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Materials with a few weakly coupled 
layers can have a variety of complex 
structures, including twist angles, 
mismatched lattice periods or, as in the 
present case of rolled layers, different 
curvatures. It remains to be seen whether 
the coupling demonstrated by Liu and 
colleagues has consequences for other 

properties of DWCNTs or other types of 
incommensurate layered systems.� ❐
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Many animals swim by accelerating 
the liquid around them, using a 
regular undulatory motion powered 

by orchestrated muscle movements. But 
the movements of goldfish look vastly 
different from those of alligators, so the 
idea that they might be described by a 
universal mechanical principle seems 
optimistic — if not entirely unrealistic. Now, 
however, as they report in Nature Physics, 
Mattia Gazzola and colleagues1 have found 
that common scaling relations characterize 
the swimming behaviours of a diverse set of 
marine creatures.

Gazzola et al.1 used observational 
parameters, such as beat amplitude and 
frequency, to estimate physical quantities — 
including thrust, drag and pressure forces 
relevant for net propulsion. A measure of the 
thrust force is given by the mass of the fluid 
set in motion multiplied by its acceleration. 
The authors were able to describe the 
thrust generation of swimming organisms 
elegantly, using dimensionless numbers that 
characterize ratios of these quantities.

Dimensionless numbers have a long 
tradition of describing the scale-invariant 
features of fluid flow, providing key 
qualitative insight in fluid mechanics. For 
example, the so-called Reynolds number 
is defined as the ratio between two force 
scales: the relative magnitudes of inertial and 
viscous forces. Here, it is the typical speed 
of a swimmer, multiplied by a characteristic 
length scale and divided by the kinematic 
viscosity of the surrounding fluid.

The advantage of introducing such 
ratios is that any absolute force scale can 
be fully eliminated from the Navier–Stokes 
equations governing fluid flow, leaving only 
dimensionless parameters, and providing a 
reduced set of effective parameters. The form 

of the solution then depends only on these 
dimensionless parameters — one has to 
rescale it to yield a real-world solution. This 
is exploited in wind-tunnel experiments, for 
example, in which a scaled-down model is 
tested at the very same Reynolds number 
that applies to the real-world analogue. 
Length, force and time then have to be 
scaled appropriately.

The Reynolds number dictates the 
swimming experience. It is well known that 
swimming bacteria or sperm cells experience 
extremely low Reynolds numbers, implying 
that viscous forces dominate. If a sperm 

flagellum were to stop beating all of a 
sudden, it would stop coasting within less 
than a millisecond — much like if you were 
to swim in honey. In this inertia-free world, 
scaling relations between the amplitude of 
swimming strokes and swimming speed have 
long been known. They are relatively easy to 
derive, as the corresponding mathematical 
equation governing viscous flow is linear, so 
solutions can simply be summed together.

At higher Reynolds numbers, applicable 
to the swimming of penguins and whales, 
convective effects dominate and new 
qualitative features emerge. Consider this 

FLUID DYNAMICS

Swimming across scales
The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation 
links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

Johannes Baumgart and Benjamin M. Friedrich
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Figure 1 | As a fish swims through viscous water, a layer of fluid is dragged along its body. This so-called 
boundary layer is proportionally thicker for small fish that experience lower Reynolds numbers compared 
with larger and fast-swimming fish. The fluid motion is illustrated by velocity profiles. Image of goldfish  
© David Cook/blueshiftstudios/Alamy; image of shark, © GlobalP/iStock/Thinkstock.
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Natural complex systems evolve 
according to chance and necessity — 
trial and error — because they 

are driven by biological evolution. The 
expectation is that networks describing 

natural complex systems, such as the 
brain and biological networks within the 
cell, should be robust to random failure. 
Otherwise, they would have not survived 
under evolutionary pressure. But many 

natural networks do not live in isolation; 
instead they interact with one another to 
form multilayer networks — and evidence 
is mounting that random networks of 
networks are acutely susceptible to failure. 

MULTILAYER NETWORKS

Dangerous liaisons?
Many networks interact with one another by forming multilayer networks, but these structures can lead to large 
cascading failures. The secret that guarantees the robustness of multilayer networks seems to be in their correlations.

Ginestra Bianconi

experiment: put a candle at a distance 
and try to extinguish it by either exhaling 
or inhaling. You’ll find that reversing the 
sign of the boundary conditions does not 
simply reverse the flow — at large Reynolds 
numbers fluid dynamics is highly nonlinear 
and convective effects dominate. These flows 
are also prone to deterministic chaos, known 
in this context as turbulence.

These effects are all captured by the 
Navier–Stokes equations, which also describe 
the intricate flow patterns of whirling eddies, 
turbulent flows and the shock waves of 
transonic flights. Computing high-Reynolds-
number flows is still very demanding, even 
on the fastest computers available. Although 
knowing the exact flow patterns in detail is 
an appealing idea, in the end one is quite 
often interested only in scalar quantities — 
in this case, the swimming speed of fish. 
Furthermore, in biology there is no need to 
squeeze out the last digit of precision, as is 
necessary, for example, in turbine design. 
Gazzola et al.1 therefore took a promising 
approach by estimating the magnitude of 
such scalar quantities based on available 
experimental data.

The speed of swimming is determined by 
a balance of thrust and drag. Hydrodynamic 
friction arises from the relative motion of 
the fish skin with respect to the surrounding 
liquid. Specifically, the rate at which the fluid 
is sheared shows a characteristic decay as 
a function of distance from the swimmer, 
defining the boundary layer in which the 
viscous losses take place and kinetic energy 
is dissipated as heat2. This boundary layer 
becomes thinner, the faster the flow — a 
classic effect, well known to engineering 
students for the more simplified geometry of 
a flat plate. More than a century ago, Blasius 
investigated this type of problem3. He 
found self-similar solutions of the velocity 
profile, rescaled according to the Reynolds 
number. Gazzola et al.1 applied this idea of 

a viscous boundary layer to estimate the 
friction of a marine swimmer (Fig. 1), and 
its dependence on the swimmer’s size, to 
derive a scaling exponent for the swimming 
speed. The theoretical prediction is indeed 
consistent with the biological data, as long 
as the amplitude of the undulatory body 
movements is smaller than the thickness of 
the boundary layer.

What happens for swimmers that are 
even faster? At such high Reynolds numbers, 
the viscous boundary layer is very thin and 
the deceleration of the fluid towards the 
body becomes important, resulting in a load 
through the conversion of kinetic energy 
into dynamic pressure, as known from 
Bernoulli’s law. This effect is used by pilots, 
for example, when measuring their velocity 
with a pitot tube. Gazzola et al.1 found a 
second scaling relation for this regime of 
high Reynolds numbers.

The authors’ analysis showed that data 
from fish larvae, goldfish, alligators and 
whales can all be fitted with these two 
scaling laws, revealing a cross-over between 
viscous- and pressure-dominated regimes. 
An extensive set of two-dimensional 
simulations — treating the swimming 
creatures essentially as waving sheets — 
corroborates their findings. Two-dimensional 
calculations have a long tradition in fluid 
dynamics and have already been used4 to 
understand self-propulsion at low Reynolds 
numbers. Strictly speaking, ignoring 
the third spatial dimension is a strong 
simplification. However, Gazzola et al.1 
compared selected three-dimensional 
simulations, some of them the largest ever 
conducted, to their two-dimensional results, 
and confirmed an analogous scaling relation.

What remains elusive is the transition 
point between the drag and pressure force 
regimes. It is an appealing idea that biology 
may have found ways to shift this point to 
low values and minimize the overall losses. 

