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Models for elastic shells with
incompatible strains
Marta Lewicka1, L. Mahadevan2,3 and

Mohammad Reza Pakzad1

1Department of Mathematics, University of Pittsburgh,
301 Thackeray Hall, Pittsburgh, PA 15260, USA
2School of Engineering and Applied Sciences, and
3Department of Physics, Harvard University, Cambridge,
MA 02138, USA

The three-dimensional shapes of thin lamina, such
as leaves, flowers, feathers, wings, etc., are driven
by the differential strain induced by the relative
growth. The growth takes place through variations
in the Riemannian metric given on the thin sheet as
a function of location in the central plane and also
across its thickness. The shape is then a consequence
of elastic energy minimization on the frustrated
geometrical object. Here, we provide a rigorous
derivation of the asymptotic theories for shapes
of residually strained thin lamina with non-trivial
curvatures, i.e. growing elastic shells in both the
weakly and strongly curved regimes, generalizing
earlier results for the growth of nominally flat plates.
The different theories are distinguished by the scaling
of the mid-surface curvature relative to the inverse
thickness and growth strain, and also allow us to
generalize the classical Föppl–von Kármán energy to
theories of prestrained shallow shells.

1. Introduction
The physical basis for morphogenesis is now classical
and elegantly presented in D’arcy Thompson’s opus
‘On growth and form’ (p. 15) as follows: ‘An organism
is so complex a thing, and growth so complex a
phenomenon, that for growth to be so uniform and
constant in all the parts as to keep the whole shape
unchanged would indeed be an unlikely and an
unusual circumstance. Rates vary, proportions change,
and the whole configuration alters accordingly’. From a
mathematical and mechanical perspective, this reduces
to a simple principle: differential growth in a body leads
to residual strains that will generically result in changes

2014 The Author(s) Published by the Royal Society. All rights reserved.
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in the shape of a tissue, organ or body. Eventually, the growth patterns are expected to themselves
be regulated by these strains, so that this principle might well be the basis for the physical
self-organization of biological tissues. Recent interest in characterizing the morphogenesis of
low-dimensional structures, such as filaments, laminae and their assemblies, is driven by the
twin motivations of understanding the origin of shape in biological systems and the promise
of mimicking them artificially [1–3]. The results lie at the interface of biology, physics and
engineering, but they also have a deeply geometric character. Indeed the basic question of
morphogenesis may be characterized in terms of a variation on a classical theme in differential
geometry—that of embedding a shape with a given metric in a space of possibly different
dimension [4,5]. However, the goal now is not only to state the conditions when it might be done
(or not), but also to constructively determine the resulting shapes in terms of an appropriate
mechanical theory.

While these issues arise in three-dimensional tissues, the combination of the separation
of scales that arises naturally in slender structures and the constraints associated with the
prescription of growth laws that are functions of space (and time) leads to the expectation that
the resulting theories ought to be variants of classical elastic plate and shell theories such as
the Föppl–von Kármán or the Donnell–Mushtari–Vlasov theories [6]. That this is the case has
been shown for bodies that are initially flat and thin, i.e. elastic plates with no initial curvature,
using analogies to thermoelasticity [7,8], perturbation analysis [3,9] and rigorous asymptotic
analysis [10]. This follows a programme similar to the derivation of the equations for the
nonlinear elasticity of thin plates and shells [11–16] and a linearized theory [17] for residually
strained Kirchhoff plates [18]. However, most laminae are naturally curved in their strain-free
configurations. Since even infinitesimal deformations of a curved shell will potentially violate
isometry relative to its rest state, one expects that differential growth of such an object will likely
lead to a variety of possible low-dimensional theories depending on the relative size of the metric
changes imposed on the system. This multiplicity of asymptotic theories is of course presaged by
a similar state of affairs for the derivation of a nonlinear theory of elastic shells [15,19].

We build on the discussion in [8,10,20] and present a rigorous derivation of a set of asymptotic
theories for the shape of residually strained thin lamina with non-trivial curvatures, i.e. growing
elastic shells. As our starting point, we use the observation that it is possible to change the shape
of a lamina such as a blooming lily petal by driving it via excess growth of the margins relative
to the interior, rather than via midrib deformations [21]. Previously, a thermoelastic analogy [7]
suggested a natural generalization of the Donnell–Mushtari–Vlasov shell theory [6] to growing
shells [20], proposed as a mathematical model for blooming activated by the initial (transverse)
out-of-plane displacement v0 of a petal’s mid-surface. When v0 = 0, equations (6.5) reduce to
the prestrained von Kármán equations (6.3) proposed in [8]. These were rigorously derived
in [10] from non-Euclidean elasticity, where the imposed three-dimensional prestrain is given via a
Riemannian metric, whose components display the appropriate linear target stretching tensor εg

(of order 2 in shell’s thickness h), and the bending tensor κg (of order 1 in h, see (3.1)). This leads
us to focus on a particular regime of scaling for the prestrain tensor (2.6) which corresponds, a
posteriori, in all different regimes of shallowness studied here, to von Kármán-type theories.

It is pertinent to start with a few comments regarding this particular choice of the scaling
regime. From a mathematical point of view, the von Kármán regime, where the nonlinear elastic
energy per unit thickness scales like h4, usually corresponds to sub-linear theories, i.e. the first
nonlinear theories which arise when the magnitude of forces or of prestrain allows the elastic
lamina to cross the threshold of linear behaviour and lead to phenomena such as buckling. As
these sublinear theories are also the least complicated among the nonlinear theories of plates
and shells arising in the literature and are relevant for many applications, they are popular with
engineers, physicists and applied mathematicians. Therefore, in the analysis of nonlinear shallow
shell models with growth, it is reasonable to start with the von Kármán regime. By contrast, there
are a number of technical challenges that must be addressed when deriving lower order nonlinear
theories using Γ -convergence. Here we consider the first of a series that considers the various
possible shell theories that result for various limiting cases of the growth strain, the boundary
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loading, etc. In a forthcoming paper [22], we address a shallow shell model that arises in a forcing
regime equivalent to the energy scaling hβ for β < 4, where, analogous to Friesecke et al. [19],
technical obstacles regarding properties of the Sobolev solutions to the Monge–Ampère equations
are addressed before establishing the corresponding Γ -limit result.

