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Fig. 5. A physical model of brainlike instability. To mimic the growth of the
gray matter in the brain, a hemispherical elastomer (radius  r, shear modulus
Hoc) is coated with a top elastomer layer (thickness T, shear modulus poy) that
swells by absorbing solvent over time t. Representative images of a bilayer
specimen in the initial (dried) state and swollen state (modulus ratio Hele = 1)
are shown at right.

10 min. This exposure time is short enough to prevent the solvent from pene-
trating into the core, but is sufficient to swell the top layer. Immediately after
solvent exposure, the bilayer specimen is withdrawn from the bath and sub-
sequently imaged with a digital camera  (Nikon D80) equipped with a zoom lens
(Sigma 105 mm /2.8 EX DG Macro). Less polar solvents such as chloroform and
toluene (both having a similar high PDMS swelling coefficient; ref. 37) yield
similar results, but hexanes has a relatively low evaporation rate, which makes
the deswelling process slow enough to capture the surface patterns.

The shear modulus of the outer layer in the swollen state . is lower than that
in the initial dry state ( por), but the modulus of the core remains unchanged over
the short period of solvent exposure time (Y = Moc). We consider three classes of
models, sketched in Fig. 1 A-C, where P/l > 1, U/ < 1, and pdpe = 1. If Yoy
Mo, €ven the swollen modulus p of the top layer remains considerably greater
than p, so that py/pe > 1. If however poc = Hoc, after swelling of the top layer
P/l < 1. An intermediate situation is when the initial o is slightly greater than
Moc- If this bilayer is immersed in a solven t, then the modulus of the top layer in
the swollen state is comparable to that of the core, i.e.,, Py =1 as in the brain.
The above three situations are experimentally tested by varying the modulus of
the outer layer ( pot = 1 MPa, = 500 kPa, and = 100 kPa, monomer to cross-linker
ratios 5:1, 10:1, and 30:1, respectively; ref. 36) while keeping the core modulus
constant (o = 100 kPa). The resulting instabilit y patterns are shown in Fig. 1 D-F.

We also experimentally examine the effe  cts of varying the thickness of the top
layer To while keeping all other properties fixed ( por = 500 kPa, po. = 100 kPa,
and r = 11 mm) by using a set of nine bilayer s pecimens with top layers of three
different thicknesses, namely =300 pm, =800 pym, and =1.2 mm (hence, the
relative initial radius R/To = 38, 15, and 10, respectively, where R =r + Tg). Each
specimen is immersed in hex anes for a specific period t, and the resulting surface
morphologies induced by differential gro  wth and mechanical buckling arepim]m
aged (Fig. S3. The absorption of solvent is a diffusive process, with T =" 4Dt,
where T is the penetration depth (or thickness) of solvent into a top layer and D
is the diffusion coefficient. Assuming D = 6 x 107° m?s for hexanes in PDMS (38,
39), the estimated T (and R/T) for t =1 min, t =4 min, and t =9 min is found to
be =380 pm (30), 760 pm (15), and 1.1 mm (10), respectively. Highlighted images
along a diagonal line in  Fig. S3show the case where the initial radius R/, closely
matches the estimated relative radius R/T. Two of these images are compared
with the corresponding images of real and simulated brain shapes in Fig. 3.

Numerical Simulations. Our finite element model for brain folding is based on
constant strain triangle (2D) or tetrahedron (3D) elements and an explicit
solver for quasistatic equilibration of the system and allows simulation of the
large strains and highly nonlinear mechanics involved in gyrification, but
necessitates the use of high density meshes.

In 2D simulations the domain is discretized into a rectangular lattice of 150 x
600 nodes (width x depth) and filled with plane-strain triangle elements
forming a mesh of crossed triangles. The top surface of the gray matter is free
and we apply symmetric boundary conditions along the lateral sides of the
domain. Owing to symmetry, the simulation domain contains only one half of
the sulcus/gyrus. The domain is 10 times the gray-matter thickness (i.e., 60
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topmost rows of elements are included in the gray matter), to minimize the
effect of substrate thickness on the sulcus and gyrus. At each simulated value
of tangential expansion the sulcus is initiated by applying a downward force
to the surface node of a lateral boundary, and self-contact of the sulcus is
accounted for by preventing the surface crossing the vertical line that defines
the boundary. The initiating force is then removed, the system allowed to
relax, and the aspect ratio of the domain is adjusted quasistatically (by
sweeping the height of the domain over a finite interval enclosing the energy
minimum) to find the energetically optimal relative width of the gyrus.