Indeed, at high Reynolds numbers, sharks 
are known to reduce drag through special 
patterning of their skin5.

The present work is an example of how 
physical laws — in this case, the physics of 
fluid flow — determine the operational range 
of biological mechanisms such as swimming. 
Physics sets effective constraints for biological 
evolution. The beauty of physical descriptions 
is that they often hold irrespective of a 
given length scale, and can thus describe 
phenomena occurring over a wide range of 
sizes. The absolute scale of lengths, times 
and forces can always be eliminated from a 
physical equation, leaving only dimensionless 
physical quantities. As these dimensionless 
quantities usually reflect biological design 
principles that are conserved across scales, 
universal scaling laws emerge.

It is interesting to compare this instance 
of physics constraining biological function to 
earlier work of allometric scaling laws, where 
it was argued that the hydrodynamics of blood 
flow in the transport networks of terrestrial 
animals define scaling relations that relate 
body size and metabolic activity6. The dawn 
of quantitative biology may yet reveal novel 
examples of such general scaling laws.� ❐
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Scaling macroscopic aquatic locomotion
Mattia Gazzola1, Médéric Argentina2,3 and L. Mahadevan1,4*
Inertial aquatic swimmers that use undulatory gaits range
in length L from a few millimetres to 30metres, across a
wide array of biological taxa. Using elementary hydrodynamic
arguments, we uncover a unifying mechanistic principle
characterizing their locomotion by deriving a scaling relation
that links swimming speed U to body kinematics (tail beat
amplitude A and frequency ω) and fluid properties (kinematic
viscosity ν). This principle can be simply couched as the power
law Re∼Swα, where Re= UL/ν� 1 and Sw= ωAL/ν, with
α=4/3 for laminarflows, andα=1 for turbulentflows. Existing
data from over 1,000 measurements on fish, amphibians,
larvae, reptiles,mammals and birds, aswell as direct numerical
simulations are consistent with our scaling. We interpret our
results as the consequence of the convergence of aquatic gaits
to the performance limits imposed by hydrodynamics.

Aquatic locomotion entails a complex interplay between the
body of the swimmer and the induced flow in the environment1,2.
It is driven by motor activity and controlled by sensory feedback
in organisms ranging from bacteria to blue whales3. Locomotion
at low Reynolds numbers (Re=UL/ν� 1) is governed by linear
hydrodynamics and is consequently analytically tractable, whereas
locomotion at high Reynolds numbers (Re�1) involves nonlinear
inertial flows and is less well understood4. Although this is
the regime that most macroscopic creatures larger than a few
millimetres inhabit, as shown in Fig. 1a, the variety of sizes,
morphologies and gaits makes it difficult to construct a unifying
framework across taxa.

Thus, most studies have tried to take a more limited view
by quantifying the problem of swimming in specific situations
from experimental, theoretical and computational standpoints5–7.
Beginning more than fifty years ago, experimental studies8–12
started to quantify the basic kinematic properties associated with
swimming in fish, while providing grist for later theoretical
models. Perhaps the earliest and still most comprehensive of these
studies was performed by Bainbridge8, who correlated size and
frequency f =ω/(2π) of several fish via the empirical linear relation
U/L=(3/4)f −1. However, he did not provide a mechanistic
rationale based on fundamental physical principles.

The work of Bainbridge served as an impetus for a variety of the-
oretical models of swimming. The initial focus was on investigating
thrust production associated with body motion at high Reynolds
numbers, wherein inertial effects dominates viscous forces13,14. Later
models also accounted for the elastic properties of the body and
muscle activity15–18. The recent advent of numerical methods cou-
pled with the availability of fast, cheap computational resources
has triggered a new generation of direct numerical simulations to
accurately resolve the full three-dimensional problem19–24. Although
these provide detailed descriptions of the forces and flows during
swimming, the large computational data sets associated with spe-
cific problems obscure the search for a broader perspective.

Inspired by the possibility of an evolutionary convergence of
locomotory strategies ultimately limited by hydrodynamics, we
bring together the specific and general perspectives associated
with swimming using a combination of simple scaling arguments,
detailed numerical simulations and a broad comparison with
experiments. We start by recalling the basic physical mechanism
underlying the inertial motion of a slender swimmer of length
L, tail beat frequency ω and amplitude A, moving at speed U
(Fig. 1b) in a fluid of viscosity µ and density ρ (kinematic viscosity
ν=µ/ρ). At high Reynolds numbers Re=UL/ν�1, inertial thrust
is generated by the body-induced fluid acceleration, and balanced
by the hydrodynamic resistance. We assume that the oscillation
amplitude of motion is relatively small compared to the length of
the organism, and that its body is slender. This implies that fluid
acceleration can be effectively channelled into longitudinal thrust14.
Furthermore, undulatory motions are considered to be in the plane,
so that all quantities are characterized per unit depth.

In an incompressible, irrotational and inviscid flow the mass
of fluid set into motion by the deforming body scales as ρL2 per
unit depth25, assuming that the wavelength associated with the
undulatory motions scales with the body length L, consistent with
experimental and empirical observations. The acceleration of the
surrounding fluid scales as Aω2 (Fig. 1c) and therefore the reaction
force exerted by the fluid on the swimmer scales as ρL2Aω2. As
the body makes a local angle with the direction of motion that
scales as A/L, this leads to the effective thrust ρω2A2L, as shown
in Fig. 1c.

The viscous resistance tomotion (skin drag) per unit depth scales
as µUL/δ, where δ is the thickness of the boundary layer26. For fast
laminar flows the classical Blasius theory shows δ∼LRe−1/2, so that
the skin drag force due to viscous shear scales as ρ(νL)1/2U 3/2, as
shown in Fig. 1c. Balancing thrust and skin drag yields the relation
U ∼A4/3ω4/3L1/3ν−1/3 which we may rewrite as

Re∼Sw4/3 (1)

where Sw=ωAL/ν is the dimensionless swimming number, which
can be understood as a transverse Reynolds number characterizing
the undulatory motions that drive swimming. This simple scaling
relationship links the locomotory input variables that describe
the gait of the swimmer A, ω via the swimming number Sw to
the locomotory output velocity U via the longitudinal Reynolds
number Re.

At very high Reynolds numbers (Re> 103–104), the boundary
layer around the body becomes turbulent and the pressure
drag dominates the skin drag26. The corresponding force
scales as ρU 2L per unit depth, which when balanced by the
thrust yields

Re∼Sw (2)
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Figure 1 | Aquatic swimming. a, The organisms considered here (Supplementary Information) span eight orders of magnitude in Reynolds number and
encompass larvae (from mayfly to zebrafish), fish (from goldfish, to stingrays and sharks), amphibians (tadpoles), reptiles (alligators), marine birds
(penguins) and large mammals (from manatees and dolphins to belugas and blue whales). Blue fish sketch by Margherita Gazzola. b, Swimmer of length L
is propelled forward with velocity U by pushing a bolus of water14,20,24 through body undulations characterized by tail beat amplitude A and frequency ω.
c, Thrust and drag forces on a swimmer. Thrust is the reaction force associated with accelerating (Aω2) the mass of liquid per unit depth ρL2 weighted by
the local angle A/L (therefore ρLA may be understood as the mass of liquid channelled downstream). For laminar boundary layers, the drag is dominated
by viscous shear (skin drag), whereas for turbulent boundary layers, the drag is dominated by pressure (pressure drag).

As most species when swimming at high speeds maintain an
approximately constant value of the specific tail beat amplitudeA/L
(refs 8,11), relation (2) reduces toU/L∼ f , providing a mechanistic
basis for Bainbridge’s empirical relation.