In §2, we formulate our main results, in terms of a scaling analysis that leads to the hierarchy
of limiting models as a function of the various prestrain and shallowness regimes. In §3, we argue
that for non-flat mid-surface S (with a natural out-plane displacement v0 �= 0), the variationally
correct two-dimensional theory coincides with the extension of the classical von Kármán energy
to shells, derived in [13]. In the special case v0 = 0, the corresponding energy still reduces to the
functional whose Euler–Lagrange equations are those derived for elastic plates in [8]. In §4, we
discuss a new model valid when the radius of curvature of the mid-surface is relatively large
compared with the thickness. This limit leads to a prestrained plate model which inherits the
geometric structure of the shallow shell. In §5, we consider the case where the radius of curvature
and the thickness are comparable in magnitude, and appropriately compatible with the order of
the prestrain tensor. We show that equations for a growing elastic shell can be formally derived
by pulling back the in-plane and out-of-plane growth tensors εg and κg, respectively, from shallow
shells (Sh)h with reference mid-surface Sh given by the scaled out-of-plane displacement hv0, onto
a flat reference configuration. Furthermore, we argue that this theory for growing elastic shells is
also the Euler–Lagrange equation of the variational limit for three-dimensional nonlinear elastic
energies on (Sh)h. In §6, we discuss the model where the effects of shallowness are dominated by
the growth-induced prestrain. In this case, the limiting energy is impervious to the influence of
the shell geometry, but the effects of growth may not be neglected. This leads to the generalized
von Kármán equations for a growing flat plate. In §7, we justify that under our prestrain or growth
scaling assumptions, the derived models are the relevant ones when the boundaries are free and
no external forces are present. Finally, in §8, we conclude with a discussion of the present results
and prospects for the future. As the proofs of the theorems consist of tedious yet minor (though
necessary) modifications of the arguments detailed in [10,13,14], we refer the interested reader to
the electronic supplementary material, where they are given for completeness.

2. Preliminaries and scaling limits
Let v0 ∈ C1,1(Ω̄) be an out-of-plate displacement on an open, bounded subset Ω ⊂ R

2, associated
with a family of surfaces, parametrized by γ ∈ [0, 1]

Sγ = φγ (Ω), where φγ (x) = (x, γ v0(x)) ∀x = (x1, x2) ∈ Ω , (2.1)

The unit normal vector to Sγ at φγ (x) is given by

nγ (x) = ∂1φγ (x) × ∂2φγ (x)
|∂1φγ (x) × ∂2φγ (x)| = 1√

1 + γ 2|∇v0|2
(−γ ∂1v0(x), −γ ∂2v0(x), 1) ∀x ∈ Ω .

For small h > 0, we now consider thin plates Ωh = Ω × (−h/2, h/2) and three-dimensional
shells (Sγ )h

(Sγ )h =
{
φ̃γ (x, x3); x ∈ Ω , x3 ∈

(
−h

2
,

h
2

)}
, (2.2)

where the extension φ̃γ : Ωh → R
3 of φγ on Ωh in (2.1) is given by the following formula

φ̃γ (x, x3) = φγ (x) + x3nγ (x) ∀(x, x3) ∈ Ωh. (2.3)
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For an elastic body with the reference configuration (Sγ )h, we assume that its elastic energy
density W : R

3×3 −→ R+ is C2 regular in a neighbourhood of SO(3). Moreover, we assume that W
satisfies the normalization, frame indifference and non-degeneracy conditions

∃c > 0 ∀F ∈ R
3×3 ∀R ∈ SO(3) W(R) = 0, W(RF) = W(F),

and W(F) ≥ c dist2(F, SO(3)),

⎫⎬
⎭ (2.4)

where F = ∇u is the deformation gradient relative to the reference configuration (Sγ )h. For
prestrained structures characterized by the Riemannian metric

ph = (qh)Tqh on (Sγ )h,

the tensor F = ∇u is replaced by F = ∇u(qh)−1, so that the thickness averaged elastic energy is
given by

Iγ ,h(u) = 1
h

ˆ
(Sγ )h

W(F) dz = 1
h

ˆ
(Sγ )h

W(∇u(qh)−1) dz, ∀u ∈ W1,2((Sγ )h, R3). (2.5)

Letting εg, κg : Ω̄ → R
3×3 be two given smooth tensors, for each small h we define the growth

tensors qh on (Sγ )h by

qh(φγ (x) + x3nγ (x)) = Id + h2εg(x) + hx3κg(x) ∀(x, x3) ∈ Ωh. (2.6)

For a justification of the above model through interpreting qh as the instantaneous growth tensor
see [23]. The corresponding metric ph = (qh)Tqh on (Sγ )h is then

ph(φγ (x) + x3nγ (x)) = Id + 2h2 sym εg(x) + 2hx3 sym κg(x) + O(h3).

An important part of our study focuses on the asymptotic behaviour in the limit of vanishing
thickness h → 0 of the variational models Iγ ,h in (2.5), when γ = γ (h) = hα for a given exponent
0 ≤ α < +∞. The regime α > 0 corresponds to the study of a shallow shell. However, we will
identify three distinct shallow shell limit models, depending on the asymptotic behaviour of the ratio
γ /h, which in our setting depends only on the value of α. This allows us to rigorously derive
the Γ -limits: Γ - limh→0(1/h4)Ihα ,h and show that under suitable incompatibility conditions on the
strain tensors εg or κg, the infimum of energies Ihα ,h scales like h4 irrespective of the value of α.
This justifies our choice of the energy scaling and lends credibility to limiting models as physically
relevant in the corresponding scaling regimes.

To get a sense of our results, it is useful to summarize our analysis in terms of the Γ -limit of
(1/h4)Ihα ,h, which can be identified as follows:

Γ - lim
h→0

1
h4 Ihα ,h =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I4 if α = 0

I∞
4 if 0 < α < 1

I1
4 if α = 1

I0
4 if α > 1.

