differential damage and repair in a network with highly
variable turnover, e.g., a network with tissues like the skin or
gut that have high damage and repair rates, and the brain which
has a low damage and repair rate? At the level of ecologies
and colonies, we might ask how does the aging dynamics of a
dependency network change when a system consists of parts
with aging rates comparable to that of the whole system? We
hope that our minimal model may be used to study some of
these questions.
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FIG. 7. (Color online) Mortality vs time obtained from (7) for
φ � φc, γ0 = 0.0025 and N = 50 (black, left) 100 (red, middle), and
200 (blue, right) is in good qualitative agreement with our simulations
and the empiric Gompertz law, which states that log μ(t) increases
linearly with t early in life.
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APPENDIX

Here we discuss various technical points surrounding
theory, simulations, and fits.

(i) In order to recover the Gompertz Law analytically,
we substitute φ(t) ≈ e−aγ0t for t � τ in (7) and plot
μ(t) = −(ds(t)/dt)/s(t) in Fig. 7. By approximating the
random variables φ(t) and p0 by their average value we
sharpen the lifetime distributions and hence steepen the
mortality curve; however the qualitative features of μ(t) is
recovered.

(ii) We have defined death as the time τ at which φ

reaches a threshold value 1%, which may seem arbitrary.

In order to determine how sensitive our results are to the
choice of threshold η, we have analyzed the lifetimes of both
network topologies as a function η. For a network as small
as N = 2500 the value of η changes the lifetime less than
1% for a SFN and less than 12 for a RN (Fig. 8). We find
that η dependence rapidly vanishes with increasing N for both
network types and conclude that the precise value of η is not
important.

(iii) An empirical analysis of historical human mortality
data has shown that the value of μ(t0) at age t0 correlates very
strongly with μ(t1) at age t1 for a wide variety of societies
and historical periods [42]. In other words, for an arbitrary
collection of people (presumably with different damage and/or
repair rates and initial conditions), the mortality rate at any
two ages are correlated, with correlation coefficient ρ ∼ 1.
To test whether our model yields this behavior, we plot the
number of deaths within t0 and t0 + 5 against that within
t1 and t1 + 5 for a range of γ0,γ1, d and network types
(see Fig. 9). The bin size was chosen as 5 instead of 1 in
order to reduce statistical error (e.g., commonly less than 10−6

of the networks die exactly at t = 1). We observe that our
model does yield a very high correlation between μ pairs
for a wide range of network parameters and network types,
although the trend becomes less pronounced for wider intervals
of t0,t1. Specifically, we find a correlation of ρ ∼ 0.8,0.98, and
0.99 for {t0,t1} = {0,20},{10,20}, and {15,20} respectively.
These correlation values are nearly identical for scale-free
and random networks and are in qualitative accordance with
empiric observation.

(iv) To determine whether model parameters {N,γ0,γ1,d}
can be determined uniquely given experimental μ(t)
data we performed simulations sweeping the parameter
space

N ∈ 50,100,250,500,700,800,900,1000,1500,2000,

γ0 ∈ 2,4,6,8,10,15,20,25,30,35 × 10−3,

γ1 ∈ 1,2, . . . ,10 × γ0, d ∈ 0,0.5,. . . . ,10 (percent)

and checked if non-neighboring parameters give more similar
μ(t) curves than neighboring ones (cf. below for details). For
each set of parameters we generated 12 networks upon which

0.002 0.004 0.006 0.008 0.010

0

5

10

15

0.02 0.04 0.06 0.08 0.10 0.12

0

5

10

15

R
el

at
iv

e 
D

iff
er

en
ce

 (%
)

γγ
10

R
el

at
iv

e 
D

iff
er

en
ce

 (%
)

(a) (b)