In Fig. 2a, we plot all data from over 1,000 different
measurements compiled from a variety of sources (Supplementary
Information) in terms of Re and Sw, for fish (from zebrafish
larvae to stingrays and sharks), amphibians (tadpoles), reptiles
(alligators), marine birds (penguins) and large mammals (from
manatees and dolphins to belugas and blue whales). The organisms
varied in size from 0.001 to 30m, while their propulsion frequency
varied from 0.25 to 100Hz. The dimensionless numbers we use
to scale the data provides a natural division of aquatic organisms
by size, with fish larvae at the bottom left, followed by small
amphibians, fish, birds, reptiles, and large marine mammals at the
top right. We see that the data, which span nearly eight orders of
magnitude in the Reynolds number, are in agreement with our
predictions, and show a natural crossover from the laminar power
law (1) to the turbulent power law (2) at a Reynolds number of
approximately Re' 3, 000. To understand this, we note that the
skin friction starts to be dominated by the pressure drag when

the thickness of the laminar boundary layer is comparable to half
the oscillation amplitude. Therefore, a minimal estimate for the
critical Reynolds number Recritical associated with the laminar–
turbulent transition is given by the relation δ ' A/2. For a flat
plate26 δ = 5

√
νL/U and given a typical value of A/L= 0.2, we

obtain Recritical ' (10L/A)2 = 2,500, which is in agreement with
experimental data.

Naturally, some organisms do not hew exactly to our scaling
relationships. Indeed, sirenians (manatees) slightly fall below the
line, whereas anuran tadpoles lie slightly above it (Supplementary
Information). We ascribe these differences to intermittent modes
of locomotion involving a combination of acceleration, steady
swimming and coasting that these species often use. Other reasons
for the deviations could be related to different gaits in which part or
the entire body is used, as in carangiform or anguilliform motion.
Moreover, morphological variations associated with the body, tail
and fins may play a role by directly affecting the hydrodynamic
profile, or indirectly bymodifying the gaits. However, the agreement
with our minimal scaling arguments suggests that the role of
these specifics is secondary, given the variety of shapes and gaits
encompassed in our experimental data set.
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Figure 2 | Scaling aquatic locomotion: measurements. a, Data from
amphibians, larvae, fish, marine birds and mammals show that the scaled
speed of the organism Re=UL/ν varies with the scaled frequency of the
oscillatory propulsor Sw=ωAL/ν according to equations (1) and (2) over
eight decades. Data fit for the laminar regime yields Re=0.03Sw1.31 with
R2
=0.95, and for the turbulent regime yields Re=0.4Sw1.02 with

R2
=0.99. b, The Strouhal number St= fA/U, with f=ω/2π , depends

weakly on Reynolds number St∼Re−1/4 for Sw< 104 (blue) and is
independent for Sw> 104 (red), consistent with our scaling relationships
and earlier observations30.

Because aquatic organisms live in water, testing the dependence
of our scaling relationships on viscosity requires manipulating
the environment. Although this has been done on occasion27

and is consistent with our scaling relations (Supplementary
Information), numerical simulations of the Navier–Stokes
equations coupled to the motion of a swimming body allow us to
test our power laws directly by varying Sw via the viscosity ν only
(Supplementary Information). In Fig. 3, we show the results for
two-dimensional anguilliform swimmers28,29. The data from our
numerical experiments straddle both sides of the crossover from the
laminar to the turbulent regime and are in quantitative agreement
with ourminimal scaling theory, and our simple estimate for Recritical.
To further challenge our theoretical scaling relationships, in Fig. 3,
we plot the results of three-dimensional simulations performed by
various groups using different numerical techniques19,22,24,28; they
also collapse onto the same power laws (details in Supplementary
Information). The agreementwith both two- and three-dimensional
numerical simulations, which are not affected by environmental
and behavioural vagaries, gives us further confidence in
our theory.

Traditionally, most studies of locomotion use the Strouhal
number St = ωA/U , a variable borrowed from engineering, to

Sw = 200
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Re ∼ Sw

Re ∼
 Sw

4/3

Laminar
regime

104
a

b

103

102

102 103 104 105
101

Turbulent regime

Re

Sw

Figure 3 | Scaling aquatic locomotion: simulations. a, Two- and
three-dimensional direct numerical simulations of swimming creatures
confirm equations (1) and (2). Circles correspond to two-dimensional
simulations, while squares correspond to three-dimensional simulations
(details about sources and numerical techniques can be found in the
Supplementary Information). In the case of two-dimensional simulations, a
data fit for the laminar regime yields Re=0.04Sw4/3 with R2

=0.99, and
for the turbulent regime yields Re=0.43Sw with R2

=0.99. Remarkably,
three-dimensional simulations performed by various groups19,22,24,28 and
with di�erent numerical techniques (Supplementary Information) confirm
our scaling relations (Re=0.02Sw4/3 with R2

= 1.00, and Re=0.26Sw with
R2
=0.99). b, For several Sw we display the vorticity fields (red—positive,

blue—negative) generated by a two-dimensional anguilliform swimmer
initially located on the rightmost side of the figure.

characterize the underlying dynamics. Although this is reasonable
for many engineering applications such as vortex shedding,
vibration and so on, in a biological context it is worth emphasizing
that St confounds input A–ω and output U variables, captures
only one length scale by assuming A∼ L, and does not account
for varying fluid environments characterized by ν. For biological
locomotion, Sw is a more natural variable as it captures the
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two length scales associated with the tail amplitude and the
body size, accounts for the fluid environment, and allows us to
seamlessly relate the input kinematics A–ω to the output velocity
U . Nevertheless, writing equations (1) and (2) in terms of St yields
Sw = Re · St; therefore St ∼ Re−1/4, for laminar flows, and St =
const, for turbulent flows, showing little or no influence of the
Reynolds number on the Strouhal number. This direct consequence
of our theory is consistent with experimental observations (Fig. 2b)
and provides a physical basis for the findings30 that most
swimming and flying animals operate in a relatively narrow range
of St.

Despite the vast phylogenetic spread of inertial swimmers
(Supplementary Information), we find that their locomotory
dynamics is governed by the elementary hydrodynamical principles
embodied in the power law Re∼ Swα , with α= 4/3 for laminar
regimes and α = 1 for turbulent boundary layers. This scaling
relation follows by characterizing the biological diversity of
aquatic locomotion in terms of the physical constraints of
inertial swimming, a convergent evolutionary strategy for moving
through water in macroscopic creatures. Recalling that the phase
space Sw–Re relates the input transverse Reynolds number Sw
to the output longitudinal Reynolds number Re, our scaling
relations might also be interpreted as the edge of optimal
steady locomotor performance in this space, separating the
inefficient (below) from the unattainable (above) steady regimes
in oscillatory aquatic propulsive systems. We anticipate that if
general principles for aerial or terrestrial locomotion exist, theymay
well be found by considering the physical limits dictated by their
respective environments.
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Material and methods

1 Simulations of swimmers in fluids of varying viscosity

To validate our scaling laws, we performed two-dimensional direct numerical simulations of self-propelled
swimmers immersed in a viscous flow. We systematically scanned the swimming number Sw over two orders
of magnitude in the range 2 · 102 < Sw < 2 · 104 that straddles the cross-over regime from laminar to
turbulent flows to determine its impact on the resulting Reynolds number.

Numerical simulations are particularly useful in the context of this work as, unlike experimental obser-
vations, they are not affected by environmental and behavioral vagaries and allow us to vary the swimming
number Sw = ωAL/ν by modifying the environment through ν, instead of using the swimmers’ kinematic
properties ω, A, and L. This crucially tests the dependence of our scaling laws on the kinematic viscosity ν.