(2.7)

The above four theories collapse into one and the same theory when v0 = 0. Otherwise, we must
deal with four distinct potential limits depending on the choice of parameters, in the following
order:

Case 1. α = 0. This corresponds to γ = 1 where the three-dimensional model is that of the
prestrained nonlinear elastic shell of arbitrarily large curvature (no shallowness involved). We
will show that the Γ -limit in this case leads to a prestrained von Kármán model I4 for the
two-dimensional mid-surface S1. This will be described in a more general framework in §3.

Case 2. 0 < α < 1. This corresponds to the flat limit γ → 0 when the energy can be conceived as
a limit of the von Kármán models I4 for shallow shells Sγ . In other words, this limiting model
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corresponds to the case when limh→0(γ (h)/h) = ∞, and it can also be identified as

I∞
4 = Γ - lim

γ→0

(
Γ - lim

h→0

1
h4 Iγ ,h

)
,

by choosing the distinguished sequence of limits, first as h → 0 and then γ → 0. In §4, we will see
that I∞

4 is formulated for displacements of a plate but it inherits certain geometric properties of
shallow shells Sγ , such as the first-order infinitesimal isometry constraint.

Case 3. α = 1. This corresponds to the case limh→0 γ (h)/h = 1. The limit model I1
4 , derived in §5,

is an unconstrained energy minimization, reflecting both the effect of shallowness and that of the
prestrain. It corresponds to a simultaneous passing to the limit (0, 0) of the pair (γ , h) in (2.5). The
Euler–Lagrange equations (6.5) of I1

4 were suggested in [20] for the description of the deployment
of petals during the blooming of a flower.

Case 4. α > 1. Finally, the Γ -limit for all values of α > 1, i.e. when limh→0(γ (h)/h) = 0, coincides
with the zero thickness limit of the degenerate case γ = 0, which is the prestrained plate von
Kármán model, discussed in [10]. This limiting energy can be obtained by taking the consecutive
limits

I0
4 = Γ - lim

h→0

(
Γ - lim

γ→0

1
h4 Iγ ,h

)
.

3. The prestrained von Kármán energy for shells of arbitrary curvature:α = 0
When the parameter α = 0, the three-dimensional variational problem associated with (2.5) is
reduced to the three-dimensional nonlinear elastic energy on the thin shell Sh

1, where S1 is the
graph of v0. It is useful to discuss this model in a more general framework. Let S be an arbitrary
two-dimensional surface embedded in R

3, that is compact, connected, oriented and of class C1,1.
The boundary ∂S of S is assumed to be the union of finitely many (possibly none) Lipschitz
continuous curves. We consider the family {Sh}h>0 of thin shells of thickness h around S:

Sh =
{

z = x + tn(x); x ∈ S,
h
2

< t <
h
2

}
, 0 < h < h0 � 1,

where we use the following notation: n(x) for the unit normal, TxS for the tangent space, and
Π (x) = ∇n(x) for the shape operator on S, at a given x ∈ S. The projection onto S along n is denoted
by π , so that π (z) = x for all z = x + tn(x) ∈ Sh, and we assume that h � 1 is small enough to have
π well defined on each Sh.

The instantaneous growth of Sh is described, directly, by smooth tensors: εg, κg : S̄ −→ R
3×3, by

ah = [ah
ij] : S̄h −→ R

3×3 and ah(x + tn) = Id + h2εg(x) + htκg(x). (3.1)

The growth tensor ah is as in [8,10], now in a general non-flat geometry setting. Given the elastic
energy density W : R

3×3 −→ R+ as in (2.4), the thickness averaged elastic energy induced by the
prestrain ah is given by

Ih(uh) = 1
h

ˆ
Sh

W(∇uh(ah)−1) dz, ∀uh ∈ W1,2(Sh, R3). (3.2)

Taking the asymptotic limit (the Γ -limit as h → 0, see theorems 3.1 and 3.2) of the energies Ih

(note that Ih = I1,h in the notation of (2.5)) then leads to the variationally correct model for weakly
prestrained shells. It corresponds to the following nonlinear energy functional I4 acting on the
admissible limiting pairs (V, B):

∀V ∈ V ∀B ∈B I4(V, B) = 1
2

ˆ
S
Q2

(
x, B − 1

2
(A2)tan − (sym εg)tan

)

+ 1
24

ˆ
S
Q2(x, (∇(An) − AΠ )tan − (sym κg)tan). (3.3)
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Here, the space V consists of the first-order infinitesimal isometries on S, defined by

V = {V ∈ W2,2(S, R3); τ · ∂τ V(x) = 0 ∀ a.e. x ∈ S ∀τ ∈ TxS}, (3.4)

that is those W2,2 regular displacements V for whom the change of metric on S owing to the
deformation id + εV is of order ε2, as ε → 0. Furthermore, for a matrix field A ∈ L2(S, R3×3), let
Atan(x) denote the tangential minor of A at x ∈ S, that is [(A(x)τ )η]τ ,η∈TxS. The skew-symmetric
gradient of V as in (3.4) then uniquely determines a W1,2 matrix field A : S −→ SO(3) so that
∂τ V(x) = A(x)τ for all τ ∈ TxS. Hence, we equivalently write

V = {V ∈ W2,2(S, R3); ∃A ∈ W1,2(S, R3×3) ∀ a.e. x ∈ S ∀τ ∈ TxS

∂τ V(x) = A(x)τ and A(x)T = −A(x)}.
For a plate, that is when S ⊂ R

2, an equivalent analytic characterization for V = (V1, V2, V3) ∈
V is given by (V1, V2) = (−ωy, ωx) + (b1, b2), while the out-of-plane displacement V3 ∈ W2,2(S, R)
remains unconstrained.

The space B in (3.3) consists of finite strains

B =
{

L2 − lim
ε→0

sym ∇wε ; wε ∈ W1,2(S, R3)
}

, (3.5)

which are all limits of symmetrized gradients of sequences of displacements on S. By sym ∇w(x)
we mean here a bilinear form on TxS given by (sym ∇w(x)τ )η = 1/2[(∂τ w(x))η + (∂ηw(x))τ ] for all
τ , η ∈ TxS.