FIG. 8. (Color online) Sensitivity of outcomes to the definition of death. (a) The percent lifetime difference between choices η = 1% and
50% for scale-free (filled circles) and random (empty circles) dependence networks, with varying γ0 and γ1 = 0. There is a fairly constant 5%
difference independent of γ0 for random networks, and below 1% for scale-free networks. (b) The percent lifetime difference between choices
η = 1% and 50% for varying γ1, with γ0 = 0.00625. Scale-free networks continue to have below 1% difference between the two threshold
choices, while the variation is more significant for random networks with large repair rate γ1. The relative difference decreases if the two
thresholds η are closer to one another. For both graphs N = 2500, d = 0.
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FIG. 9. (Color online) Testing for universality in mortality patterns. Dependence of old age mortality μ(5) = Prob(20 < τ < 25) on
younger age mortality μ(i) = Prob(5i − 5 < τ < 5i) for i = 1 (a), 3 (b), 4 (c) for a range of network types (RN blue circles, SFN
red squares) and system parameters, γ0 = {0.0026,0.0027,0.0028,0.0029}, γ1 = {0.0026,0.0027,0.0028,0.0029}, d = {12.1,12.2,12.3,12.4}
(τ is the time of death). The mortality curves generated by this range of parameters is displayed for RN (d) and SFN (e). While the universal
(yet species-specific) trend observed in Ref. [42] between μ(i) and μ(i + j ) (for fixed j) is qualitatively present in our model, the trend vanishes
for large enough j .

3000 simulations were performed, providing a reasonable level
of confidence in the statistical accuracy of the simulations.
To quantitatively compare the simulation results, μ(t) is
broken into four averaged characteristics: The initial slope, the
saturation point, the crossover time between the initial growth
and saturation, and the observed lifetime [see Fig. 10(a)]. The
threshold for similarity of the curve characteristics is deter-
mined by averaging over the differences in nearest neighbors
in the (N,γ0,γ1,d) parameter space (i.e., the

∑8
k=1 |τref − τSk

|,
with the parameters in the simulation Sk being different from
the reference simulation in only one position, and a nearest

neighbor). Thus, simulation outcomes are considered similar
to a reference if they are not nearest neighbors (in parameter
space) with the reference, and if the differences in all four char-
acteristics simultaneously fall within the threshold variation.
Figure 10(b) shows one such overlapping curve with d = 4.5,
N = 700, and γ1 = 5γ0 (compared to d = 0%, N = 250, and
γ1 = 0 for the reference simulation in black). The inset of
Fig. 10(b) shows all 214 simulation parameters that yields
mortality curves considered similar to the reference curve
(about 0.9% of all of the simulated parameters), and shows
that a rather wide range of parameters may give qualitatively
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1 0
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FIG. 10. (Color online) Uniqueness of μ(t) as determined by initial slope, saturation value crossover time, and average lifetime. (a) A
simulation is quantified in terms of four parameters: The initial slope, the final saturation value, the crossover time, and the lifetime. Shown
is a reference simulation with N = 250, γ0 = 0.002, γ1 = 0, and d = 0% (b) The nonuniqueness of μ(t) as the parameters are varied. In the
main panel and the inset, the black points correspond to the reference simulation in (a). The three red line in the main panel has N = 700,
γ0 = 0.002, γ1 = 5γ0, and d = 4.5%. The average lifetime for the red curve is τ = 133, within 4.3% of the lifetime of the reference curve.
There is moderate variation between the curves for small and large t , but it would be difficult to unambiguously differentiate between the
two sets of parameters when fitting experimental data. The inset shows the same reference simulation (black points), along with all 214 sets
of simulated parameters that satisfy the threshold criterion. Each blue line has 250 � N � 2000,0 � γ1/γ0 � 9, and 0 � d � 8.5, all with
γ0 = 0.002.

022811-8



AGING IN COMPLEX INTERDEPENDENCY NETWORKS PHYSICAL REVIEW E 89, 022811 (2014)

similar behavior in μ and τ (with the latter not shown). It
is interesting to note that γ0 is the same for the reference

curve and all overlapping curves, indicating that an empirically
observed death rate γ0 may be uniquely determined.
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