Simulations are performed via a state-of-the-art numerical scheme based on multiresolution remeshed
vortex methods coupled with Brinkman penalization and projection approach [31–34], to combine com-
putational efficiency and physical accuracy. These techniques have been extensively validated on several
benchmark problems involving flow past bluff bodies, sedimentation of dense objects, and self-propelled
swimming [32]. Furthermore, it has been verified against experimental observations of larval zebrafish fast
starts [35, 36] and applied to a number of engineering and biological problems [37, 36, 38].

Here we briefly review the employed methodology and present the results in the light of the theory
proposed in this work.

Flow conditions The swimmers were characterized by a swimming number Sw spanning the range 2·102 <
Sw < 2 · 104, typical of larvae and small fish (2 − 3cm). The swimming number Sw = ωAL/ν is varied by
modifying only the flow kinematic viscosity ν, while maintaining the kinematic parameters ω, A, L constant.

Midline kinematics The midline kinematics of the swimmers considered here are fixed and identical in
all simulations. We employed the motion pattern proposed by Carling [39], representative of anguilliform
swimming. This choice is motivated by the fact that larval zebrafish exhibit anguilliform motion [40]. The
swimming pattern defined by Carling is characterized by a normalized tail beat amplitude λ = A/L = 0.25.
The tail beat frequency is set to ω = 2π (period T = 1) throughout the present work.
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Shape The two-dimensional geometry of the swimmers is fixed and identical for all simulations and is
determined via the parameterization proposed in [38]. The width profile of the fish is described by a cubic
B-splines (N = 6 control points βi with i = 0, . . . , N − 1) function of the axial coordinate 0 ≤ s ≤ L. The
first and last control points are set to (s0, β0) = (0, 0) and (sN−1, βN−1) = (L, 0) to maintain C1 continuity
at the extrema. The remaining control points, uniformly distributed along the length of the swimmer, are
set to β1 = 1.4e−2 β2 = 4.6e−2 β3 = 2.2e−3 β4 = 5.8e−3. These settings are characteristic of a streamlined
fast swimmer [38].

Numerical method We consider two-dimensional simulations of a self-propelled swimmer immersed in a
viscous flow in the infinite domain Σ. The system is governed by the incompressible Navier-Stokes equations:

∇ · u = 0,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, x ∈ Σ \Ω (1)

where Ω is the volume occupied by the swimmer. The no-slip boundary condition at the geometrical interface
∂Ω enforces the fluid velocity u to match the local swimming velocity us. The feedback from the flow to the
body is governed by the equations of motion:

msẍs = FH , d(Isθ̇s)/dt = MH , (2)

where FH and MH are the hydrodynamic force and momentum exerted by the fluid on the body, which is
characterized by its centre of mass xs, angular velocity θ̇s, mass ms and moment of inertia Is.

The numerical method to integrate the system (1-2) consists of a remeshed vortex method, coupled with
a Brinkman penalization technique to approximate the no-slip boundary condition and a projection method
[31, 32], to capture the action from the fluid to the body. The body geometry is defined by the characteristic
function χs (χs = 1 inside the body, χs = 0 outside and mollified at the boundary) and its deformation
is described by the deformation velocity field associated with the motion pattern under study [32]. Further
details, validation and verification of the method can be found in [32, 36]. The computational efficiency of
this methodology is enhanced by the use of multiresolution methods in space using wavelets, and in time via
local time stepping LTS [41, 33, 34].

We discretize the domain with a multiresolution grid of minimum spacing of he = L/820. The mollification
length of χs is set to ε = 2

√
2he, Lagrangian CFL to LCFL = 0.05 and penalization factor η = 104 [32].

The meaning and importance of such parameters are described in detail in [32, 34].

Results The results of our simulations are summarized in the Fig. S1. As can be notice, a transition
between laminar and flow regime takes place in the range 103 < Sw < 104 (Fig. S1a), consistent with the
experimental observations reported in Figure 2 of the main text. Furthermore, our simulations are found to
be in agreement with the scaling laws proposed in this work, recovering the exponent 4/3 (Re = 0.037Sw4/3

with R2 = 0.999) for laminar flow and the exponent 1 (Re = 0.432Sw with R2 = 0.999) for the turbulent
regime.

For completeness, we illustrate the vorticity field (ω = ∇ × u) produced in the flow by the swimmer
(Fig. S1b). Furthermore, in (Fig. S1c-d) we report the swimmers’ forward and lateral velocities of all simu-
lations used to compile the Fig. S1a.

The agreement of the numerical simulations with the present theory, obtained by varying the flow kine-
matic viscosity ν, supports our simple scaling laws and corresponding hydrodynamic mechanisms.

Comparison with three-dimensional simulations We investigate the legitimacy of our two-dimensional
approach (modeling and simulations), by comparison with three-dimensional simulations. The data reported
here correspond to three-dimensional swimmers characterized by intermediate and high Reynolds numbers,
performed and validated via different numerical schemes by several groups [68, 67, 32, 38]. In particular,
remeshed vortex methods [32, 38], finite volumes [68] and finite differences [67] were employed. As can be
noticed in Fig. S2, three-dimensional simulations confirm our scaling laws in both the laminar and turbulent
regime. We find remarkable the fact that simulations performed by several groups [68, 67, 32, 38] employing
different numerical techniques scale according to our predictions.

Finally, we turn to both a qualitative and quantitative comparison between 2D and 3D simulations, based
on [38]. In this comparison swimmers are characterized by different height profiles, while the width (planar)
profile is maintained constant among 2D and 3D simulations. Such study shows how the evolution in time
of the swimming velocity present the same dynamic in 2D and 3D (see Fig. S3). Moreover, 2D simulations
are also shown to quantitatively capture the absolute value of swimming speeds within ∼ 10% error, below
or comparable to the experimental variability of live fish measurements. These conclusions have been also
demonstrated in [36]. This study, which uses both 2D and 3D numerical simulations, confirms the validity
of the two-dimensional modeling approach, which is shown to correctly capture the dynamics of complex
C-start maneuvers. The comparison of 2D and 3D simulations with experiments shows, even in unsteady
situations, how three-dimensional simulations validate the use of two-dimensional models [35], and makes a
strong case for the predictive capabilities of 2D simulations.

2 Database construction

The experimental studies we used in our analysis refer to a ‘sustained’ regime of locomotion, i.e. at least few
consecutive tail beats, disregarding whether the data correspond to cruise swimming or burst swimming.
Our theory in fact relates frequency (in the Swimming number - input) to swimming speed (in the Reynolds
number - output) through a mechanistic argument. Therefore, as long as a ‘sustained’ motion can be observed,
our theory applies both in the case of cruise and burst swimming.

2.1 Fish database construction

In this section we report all the raw data for fish used to compile Figure 2 in the main text, and the
corresponding sources. As a general notation the normalized tail beat amplitude is referred to as λ = A/L.

Dace, trout and goldfish The data reported by Bainbridge [42] for dace (Leuciscus leuciscus), trout
(Oncorhynchus mykiss) and goldfish (Carassius auratus) are plotted as Re versus Sw in the Fig. S4a. In
order to estimate the amplitude used to compile Figure 2 in the main text, for each specimen we computed
its average value given the data of [42]. For the specimens whose tail beat amplitude was not reported, we
used the mean value of its species.