It follows (via Korn’s inequality) that for a flat plate S ⊂ R
2, the space B consists precisely of

symmetrized gradients of all the in-plane displacements: B = {sym ∇w; w ∈ W1,2(S, R2)}. When
S is strictly convex, rotationally symmetric or developable without flat regions, it has been
proved in [13,24] that B = L2(S, R2×2

sym), i.e. it contains all symmetric matrix fields on S with square
integrable entries.

Finally, in (3.3), the quadratic forms

Q3(F) = D2W(Id)(F, F) and Q2(x, Ftan) = min{Q3(F̃); F̃ ∈ R
3×3, (F̃ − F)tan = 0}, (3.6)

where the form Q3 is defined for all F ∈ R
3×3, while Q2(x, ·) for a given x ∈ S is defined on

tangential minors Ftan of such matrices. Both forms Q3 and all Q2(x, ·) are non-negative definite
and depend only on the symmetric parts of their arguments.

We now have the following results, stating in particular that the functional I4 is the Γ -limit [25]
of the scaled energies h−4Ih:

Theorem 3.1. Let a sequence of deformations uh ∈ W1,2(Sh, R3) satisfy Ih(uh) ≤ Ch4. Then there exists
proper rotations R̄h ∈ SO(3) and translations ch ∈ R

3 such that for the renormalized deformations

yh(x + tn(x)) = (R̄h)Tuh
(

x + t
h
h0

n
)

− ch : Sh0 −→ R
3

defined on the common thin shell Sh0 , the following holds.

(i) yh converge in W1,2(Sh0 , R3) to π .
(ii) The scaled displacements

Vh(x) = h−1
 h0/2

−h0/2
yh(x + tn) − x dt (3.7)

converge (up to a subsequence) in W1,2(S, R3) to some V ∈ V .
(iii) The scaled averaged strains

Bh(x) = h−1 sym ∇Vh(x) (3.8)

converge (up to a subsequence) weakly in L2(S, R2×2) to a limit B ∈B.
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(iv) The lower bound holds
lim inf

h→0
h−4Ih(uh) ≥ I4(V, B).

Theorem 3.2. For every couple V ∈ V and B ∈B, there exists a sequence of deformations uh ∈
W1,2(Sh, R3) such that:

(i) The rescaled sequence yh(x + tn) = uh(x + t(h/h0)n) converges in W1,2(Sh0 , R3) to π .
(ii) The displacements Vh as in (3.7) converge in W1,2(S, R3) to V.

(iii) The strains Bh as in (3.8) converge in W1,2(S, R2×2) to B.
(iv) There holds

lim
h→0

h−4Ih(uh) = I4(V, B).

The proofs follow through a combination of arguments in [10,13], which we do not repeat here
but instead comment on the functional (3.3) and its relationship with the prestrained von Kármán
equations for plates.

Here, in analogy with the theory for flat plates S ⊂ R
2 with incompatible strains [10], in (3.1)

we have assumed that the target metric is second order in thickness h for the in-plane stretching
(sym εg), and first order in h for bending (sym κg). Owing to this particular choice of scalings, the
limit energy I4 is composed of exactly two terms, corresponding to stretching and bending. The
argument of the integrand in the first term, namely B − 1/2(A2)tan − (sym εg)tan, represents the
difference of the second-order stretching induced by the deformation vh = id + hV + h2wh from
the target stretching (sym εg), with V ∈ V and sym∇wh → B. The argument of the integrand in the
second term (∇(An) − AΠ )tan − (sym κg)tan, represents the difference of the first-order bending
induced by vh from the target bending (sym κg).

In general, the second-order displacement w can be very oscillatory. Owing to the non-trivial
geometry of the mid-surface S, the finite strain space B is usually large and hence a bound on
the L2 norm of the symmetric gradients sym ∇wh implies only a very weak bound on wh. The
limiting tensor B can hence be written only as the symmetric gradient of a very weakly regular
distribution (not a classical higher order displacement).

Remark 3.3. When the mid-surface S is elliptic, then for any first-order isometry V ∈ V , there
exists B ∈B = L2(S, R2×2

sym) such that B − 1/2(A2)tan − (sym εg)tan = 0 [14]. This implies that for any

V there exists a higher order modification wh for which in the limit, the second-order target
stretching is realized. Thus, the energy I4 reduces to

I4(V) = 1
24

ˆ
S
Q2(x, (∇(An) − AΠ )tan − (sym κg)tan) dx,

i.e. the bending term which is to be minimized over the space V . Note that this variational problem
is convex (minimizing a convex integral over a linear space V), and hence it admits only one
solution (up to rigid motions). Following the analysis in [14], we see that for elliptic surfaces, all
limiting theories for h−β Ih under the energy scaling β > 2, coincide with the linear theory I4 as
above, while the sublinear theory, to be used in the description of buckling, is the Kirchhoff-like
(nonlinear bending) theory corresponding to β = 2 and derived in [17].

4. The prestrained shallow shell with a first-order isometry constraint:
0< α < 1

When the parameter 0 < α < 1, the highest order terms (of order h2α) in the prestrain metric
ph on (Sγ )h pulled back on the flat reference configuration Ωh, turn out to be ‘compatible’, i.e.
entirely generated by the reference displacement hαv0. In other words, the shallow shell will
easily compensate for these terms by rigidly keeping its structure at the hα order and only will
make adjustments at higher orders to the prestrain induced by εg and κg. In the limit as h → 0
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we therefore expect that the effective energy functional on Ω will depend only on the out-of-
plane and the in-plane displacements of respective orders h and h2. Yet, as we shall see below,
the residual curvature of mid-surfaces will appear in a twofold manner: as a linearized first-order
isometry constraint on the out-of-plate displacement (4.3) and also as a defining constraint on
the space of admissible in-plane displacements. The mid-plate Ω will inherit the space of the
first-order infinitesimal isometries (3.4) and the finite strain space (3.5), in the asymptotic limit of
vanishing curvature shells.

The space of finite strains Bv0 ⊂ L2(Ω , R2×2
sym) is defined as

Bv0 =
{

L2 − lim
ε→0

(sym ∇wε + sym(∇vε ⊗ ∇v0)); wε ∈ W1,2(Ω , R2), vε ∈ W1,2(Ω , R)
}

.