The 3D simulations are based either on irregular tetrahedral meshes (small
brain simulations that implement a full spherical or ellipsoidal thick shell) or
a curved cubical mesh where each cube is divided to five tetrahedrons (large
brain simulations that implement a patch of a spherical thick shell), see Fig. 6.
Inner surfaces of the thick shells are clamped, but the use of free boundary
conditions or simulations with full solid spheres would yield similar results. The
irregular 3D meshes consist of = 2 x 10° nodes (about 10 7 elements) and the
regular meshes consist of 320 x 320 x 80 nodes (about 4 x 10" elements). In
each case the mesh density is such that the gray-matter layer contains at least
eight layers of elements through its thickness. The spherical patch spans an
angle of n/2 about the x and z axes, with periodic boundary conditions so that
if a copy of the domain is rotated by an angle  m/2 about the x or z axis, it would
connect seamlessly to the original domain. The simulations based on regular
meshes have small random spatial variations in growth to break the otherwise
perfect rotational symmetry. These random perturbations do not affect the
shape or size of sulci and gyri or qualitative features of the sulcal pattern, but
different perturbation fields produce different patterns because they are the
only mechanism breaking the symmetry in the system. In the simulations based
on irregular meshes, the mesh provides sufficient randomness.

Mstress-free injtial configuration of a tetrahedron is defined by the matrix
A= %, R, %3 ,where &, %, and &3 are vectors describing the tetrahe-
dron, assuming a Cartesian coordinate system. The deformed configuration
of the tetrahedron, including growth and elastic deformation, is defined by

A=%,; X, X3 =FGA, [3]

where xi, X, and X3 are the deformed basis vectors and F is the elastic de-
formation gradient. The growth tensor

G=gl+da —-gHhs A [4]

describes tangential expansion perpendicular to the surface normal A, with
g given by Eq. 2. At each time step we obtain F from Eq. 3 by using
F=AGAB". The Cauchy stress, i.e., the force per unit area in the deformed
configuration, is derived from the strain energy density =~ W&FP(Eq. 1) by

_1ow ¢
9 =3 WF , [51
where J = det(F). Surface traction of each deformed face ( =1, 2, 3, 4) of the
tetrahedron is given by s; = —on;, where n; are normals with lengths pro-
portional to the deformed areas of the faces. Nodal forces are obtained by
distributing the traction of each face equally for its three vertices.

Self-avoidance of the surface is implemented by preventing nodes pen-
etrating element faces at the surface. If a separation d between a node and
face is less than the contact offset h (we use h = a/3, where a is the mesh
spacing in the initial cgﬂfig[gﬁation) it is considered a contact and penalized
by an energy 4Ka? %" . The contact force from this potential is in-
terpolated to the vertex nodes of the face and an opposite force is given to
the node in contact with the face.

,bé\q R2

Fig. 6. Cross-section views of 3D simulation geometries for small and large
brains in their initial undeformed states. The gray-matter thickness T, brain
radius R, and boundary conditions are indicated. A detailed image of the
regular mesh structure of the large brain domain shows the reflection
symmetry between every pair of elementary cubes that share a face.
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The energy of the system is minimized by damped second-order dynamics,
using an explicit scheme,

va + tb:vamw t

. 6]

x& + tb=xdbtva&+ tbt: [7]

p . .
Here t=0:05a= K is the time step, m = a® mass of anode, and =10 m
viscous damping. Vectors f, v, and x are force, velocity, and position of
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a node, respectively. The 2D simulations are implemented similarly but with
triangular elements instead of tetrahedra.
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