Mackerel The data reported by Hunter et al. [43] for mackerel Trachurus symmetricus are summarized
in the Fig. S4b. For the specimens whose tail beat amplitude was not reported, we used the mean value
λ = 0.21 [43].
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Shape The two-dimensional geometry of the swimmers is fixed and identical for all simulations and is
determined via the parameterization proposed in [38]. The width profile of the fish is described by a cubic
B-splines (N = 6 control points βi with i = 0, . . . , N − 1) function of the axial coordinate 0 ≤ s ≤ L. The
first and last control points are set to (s0, β0) = (0, 0) and (sN−1, βN−1) = (L, 0) to maintain C1 continuity
at the extrema. The remaining control points, uniformly distributed along the length of the swimmer, are
set to β1 = 1.4e−2 β2 = 4.6e−2 β3 = 2.2e−3 β4 = 5.8e−3. These settings are characteristic of a streamlined
fast swimmer [38].

Numerical method We consider two-dimensional simulations of a self-propelled swimmer immersed in a
viscous flow in the infinite domain Σ. The system is governed by the incompressible Navier-Stokes equations:

∇ · u = 0,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, x ∈ Σ \Ω (1)

where Ω is the volume occupied by the swimmer. The no-slip boundary condition at the geometrical interface
∂Ω enforces the fluid velocity u to match the local swimming velocity us. The feedback from the flow to the
body is governed by the equations of motion:

msẍs = FH , d(Isθ̇s)/dt = MH , (2)

where FH and MH are the hydrodynamic force and momentum exerted by the fluid on the body, which is
characterized by its centre of mass xs, angular velocity θ̇s, mass ms and moment of inertia Is.

The numerical method to integrate the system (1-2) consists of a remeshed vortex method, coupled with
a Brinkman penalization technique to approximate the no-slip boundary condition and a projection method
[31, 32], to capture the action from the fluid to the body. The body geometry is defined by the characteristic
function χs (χs = 1 inside the body, χs = 0 outside and mollified at the boundary) and its deformation
is described by the deformation velocity field associated with the motion pattern under study [32]. Further
details, validation and verification of the method can be found in [32, 36]. The computational efficiency of
this methodology is enhanced by the use of multiresolution methods in space using wavelets, and in time via
local time stepping LTS [41, 33, 34].

We discretize the domain with a multiresolution grid of minimum spacing of he = L/820. The mollification
length of χs is set to ε = 2

√
2he, Lagrangian CFL to LCFL = 0.05 and penalization factor η = 104 [32].

The meaning and importance of such parameters are described in detail in [32, 34].

Results The results of our simulations are summarized in the Fig. S1. As can be notice, a transition
between laminar and flow regime takes place in the range 103 < Sw < 104 (Fig. S1a), consistent with the
experimental observations reported in Figure 2 of the main text. Furthermore, our simulations are found to
be in agreement with the scaling laws proposed in this work, recovering the exponent 4/3 (Re = 0.037Sw4/3

with R2 = 0.999) for laminar flow and the exponent 1 (Re = 0.432Sw with R2 = 0.999) for the turbulent
regime.

For completeness, we illustrate the vorticity field (ω = ∇ × u) produced in the flow by the swimmer
(Fig. S1b). Furthermore, in (Fig. S1c-d) we report the swimmers’ forward and lateral velocities of all simu-
lations used to compile the Fig. S1a.

The agreement of the numerical simulations with the present theory, obtained by varying the flow kine-
matic viscosity ν, supports our simple scaling laws and corresponding hydrodynamic mechanisms.

Comparison with three-dimensional simulations We investigate the legitimacy of our two-dimensional
approach (modeling and simulations), by comparison with three-dimensional simulations. The data reported
here correspond to three-dimensional swimmers characterized by intermediate and high Reynolds numbers,
performed and validated via different numerical schemes by several groups [68, 67, 32, 38]. In particular,
remeshed vortex methods [32, 38], finite volumes [68] and finite differences [67] were employed. As can be
noticed in Fig. S2, three-dimensional simulations confirm our scaling laws in both the laminar and turbulent
regime. We find remarkable the fact that simulations performed by several groups [68, 67, 32, 38] employing
different numerical techniques scale according to our predictions.

Finally, we turn to both a qualitative and quantitative comparison between 2D and 3D simulations, based
on [38]. In this comparison swimmers are characterized by different height profiles, while the width (planar)
profile is maintained constant among 2D and 3D simulations. Such study shows how the evolution in time
of the swimming velocity present the same dynamic in 2D and 3D (see Fig. S3). Moreover, 2D simulations
are also shown to quantitatively capture the absolute value of swimming speeds within ∼ 10% error, below
or comparable to the experimental variability of live fish measurements. These conclusions have been also
demonstrated in [36]. This study, which uses both 2D and 3D numerical simulations, confirms the validity
of the two-dimensional modeling approach, which is shown to correctly capture the dynamics of complex
C-start maneuvers. The comparison of 2D and 3D simulations with experiments shows, even in unsteady
situations, how three-dimensional simulations validate the use of two-dimensional models [35], and makes a
strong case for the predictive capabilities of 2D simulations.

2 Database construction

The experimental studies we used in our analysis refer to a ‘sustained’ regime of locomotion, i.e. at least few
consecutive tail beats, disregarding whether the data correspond to cruise swimming or burst swimming.
Our theory in fact relates frequency (in the Swimming number - input) to swimming speed (in the Reynolds
number - output) through a mechanistic argument. Therefore, as long as a ‘sustained’ motion can be observed,
our theory applies both in the case of cruise and burst swimming.

2.1 Fish database construction

In this section we report all the raw data for fish used to compile Figure 2 in the main text, and the
corresponding sources. As a general notation the normalized tail beat amplitude is referred to as λ = A/L.

Dace, trout and goldfish The data reported by Bainbridge [42] for dace (Leuciscus leuciscus), trout
(Oncorhynchus mykiss) and goldfish (Carassius auratus) are plotted as Re versus Sw in the Fig. S4a. In
order to estimate the amplitude used to compile Figure 2 in the main text, for each specimen we computed
its average value given the data of [42]. For the specimens whose tail beat amplitude was not reported, we
used the mean value of its species.

Mackerel The data reported by Hunter et al. [43] for mackerel Trachurus symmetricus are summarized
in the Fig. S4b. For the specimens whose tail beat amplitude was not reported, we used the mean value
λ = 0.21 [43].
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Sturgeon The data reported by Webb [44] for sturgeon Acipenser fulvescens of length L = 15.7cm are
summarized in the Fig. S4c. The tail beat amplitude was set to the average value λ = 0.19, as reported in
[44].

Rainbow trout The data reported by Webb [45] for rainbow trout Salmo gairdneri of length L = 20.1cm
are summarized in the Fig. S4d The tail beat amplitude A used to compile Figure 2 in the main text, was
computed by averaging the values given in the Figure 3a illustrated in the original paper [45].

Giant bluefin tuna The data reported by Wardle et al. [46] for giant bluefin tuna Thunnus thynnus are
summarized in the Fig. S5a. The average length was set to L = 2.5m, from the range given in [46]. Since, as
indicated in [46], the tail beat amplitude varied from λ = 0.077 to λ = 0.235 for increasing frequencies, we
estimated λ from these values using a linear relation.

Saithe and Mackerel The data reported by Videler et al. [47] for saithe Pollachius virens and mackerel
Scomber scombrus are summarized in the Fig. S5b. The average length of saithe was set to L = 37cm, while
the average length of mackerel was set to L = 32cm, given the specimens lengths indicated in [47]. The tail
beat amplitudes were estimated from lateral displacements illustrated in [47], and quantified as λ = 0.18 for
saithe and λ = 0.21 for mackerel.