We now identify Bv0 with each of the finite strain spaces of the shallow surfaces Sγ .

Lemma 4.1. Let the surfaces Sγ be as in (2.1). Then for all γ �= 0, the finite strain spaces

Bγ =
{

L2 − lim
ε→0

sym ∇wε ; wε ∈ W1,2(Sγ , R3)
}

,

are each isomorphic to Bv0 via the linear isomorphism:

T γ : L2(Sγ ,L2
sym(TSγ , R)) → L2(Ω , R2×2

sym).

Here, L2(Sγ ,L2
sym(TSγ , R)) is the space of all L2-sections of the bundle of symmetric bilinear forms on Sγ ,

and T γ is naturally defined by

[T γ (σ )(x)]ij = σ (φγ (x))(∂iφγ (x), ∂jφγ (x)) ∀ a.e. x ∈ Ω ∀σ ∈ L2(Sγ ,L2
sym(TSγ , R)).

Proof. Let w ∈ W1,2(Sγ , R3) and write w̃ = (w̃1, w̃2, w̃3) = w ◦ φγ ∈ W1,2(Ω , R3). Then, for i, j = 1, 2
we have

(sym ∇w)(∂iφγ , ∂jφγ ) = 1
2

(∂iw̃ · ∂jφγ + ∂jw̃ · ∂iφγ ) = [sym ∇(w̃1, w̃2) + γ sym(∇w̃3 ⊗ ∇v0)]ij.

Take now a sequence wε ∈ W1,2(Sγ , R3) such that limε→0 sym ∇wε = Bγ ∈Bγ . Then

T γ (Bγ ) = lim
ε→0

T γ (sym ∇wε) = lim
ε→0

(sym ∇(w̃ε
1, w̃ε

2) + sym(∇(γ w̃ε
3) ⊗ ∇v0)) ∈Bv0 ,

which proves the claim. �

The following is a consequence of lemma 4.1 [13, lemma 5.6] and [24, lemma 3.3]:

Corollary 4.2. Assume that

(i) either: v0 ∈ C2,1(Ω) ∩ C1,1(Ω̄) and det ∇2v0 ≥ c > 0 in Ω ,
(ii) or: v0 ∈ C2(Ω̄) with det ∇2v0 = 0 in Ω , and ∇2v0 does not vanish identically on any open region

in Ω .

Then:
Bv0 = L2(Ω , R2×2

sym). (4.1)

Indeed, in the study of Lewicka et al. [14] we proved that for any strictly elliptic surface S, its
finite strain space B equals L2(Ω , R2×2

sym). As every Sγ is strictly elliptic under assumption (i), the
result follows by the equivalence of spaces Bγ and Bv0 in lemma 4.1. The same observation can
be derived directly, as follows. Given B : Ω → R

2×2
sym smooth enough, we first solve for v in

cof ∇2v0 : ∇2v = −curlT curl B in Ω ,

v = 0 on ∂Ω .

}
(4.2)

Then we have

curlT curl B = −cof ∇2v : ∇2v0 = curlT curl(∇v ⊗ ∇v0) = curlT curl(sym(∇v ⊗ ∇v0))
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(see also remark 4.7), and therefore

B = sym ∇(v1, v2) + sym(∇v ⊗ ∇v0),

for some in-plane displacement (v1, v2) : Ω → R
2. The density of smooth fields B in the space

L2(Ω , R2×2
sym) now yields the result.

Remark 4.3. We expect that property (4.1) is satisfied for a generic v0, whenever ∇2v0 does not
vanish identically on any open region of Ω . The argument requires studying very weak solutions
of the mixed-type equation (4.2). When this equation is degenerate (v0 ≡ 0), Bv0 coincides with
the space of all matrix fields in the kernel of the operator curlT curl and hence it is only a proper
subset of L2(Ω , R2×2

sym), consisting of symmetric gradients.

We now present the main Γ -convergence result for the shallow shell regime 0 < α < 1. The
proofs which consist of tedious modifications of the arguments in [10,13] are outlined in the
electronic supplementary material, appendix.

Theorem 4.4. Let 0 < α < 1. Assume uh ∈ W1,2((Shα )h, R3) satisfies Ihα ,h(uh) ≤ Ch4, where Iγ ,h is
given as in (2.5). Then there exists R̄h ∈ SO(3) and ch ∈ R

3 such that for the normalized deformations

yh(x, t) = (R̄h)T(uh ◦ φ̃hα )(x, ht) − ch : Ω1 −→ R
3

with φγ and γ = hα as in (2.1), we have

(i) yh(x, t) converge in W1,2(Ω1, R3) to x.
(ii) The scaled displacements Vh(x) = h−1 ffl 1/2

−1/2 yh(x, t) − x − hαv0(x)e3 dt converge (up to a

subsequence) in W1,2(Ω , R3) to (0, 0, v)T where v ∈ W2,2(Ω , R) and

cof ∇2v0 : ∇2v = 0 in Ω . (4.3)

(iii) The scaled strains

Bh = 1
h

(sym ∇(Vh
1, Vh

2) + hα sym(∇Vh
3 ⊗ ∇v0))

converge (up to a subsequence) weakly in L2 to some B ∈Bv0 .
(iv) Moreover: lim infh→0 h−4Ihα ,h(uh) ≥ I∞

4 (v, B), where

I∞
4 (v, B) =

ˆ
Ω

Q2

(
B + 1

2
∇v ⊗ ∇v − (sym εg)tan

)

+ 1
24

ˆ
Ω

Q2

(
∇2v + (sym κg)tan

)
, (4.4)

with Q2 defined in (3.6).

Theorem 4.5. Let 0 < α < 1. For every v ∈ W2,2(Ω , R) satisfying (4.3) and every B ∈Bv0 , there exists
a sequence of deformations uh ∈ W1,2((Shα )h, R3) such that

(i) The sequence yh(x, t) = uh(x + hαv0(x)e3 + htnγ (x)) converges in W1,2(Ω1) to x.
(ii) The scaled displacements Vh as in (ii) theorem 4.4 converge in W1,2 to (0, 0, v).