Sharks The data reported by Webb et al. [48] for nurse shark (Ginglymostoma cirratum), leopard shark
(Triakis semifasciata), lemon shark (Negaprion brevirostris), bonnethead shark (Sphyrna tiburo), blacktip
shark (Carcharhinus melanopterus), and bull shark (Carcharhinus leucas) are summarized are plotted as Re
versus Sw in the Fig. S5c. The data are presented in the Table S1a.

Stingray The data reported by Rosenberger et al. [49] for stingray Taeniura lymma are summarized in
the Fig. S5d. The characteristic length L is defined as the disc width, as proposed in the original paper [49].
In order compile Figure 2 in the main text, the tail beat amplitude λ of each specimen was computed by
averaging the data illustrated in Figure 5b in the original paper [49].

African lungfish in fluids of varying viscosity by Horner et al. The data reported by Horner et al.
et al. [50] relative to the African lungfish Protopterus annectens are plotted as Re versus Sw in the Fig. S6a.
Tail beat amplitude and speed values are extracted from Figure 3 in the original paper [50]. The length
(L = 55cm) is determined as the average value of the fish length range indicated in the original paper [50].
The data are presented in the Table S1b.

Fish phylogenetic tree The species considered in this study span the entire fish phylogenetic tree as
illustrated in the Fig. S7.

2.2 Mammals database database construction

In this section we report all the raw data for mammals used to compile Figure 2 in the main text, and the
corresponding sources.

Cetaceans The data reported by Fish [51] for beluga (Delphinapterus leucas, L = 3.64m), killer whale
(Orcinus orca, L = 4.74m), false killer whale (Pseudorca crassidens, L = 3.75m) and dolphin (Tursiops
truncatus, L = 2.61m) are plotted as Re versus Sw in the Fig. S6b.

Seals The data reported by Fish et al. [52] for harp seal (Phoca groenlandica) and ringed seal (Phoca
hispida) are plotted as Re versus Sw in the Fig. S6c. The data are presented in the Table S1c, where the
tail beat amplitude values reported in the original paper [52] correspond to half the amplitude A as defined
in the present work.

Manatees The data reported by Kojeszewski et al. [53] for Florida manatee Trichechus manatus latirostris
are plotted as Re versus Sw in the Fig. S6d. The tail beat amplitude was set to λ = 0.22 and the characteristic
length is based on the average length of the adult manatee L = 3.34m, as reported in [53].

Fin whales The data reported by Goldbogen et al. [54] for fin whale Balaenoptera physalus are summarized
in the Table S1d, where the tail beat amplitude was set to λ = 0.2, based on the experimental observations
of [55] and the length was set to , L = 19m based on the average length of an adult fin whale [54]. The
corresponding kinematic data are plotted as Re versus Sw in the Fig. S8a.

Blue whales We extracted one data point for blue whale Balaenoptera musculus, based on Calambokidis
et al. [56]. The length was set to L = 25m based on the average length of an adult blue whale. The speed was
set to U = 6m/s based on the average cruise velocity of an adult blue whale. The tail beat amplitude was set
to λ = 0.2, based on the experimental observations of [55]. The swimming frequency was set to f = 0.36Hz
based on the average Strouhal number (St = 0.3) of marine mammals [55].

Mammal phylogenetic tree The species considered in this study span the entire marine mammal phylo-
genetic tree as illustrated in the Fig. S9.

2.3 Birds database construction

Penguins The data reported by Sato et al. [57] for emperor penguin (Aptenodytes forsteri), king penguin
(Aptenodytes patagonicus), gentoo penguin (Pygoscelis papua), Adelie penguin (Pygoscelis adeliae), chin-
strap penguin (Pygoscelis antarctica), macaroni penguin (Eudyptes chrysolophus) and little blue penguin
(Eudyptula minor) are summarized in the Table S1e. The data reported by Clark et al. [58] for emperor
penguin (Aptenodytes forsteri), king penguin (Aptenodytes patagonicus), African penguin (Spheniscus de-
mersus), macaroni penguin (Eudyptes chrysolophus), Adelie penguin (Pygoscelis adeliae), rockhopper pen-
guin (Eudyptes crestatus), and little blue penguin (Eudyptula minor) are summarized in the Table S1e. The
corresponding kinematic data are plotted as Re versus Sw in the Fig. S8. An estimate of the tail beat am-
plitude was extracted from Fig. 2 of the original paper by Clark et al. [58] and set to λ = 0.4. Characteristic
lengths are based on the average adult length of each species.

2.4 Amphibians database construction

In this section we report all the raw data for amphibians used to compile Figure 2 in the main text, and the
corresponding sources.
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Sturgeon The data reported by Webb [44] for sturgeon Acipenser fulvescens of length L = 15.7cm are
summarized in the Fig. S4c. The tail beat amplitude was set to the average value λ = 0.19, as reported in
[44].

Rainbow trout The data reported by Webb [45] for rainbow trout Salmo gairdneri of length L = 20.1cm
are summarized in the Fig. S4d The tail beat amplitude A used to compile Figure 2 in the main text, was
computed by averaging the values given in the Figure 3a illustrated in the original paper [45].

Giant bluefin tuna The data reported by Wardle et al. [46] for giant bluefin tuna Thunnus thynnus are
summarized in the Fig. S5a. The average length was set to L = 2.5m, from the range given in [46]. Since, as
indicated in [46], the tail beat amplitude varied from λ = 0.077 to λ = 0.235 for increasing frequencies, we
estimated λ from these values using a linear relation.

Saithe and Mackerel The data reported by Videler et al. [47] for saithe Pollachius virens and mackerel
Scomber scombrus are summarized in the Fig. S5b. The average length of saithe was set to L = 37cm, while
the average length of mackerel was set to L = 32cm, given the specimens lengths indicated in [47]. The tail
beat amplitudes were estimated from lateral displacements illustrated in [47], and quantified as λ = 0.18 for
saithe and λ = 0.21 for mackerel.

Sharks The data reported by Webb et al. [48] for nurse shark (Ginglymostoma cirratum), leopard shark
(Triakis semifasciata), lemon shark (Negaprion brevirostris), bonnethead shark (Sphyrna tiburo), blacktip
shark (Carcharhinus melanopterus), and bull shark (Carcharhinus leucas) are summarized are plotted as Re
versus Sw in the Fig. S5c. The data are presented in the Table S1a.

Stingray The data reported by Rosenberger et al. [49] for stingray Taeniura lymma are summarized in
the Fig. S5d. The characteristic length L is defined as the disc width, as proposed in the original paper [49].
In order compile Figure 2 in the main text, the tail beat amplitude λ of each specimen was computed by
averaging the data illustrated in Figure 5b in the original paper [49].

African lungfish in fluids of varying viscosity by Horner et al. The data reported by Horner et al.
et al. [50] relative to the African lungfish Protopterus annectens are plotted as Re versus Sw in the Fig. S6a.
Tail beat amplitude and speed values are extracted from Figure 3 in the original paper [50]. The length
(L = 55cm) is determined as the average value of the fish length range indicated in the original paper [50].
The data are presented in the Table S1b.

Fish phylogenetic tree The species considered in this study span the entire fish phylogenetic tree as
illustrated in the Fig. S7.

2.2 Mammals database database construction

In this section we report all the raw data for mammals used to compile Figure 2 in the main text, and the
corresponding sources.

Cetaceans The data reported by Fish [51] for beluga (Delphinapterus leucas, L = 3.64m), killer whale
(Orcinus orca, L = 4.74m), false killer whale (Pseudorca crassidens, L = 3.75m) and dolphin (Tursiops
truncatus, L = 2.61m) are plotted as Re versus Sw in the Fig. S6b.