(iii) The scaled strains Bh as in (iii) theorem 4.4 converge weakly in L2 to B.
(iv) limh→0 h−4Ihα ,h(uh) = I∞

4 (v, B).

In the special cases of corollary 4.2, we have

Theorem 4.6. Assume additionally that v0 is such that (4.1) holds. Then, for every v ∈ W2,2(Ω , R)
satisfying (4.3), there exists a sequence uh ∈ W1,2((Shα )h, R3) such that (i) and (ii) of theorem 4.5 hold, and
moreover

lim
h→0

h−4Ihα ,h(uh) = 1
24

ˆ
Ω

Q2(∇2v + (sym κg)tan).
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Remark 4.7. Comparing functionals (4.4) with (3.3), note that the space V(Sγ ) of the first-order
infinitesimal isometries on Sγ is made of displacements V : Sγ → R

3 of the form

V(φγ (x)) = (γ v1(x), hαv2(x), v3) ∀x ∈ Ω ,

such that (v1, v2, v3) ∈ W2,2(Ω , R3) and sym ∇(v1, v2) + sym(∇v3 ⊗ ∇v0) = 0.

⎫⎬
⎭ (4.5)

Indeed, similarly as in the proof of lemma 4.1, the condition sym∇V = 0 on Sγ becomes

0 = 1
2

(∂i(V ◦ φγ ) · ∂jφγ + ∂j(V ◦ φγ ) · ∂iφγ ) = sym[∇(v1, v2) + ∇v3 ⊗ ∇v0]ij.

We also see that v3 can be completed by (v1, v2) to V ∈ V1(Sh) as in (4.5) only if

cof ∇2v0 : ∇2v3 = 0, (4.6)

the latter being also a sufficient condition when Ω is simply connected. This follows from

curlT curl(sym(∇v3 ⊗ ∇v0)) = curlT curl(∇v3 ⊗ ∇v0)

= ∂22(∂1v3 · ∂1v0) + ∂11(∂2v3 · ∂2v0) − ∂12(∂1v3 · ∂2v0 + ∂2v3 · ∂1v0)

= −(∂11v3 · ∂22v0 + ∂22v3 · ∂11v0 − 2∂12v3 · ∂12v0) = −cof ∇2v0 : ∇2v3.

Hence, the admissible out-of-plane displacements v3 relevant in (3.3), must obey for the least
constraint (4.6), which appears in the 2-scale limiting theory (4.4) as constraint (4.3). This is in
contrast with the unconstrained 2-scale limiting theory (5.3) developed in §5.

Remark 4.8. To put the last two results in another context, we draw the reader’s attention to the
forthcoming paper [22], where we analyse the Γ -limit of the shallow shell energies (1/h2α+2)Ihα ,h

on shells with curvature of order hα . This energy scaling is produced by forces of appropriate
magnitude or by prestrains of a different order than those considered in this paper. Our main
result in [22] concerns the case α < 1, where we can establish that in the special case det ∇2v0 ≡
c0 > 0, the Γ -limit is a linearized Kirchhoff model with a Monge–Ampère curvature constraint

det ∇2v = det ∇2v0 (4.7)

on the admissible out-of-plane displacements v ∈ W2,2(Ω). Constraint (4.3) can be interpreted as
a linearization of (4.7), thereby highlighting the relationship between the two models for elliptic
shallow shells.

5. The generalized Donnell–Mushtari–Vlasov model for a prestrained shallow
shell:α = 1

When the parameter α = 1, i.e. the curvature of the mid-surface covaries with the thickness, so
that γ = h. For small h, the growth tensors on (Sh)h are then defined by (2.6) and the corresponding
metric ph = (qh)Tqh is given by

ph(φh(x) + x3nh(x)) = Id + 2h2 sym εg(x) + 2hx3 sym κg(x) + O(h3).

Let vh = uh ◦ φ̃h ∈ W1,2(Ωh, R3), via diffeomorphisms φ̃h in (2.3). By this simple change of
variables, we see that

Ih,h(uh) = 1
h

ˆ
(Sh)h

W(∇uh(qh)−1)

= 1
h

ˆ
Ωh

W((∇vh)(∇φ̃h)−1(qh ◦ φ̃h)−1) · det ∇φ̃h d(x, x3)

= 1
h

ˆ
Ωh

W((∇vh)(bh)−1) · det ∇φ̃h d(x, x3),
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where
bh = (qh ◦ φ̃h)∇φ̃h.

In order to understand the structure of bh, we need the following result:

Lemma 5.1. The pull-back of the metric ph through φ̃h satisfies

∀(x, x3) ∈ Ωh gh(x, x3) = (∇φ̃h)T(ph ◦ φ̃h)(∇φ̃h)

= Id + h2(2 sym εg(x) + (∇v0(x) ⊗ ∇v0(x))∗)

+ 2hx3(sym κg(x) − (∇2v0(x))∗) + O(h3),

where F∗ ∈ R
3×3 denotes the matrix whose only non-zero entries are in its 2 × 2 principal minor given by

F ∈ R
2×2.

Proof. By a direct calculation, we obtain

∂1φ̃h = (1 − x3h∂2
11v0, −x3h∂2

12v0, h∂1v0) + O(h3),

∂2φ̃h = (−x3h∂2
12v0, 1 − x3h∂2

22v0, h∂2v0) + O(h3)

and ∂3φ̃h = nh =
(

−h∂1v0, −h∂2v0, 1 − 1
2

h2|∇v0|2
)

+ O(h3).

Hence

(∇φ̃h)T(∇φ̃h) = Id3 − 2x3h(∇2v0)∗ + h2(∇v0 ⊗ ∇v0)∗ + O(h3)

(∇φ̃h)T(2h2 sym εg + 2hx3 sym κg)(∇φ̃h) = 2h2 sym εg + 2hx3 sym κg + O(h3),

in view of ∇φ̃h = Id3 + O(h), and the result follows. �

Note that (bh)Tbh = gh and therefore by the polar decomposition of matrices

bh = R(x, x3)ah on Ωh

for some R(x, x3) ∈ SO(3) and the symmetric growth tensor ah given by

ah =
√

gh = Id + h2
(

sym εg + 1
2

(∇v0 ⊗ ∇v0)∗
)

+ hx3(sym κg − (∇2v0)∗) + O(h3). (5.1)

For isotropic W, it directly follows that

Ih,h(uh) = 1
h

ˆ
Ωh

W((∇vh)(ah)−1R(x)−1) · det ∇φ̃h d(x, x3)

= 1
h

ˆ
Ωh

W((∇vh)(ah)−1) · (1 + O(h)) d(x, x3). (5.2)

Heuristically, modulo the change of variable φ̃h the problem reduces then to the study of
deformations of the flat thin film Ωh with the prestrain ah. Indeed, by exactly the same analysis as
in [10, theorems 1.2 and 1.3], we obtain in the general (not necessarily isotropic) case, the following
result:

Theorem 5.2. Assume that uh ∈ W1,2((Sh)h, R3) satisfies Ih,h(uh) ≤ Ch4. Then there exists proper
rotations R̄h ∈ SO(3) and translations ch ∈ R

3 such that for the normalized deformations

yh(x, t) = (R̄h)T(uh ◦ φ̃h)(x, ht) − ch : Ω1 −→ R
3

defined by means of (2.3) on the common domain Ω1 = Ω × (−1/2, 1/2) the following holds:

(i) yh(x, t) converge in W1,2(Ω1, R3) to x.
(ii) The scaled displacements Vh(x) = h−1 ffl 1/2

−1/2 yh(x, t) − x dt converge (up to a subsequence) in

W1,2(Ω , R3) to the vector field of the form (0, 0, v)T and v ∈ W2,2(Ω , R).
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(iii) The scaled in-plane displacements h−1Vh
tan converge (up to a subsequence) weakly in W1,2 to

w ∈ W1,2(Ω , R2).
(iv) Moreover: lim infh→0 h−4Ih,h(uh) ≥ I1

4 (w, v) where

I1
4 (w, v) = 1

2

ˆ
Ω

Q2

(
sym ∇w + 1

2
∇v ⊗ ∇v − 1

2
∇v0 ⊗ ∇v0 − (sym εg)tan

)

+ 1
24

ˆ
Ω

Q2(∇2v − ∇2v0 + (sym κg)tan). (5.3)

In the same manner, applying the proof of [10, theorem 1.4] to (5.2), yields:

Theorem 5.3. For every v ∈ W2,2(Ω , R) and w ∈ W1,2(Ω , R2), there exists a sequence of deformations
uh ∈ W1,2((Sh)h, R3) such that

(i) The sequence yh(x, t) = uh(x + hv0(x)e3 + htnh(x)) converges in W1,2(Ω1, R3) to x.
(ii) The displacements Vh as in (ii) theorem 5.2 converge in W1,2 to (0, 0, v).

(iii) The in-plane displacements h−1Vh
tan converge in W1,2 to w.

(iv) limh→0 h−4Ih,h(uh) = Ig,v0 (w, v).

6. The prestrained plate model and the Euler–Lagrange equations:α > 1
When the parameter α > 1, we calculate the pull-back of the induced metric ph = (qh)Tqh, to the
flat plate Ωh, via the change of variable φ̃γ as in (2.3). Just as in lemma 5.1, we obtain

gh = (φ̃hα )∗ph = Id3 + h2α(∇v0 ⊗ ∇v0)∗ − 2hαx3(∇2v0)∗

+ 2h2 sym εg + 2hx3 sym κg + O(h3). (6.1)

It is therefore clear that the prestrain terms (εg, κg) take over the effect of shallowness and hence
the limiting theory in the scaling regime h4 is that derived in [10], coinciding with results of
theorems 5.2 and 4.4 for the case v0 = 0 and with the results of theorem 3.1 for S ⊂ R

2

∀v ∈ W2,2(Ω , R) ∀w ∈ W1,2(Ω , R2)

and I0
4 (w, v) = 1

2

ˆ
Ω

Q2

(
sym ∇w + 1

2
∇v ⊗ ∇v − (sym εg)tan

)

+ 1
24

ˆ
Ω

Q2(∇2v + (sym κg)tan).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.2)

Indeed, consider the prestrained von Kármán shell model I4 discussed in §3 for a degenerate
situation S ⊂ R

2. The term B − 1/2(A2)tan reduces to 1/2(∇w + (∇w)T + ∇v ⊗ ∇v), where w and
v = V3 are, respectively, the in-plane and the out-of-plane displacements of S. The term (∇(An) −
AΠ )tan reduces also to −∇2v. Therefore, when S ⊂ R

2, I4 coincides with the model I0
4 and with

the models I∞
4 and I1

4 in the degenerate case v0 = 0.

Remark 6.1. We point out a qualitative difference between the out-of-plane displacements v

in the argument of I0
4 and I1

4 and those appearing as the arguments of I∞
4 . The former are the

net lowest order out of plane displacements of the limit deformations which are of order h, as
suggested by theorem 5.2 (ii), but, according to theorem 4.4 (ii), when α < 1, the latter are the
second highest order term of the expansion of the deformation after hαv0. Hence, one should
replace v in (5.3) or (6.5) through a change of variables by v + hα−1v0 in order to quantitatively
compare this model with the variational model I∞

4 in (4.4).
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As shown in [10], under the assumption of W being isotropic, the Euler–Lagrange equations
of I4 under this degeneracy condition (or equivalently the Euler–Lagrange equations of I0

4 ) can
be then written in terms of the displacement v and the Airy stress potential Φ

�2Φ = −Y(det ∇2v + λg)

and Z�2v = [v, Φ] − ZΩg,

⎫⎬
⎭ (6.3)

where Y is the Young modulus, Z the bending stiffness, ν the Poisson ratio (given in terms of the
Lamé constants μ and λ), and

λg = curlT curl(εg)2×2 = ∂22(εg)11 + ∂11(εg)22 − ∂12((εg)12 + (εg)21)

and Ωg = divT div((κg)2×2 + ν cof(κg)2×2)

= ∂11((κg)11 + ν(κg)22) + ∂22((κg)22 + ν(κg)11) + (1 − ν)∂12((κg)12 + (κg)21).