Seals The data reported by Fish et al. [52] for harp seal (Phoca groenlandica) and ringed seal (Phoca
hispida) are plotted as Re versus Sw in the Fig. S6c. The data are presented in the Table S1c, where the
tail beat amplitude values reported in the original paper [52] correspond to half the amplitude A as defined
in the present work.

Manatees The data reported by Kojeszewski et al. [53] for Florida manatee Trichechus manatus latirostris
are plotted as Re versus Sw in the Fig. S6d. The tail beat amplitude was set to λ = 0.22 and the characteristic
length is based on the average length of the adult manatee L = 3.34m, as reported in [53].

Fin whales The data reported by Goldbogen et al. [54] for fin whale Balaenoptera physalus are summarized
in the Table S1d, where the tail beat amplitude was set to λ = 0.2, based on the experimental observations
of [55] and the length was set to , L = 19m based on the average length of an adult fin whale [54]. The
corresponding kinematic data are plotted as Re versus Sw in the Fig. S8a.

Blue whales We extracted one data point for blue whale Balaenoptera musculus, based on Calambokidis
et al. [56]. The length was set to L = 25m based on the average length of an adult blue whale. The speed was
set to U = 6m/s based on the average cruise velocity of an adult blue whale. The tail beat amplitude was set
to λ = 0.2, based on the experimental observations of [55]. The swimming frequency was set to f = 0.36Hz
based on the average Strouhal number (St = 0.3) of marine mammals [55].

Mammal phylogenetic tree The species considered in this study span the entire marine mammal phylo-
genetic tree as illustrated in the Fig. S9.

2.3 Birds database construction

Penguins The data reported by Sato et al. [57] for emperor penguin (Aptenodytes forsteri), king penguin
(Aptenodytes patagonicus), gentoo penguin (Pygoscelis papua), Adelie penguin (Pygoscelis adeliae), chin-
strap penguin (Pygoscelis antarctica), macaroni penguin (Eudyptes chrysolophus) and little blue penguin
(Eudyptula minor) are summarized in the Table S1e. The data reported by Clark et al. [58] for emperor
penguin (Aptenodytes forsteri), king penguin (Aptenodytes patagonicus), African penguin (Spheniscus de-
mersus), macaroni penguin (Eudyptes chrysolophus), Adelie penguin (Pygoscelis adeliae), rockhopper pen-
guin (Eudyptes crestatus), and little blue penguin (Eudyptula minor) are summarized in the Table S1e. The
corresponding kinematic data are plotted as Re versus Sw in the Fig. S8. An estimate of the tail beat am-
plitude was extracted from Fig. 2 of the original paper by Clark et al. [58] and set to λ = 0.4. Characteristic
lengths are based on the average adult length of each species.

2.4 Amphibians database construction

In this section we report all the raw data for amphibians used to compile Figure 2 in the main text, and the
corresponding sources.
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Tadpoles The data reported by Wassersug et al. [59] for tadpoles of Rana catesbeiana, Rana septentrionalis,
Rana clamitans and Bufo americanus are are plotted as Re versus Sw in the Fig. S8c.

2.5 Reptiles database construction

In this section we report all the raw data for reptiles used to compile Figure 2 in the main text, and the
corresponding sources.

American alligator The data reported by Fish [60] for American alligator Alligator mississippiensis, are
plotted as Re versus Sw in the Fig. S8d. Length and amplitude were set, respectively, to L = 0.467m and
λ = 0.24, as in the original paper [60].

2.6 Larvae database construction

In this section we report all the raw data for larvae used to compile Figure 2 in the main text, and the
corresponding sources.

Larval zebrafish by Muller et al. The data reported by Muller et al. [40] for larval zebrafish Danio
rerio, are plot as Re versus Sw in the Fig. S10a. To compile Figure 2 in the main text, we used both the
dataset reported in Table 1 and Figure 7 of the original paper [40]. For the latter dataset, we estimated λ
by averaging the values of the Table S1f.

Larval zebrafish by Green et al. The data reported by Green et al. [61] for larval zebrafish Danio rerio,
are plotted as Re versus Sw in the Fig. S10b. Tail beat frequency was observed to be constant f = 30Hz in
the set of experiments of [61].

Ascidian larvae The data reported by McHenry et al. [62, 63] for Ascidian larvae Distaplia occidentalis [62]
and Aplidium constellatum [63] are plotted as Re versus Sw in the Fig. S10b. Due to the lack of information
regarding the tail beat amplitude, we set λ = 0.2 consistently with [61, 40]. Data for Ascidian larvae Ciona
intestinalis in [62] where omitted since their Reynolds numbers are below the minimum value for our theory
to hold (Re � 10).

Larval zebrafish We extracted two data points for larval zebrafish Brachydanio rerio, based on Figure 7
and 8 of the reference [64]. Data are summarized in the Table S1h.

2.7 Mayfly larvae

We extracted one data point for mayfly larvae Chloeon dipterous, based on Brackenbury et al. [65]. Data are
summarized in the Table S1i.

3 Statistical data analysis

The statistical data analysis performed in order to validate our hydrodynamic theory is summarized in the
Fig. S11. For each entry of the Fig. S11 we report the best fit power law Re = bSwa, where a and log(b)
represent, respectively, the slope and intercept of the best fit line in a log log scale, and the corresponding
coefficient of determination R2.

4 Credits for photographs of swimmers

We wish to thank the authors of the photographs used to compile Figure 1 in the main text, for making
their work available. The credits are listed below.

– Ascidian larva. Source: http://invert-embryo.blogspot.com/2013/06/ascidian-tadpole-larvae-
settlement-and_6.html. Article: Ascidian tadpole larvae: settlement and metamorphosis. Authors: Stu-
dents of Comparative Embryology and Larval Biology course taught by Dr. Svetlana Maslakova at the
Oregon Institute of Marine Biology in Charleston, Oregon (USA).

– Mayfly larva. Source: http://notes-from-dreamworlds.blogspot.com/. Author: Daniel Stoupin.
– Zebrafish larva. Source: http://www.genome.gov/pressDisplay.cfm?photoID=95, Wikipedia Com-

mons. Authors: Shawn Burgess, NHGRI.
– Amphibian tadpole. Source: Wikipedia Commons. Author: Miika Silfverberg from Vantaa, Finland.
– Stingray. Source: http://www.biolib.cz/cz/image/id200316/. Author: Viktor Vrbovsky.
– Dace. Source: Wikipedia Commons. Author: Hans Hillewaert.
– Shark. Source: http://www.free-picture.net
– Goldfish. Source: http://english.turkcebilgi.com/gold+fish, Wikipedia Commons. Author: Lerd-

suwa.
– Crocodile. Source: http://www.nasa.gov/centers/kennedy/images/content/91159main_93pc780.

jpg, Wikipedia Commons.
– Penguin. Source: Wikipedia Commons. Author: Samuel Blanc.
– Killer whale. Source: http://walldie.com/orca-whale-wallpapers-hd/
– Manatee. Source: Wikipedia Commons. Author: Reid, Jim P., U.S. Fish and Wildlife Service.
– Beluga. Source: http://www.georgiaaquariumblog.org/georgia-aquarium-blog/2012/6/29/beluga-

whale-acquisition.html

– Blue whale. Source: http://www.earthwindow.com/blue.html. Author: Mike Johnson.
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Tadpoles The data reported by Wassersug et al. [59] for tadpoles of Rana catesbeiana, Rana septentrionalis,
Rana clamitans and Bufo americanus are are plotted as Re versus Sw in the Fig. S8c.