⎫⎪⎪⎬
⎪⎪⎭ (6.4)

Equations (6.3), generalizing the von Kármán equations [26], are based on a thermoelastic analogy
to growth [7,8] and can also be derived using a formal perturbation theory [9].

On the other hand, the following system was introduced in [20], as a mathematical model of
blooming activated by differential lateral growth from an initial non-zero transverse displacement
field v0

�2Φ = −Y(det ∇2v − det ∇2v0 + λg)

and Z(�2v − �2v0) = [v, Φ] − ZΩg,

⎫⎬
⎭ (6.5)

A similar calculation as in [10] then shows that (6.5) can be viewed as the Euler–Lagrange
equations corresponding to the energy functional I1

4 . We will now show that (6.5) can be directly
derived from equations (6.3).

Proposition 6.2. System (6.5) can be derived from equations (6.3) by pulling back the prestrain
tensors εg and κg from a sequence of shallow shells (Sh)h generated by the vanishing out-of-plane
displacements hv0.

Proof. By lemma 5.1 we see that the growth tensor on Ωh is given by (5.1). Applying (6.4) to the
modified strain and curvature in ah, to the leading order, we obtain

λg(v0) = curlT curl
(

(sym εg)tan + 1
2
∇v0 ⊗ ∇v0

)
= λg + det ∇2v0

Ωg(v0) = divT div
(

((sym κg)tan − ∇2v0) + ν cof((sym κg)tan − ∇2v0)
)

= Ωg − �2v0,

where the last equality follows from div cof ∇2v0 = 0. Consequently, (6.3) for the growth
tensor (5.1) becomes exactly (6.5). �

7. The energy scaling
A straightforward consequence of our results is the following assertion about the scaling of the
infimum elastic energies of the thin prestrained shallow shells in the von Kármán regime (2.6).

Theorem 7.1. Let α > 0 and let the sequence of thin shells (Sγ )h be given as in (2.2) with the elastic
energies of deformations Iγ ,h as in (2.5). Assume that

curl (sym κg)tan �≡ 0 in Ω . (7.1)
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Then, there exists constants c, C > 0 for which

∀0 < h � 1 c ≤ inf
u∈W1,2((Shα )h,R3)

1
h4 Ihα ,h(u) ≤ C. (7.2)

Indeed, the condition curl(sym κg)tan ≡ 0 is equivalent to (sym κg)tan = ∇2v, for some
v : Ω → R. If not satisfied, the bending term in (4.4) is always positive, yielding the lower bound
in (7.2). The existence of a recovery sequence in theorems 4.5 and 5.3 and [10] implies the upper
bound.

Remark 7.2. Incompatibility condition (7.1) can be relaxed depending on the specific value of
α, and the assumed energy level, see e.g. [10] for a more involved scaling analysis when α > 1.
Heuristically, conditions of similar type imply that the Riemann curvature tensor of the induced
metric ph is non-zero and hence, in view of [17, theorem 2.2], they guarantee the positivity of
the infimum of Iγ ,h. In a further step, we observe that, when ph is close to be flat, the scaling
regime depends on the magnitude of the first non-zero term of the expansion of its curvature
tensor. Note also that when α < 1, the first two non-zero terms after identity in (6.1) have no
bearing on the first non-zero terms in the expansion of the curvature. Analogously, the induced
prestrains κ ′

g = ∇2v0 and ε′
g = 1/2(∇2v0 ⊗ ∇2v0) corresponding to the scalings hα and h2α do not

satisfy neither conditions (1.13) nor (1.14) of [10]. Therefore, the energy infimum must naturally
fall below h4, i.e. in the regime h2α+2.

8. Discussion
Our analysis has rigorously derived a general theory of shells with residual strain arising from
relative growth, inhomogeneous swelling, plasticity, etc. In fact, there are many such theories;
each is a consequence of the scalings of the shell curvature relative to the magnitude of the strain
incompatibility induced by the in-plane and curvature growth tensors. Indeed, for any exponent
α ≥ 0 we have considered the following energies of deformations on weakly prestrained shallow
shells:

Ih(u) = 1
h

ˆ
(Shα )h

W((∇u)(qh)−1) ∀u ∈ W1,2((Shα )h, R3),

with the growth tensor qh given by (2.6) on thin shells of form (2.2) around the mid-surface

Shα = φhα (Ω), φhα (x) = (x, hαv0(x)), v0 ∈ C1,1(Ω̄ , R).

We have established that independent of the value of α, the scaling for the infimum of the energy
is always determined by the prestrain and is of order h4 under our current assumption (7.1).

When α > 1, the prestrain overwhelms the role of shallowness so that the limiting theory is
the one derived in [10], coinciding with results of theorem 5.2 for the case v0 = 0 and yielding
the Euler–Lagrange equations (6.3). When α = 1, one recovers the recently postulated model [20],
discussed in this paper. For the case 0 < α < 1, the limiting theory reduces to a new constrained
theory and can be viewed as a plate theory where the non-trivial geometric structure of the
shallow shell is inherited by the plate, or equivalently it can be considered as the natural limit
of the generalized von Kármán theories (3.3) on the shallow midsurface Sγ as γ → 0. This may be
contrasted with a similar problem considered by Lewicka et al. [22], where the Γ -limit is discussed
in the context of the energy scaling as h2α+2. The relative ordering of the energy is compatible with
the case where the role of shallowness affected by the relative scaled magnitude of the body forces
or prestrains, so that the choice of α has a bearing on the limiting model. Our analysis in this paper
and in Lewicka et al. [22] is this thus the beginning of an exploration that includes many possible
scenarios.

A natural generalization of our results would be to allow for different scaling regimes for the
growth tensors. Overall, there are three independent parameters: one associated with scaling of
the shallowness, and two that characterize the incompatible strains in terms of their dependence
on the thickness h in the form hα . The resulting theories depend on the choice of scalings for these
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three parameters. Thus, there is no single correct model in general, but specific situations naturally
lead to choices of particular scalings for the relative magnitude of the thickness, the shallowness
and the differential growth and determines the effective theory, as we have shown here.
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