2.5 Reptiles database construction

In this section we report all the raw data for reptiles used to compile Figure 2 in the main text, and the
corresponding sources.

American alligator The data reported by Fish [60] for American alligator Alligator mississippiensis, are
plotted as Re versus Sw in the Fig. S8d. Length and amplitude were set, respectively, to L = 0.467m and
λ = 0.24, as in the original paper [60].

2.6 Larvae database construction

In this section we report all the raw data for larvae used to compile Figure 2 in the main text, and the
corresponding sources.

Larval zebrafish by Muller et al. The data reported by Muller et al. [40] for larval zebrafish Danio
rerio, are plot as Re versus Sw in the Fig. S10a. To compile Figure 2 in the main text, we used both the
dataset reported in Table 1 and Figure 7 of the original paper [40]. For the latter dataset, we estimated λ
by averaging the values of the Table S1f.

Larval zebrafish by Green et al. The data reported by Green et al. [61] for larval zebrafish Danio rerio,
are plotted as Re versus Sw in the Fig. S10b. Tail beat frequency was observed to be constant f = 30Hz in
the set of experiments of [61].

Ascidian larvae The data reported by McHenry et al. [62, 63] for Ascidian larvae Distaplia occidentalis [62]
and Aplidium constellatum [63] are plotted as Re versus Sw in the Fig. S10b. Due to the lack of information
regarding the tail beat amplitude, we set λ = 0.2 consistently with [61, 40]. Data for Ascidian larvae Ciona
intestinalis in [62] where omitted since their Reynolds numbers are below the minimum value for our theory
to hold (Re � 10).

Larval zebrafish We extracted two data points for larval zebrafish Brachydanio rerio, based on Figure 7
and 8 of the reference [64]. Data are summarized in the Table S1h.

2.7 Mayfly larvae

We extracted one data point for mayfly larvae Chloeon dipterous, based on Brackenbury et al. [65]. Data are
summarized in the Table S1i.

3 Statistical data analysis

The statistical data analysis performed in order to validate our hydrodynamic theory is summarized in the
Fig. S11. For each entry of the Fig. S11 we report the best fit power law Re = bSwa, where a and log(b)
represent, respectively, the slope and intercept of the best fit line in a log log scale, and the corresponding
coefficient of determination R2.
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We wish to thank the authors of the photographs used to compile Figure 1 in the main text, for making
their work available. The credits are listed below.
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– Amphibian tadpole. Source: Wikipedia Commons. Author: Miika Silfverberg from Vantaa, Finland.
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– Dace. Source: Wikipedia Commons. Author: Hans Hillewaert.
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– Goldfish. Source: http://english.turkcebilgi.com/gold+fish, Wikipedia Commons. Author: Lerd-

suwa.
– Crocodile. Source: http://www.nasa.gov/centers/kennedy/images/content/91159main_93pc780.

jpg, Wikipedia Commons.
– Penguin. Source: Wikipedia Commons. Author: Samuel Blanc.
– Killer whale. Source: http://walldie.com/orca-whale-wallpapers-hd/
– Manatee. Source: Wikipedia Commons. Author: Reid, Jim P., U.S. Fish and Wildlife Service.
– Beluga. Source: http://www.georgiaaquariumblog.org/georgia-aquarium-blog/2012/6/29/beluga-

whale-acquisition.html

– Blue whale. Source: http://www.earthwindow.com/blue.html. Author: Mike Johnson.
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Fig. S1: Simulation of swimmers in fluids with varying viscosity. (a) Simulation results are plotted
as Re versus Sw to assess the validity of the proposed scaling laws. (b) Vorticity fields at time t = 10T
produced by swimmers with different Sw. Red and blue colors correspond, respectively, to positive and
negative vorticity values. (c-d) Time evolution of forward (U) and lateral (V ) velocities of all simulated
swimmers. Each curve corresponds to a data point in (a).
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Fig. S2: Scaling of 2D and 3D simulations. (a) Two- and three-dimensional simulations confirm the
proposed scaling law. Blue dots represent the 2D simulations of Figure 3 in the main text for an anguilliform
swimmer whose shape is optimized for speed [38]. The black dot at Re=300 corresponds to the 3D simulation
of a mackerel of [67]. The unlabeled dots refer to a three-dimensional efficient swimmer of shape βw =
{0.24, 0.3, 0.008, 0.006} and βh = {0.22, 0.27, 0.28, 0.3, 0.3, 0.22} (see the notation of [38]) and characterized
by tail beat periods T = {0.9, 1, 1.1}, amplitude A = 0.285, L = 1 and ν = 1/550. Simulations were
performed with a resolution of 500 points across the swimmer’s length and LCFL = 0.1 (credit to van Rees
and Koumoutsakos). The velocity used to compute the corresponding Re is the final speed at t = 6.5T .
Red dots correspond to a 3D simulation of mackerel at Re=4000 [67], optimized fast and efficient eel-like
swimmers [68] and anguilliform swimmer [32]. As can be noticed 3D simulations confirm our power law
both in the laminar (fit characterized by R2 = 1.00) and turbulent regime (fit characterized by R2 = 0.99).
Remarkably, simulations performed with completely different numerical techniques scale as predicted, giving
us additional confidence on the correctness of our approach.
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Fig. S3: Quantitative comparison of 2D and 3D simulations. Here use the results of previous com-
putations for optimal fast swimmers [38] to quantitatively justify the use of 2D simulations for the validation
of the proposed scaling law. Three-dimensional shapes are constructed by ellipsoidal cross-sections with half-
axes defined by the width (top view in b) and the height (side view in b) profiles. Several 3D anguilliform
swimmers characterized by the same width profile (top panel in b) but with different height profiles (bottom
panel in b). (a) The transient evolution of the forward velocity in time (T is the tail oscillation period) of
each 3D simulation corresponds to the matched color code of the swimmer profiles shown in panel (b). The
dashed black line corresponds instead to a 2D simulation with a 2D swimmer of width profile identical to
the 3D fish. We see that the 2D model simulations match the 3D simulations for all the profiles used within
a ∼ 10% difference. This difference is generally below or at least comparable with the variability observed in
the over 1000 experiments reported in this work. Moreover, the qualitative evolution of the swimming veloc-
ity in time is preserved from 3D to 2D. From a mathematical point of view this means that our theoretically
derived power laws are not affected by the dimension; offsets in swimming velocities when moving from 2D
to 3D change the prefactor and not the exponent. (c) The vorticity field (blue negative, red positive values)
of a 2D simulation at Re=550 is shown next to the vorticity field in the mid-plane of a 3D simulation at
Re=550. As can be seen the main mid-plane features of the three-dimensional wake (vortex cores shedding
- image courtesy of van Rees and Koumoutsakos) are preserved in 2D, thus validating our hypothesis that
this captures the leading order dynamics of swimming. (d) Volume rendering of the wake associated with
a 3D swimmer at Re=550 (image adapted from [38]). All simulations are carried out assuming 500 points
across the fish length, and LCFL=0.1. More details about the simulation techniques can be found in [38].

Fig. S4: Data reported by various authors and corresponding best fit lines (see Section 3) are
plotted as Re versus Sw. a Dace (�), trout (�) and goldfish (�) [42]. b Mackerel Trachurus symmetricus
[43] c Sturgeon Acipenser fulvescens [44] d Rainbow trout [45]
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a 3D swimmer at Re=550 (image adapted from [38]). All simulations are carried out assuming 500 points
across the fish length, and LCFL=0.1. More details about the simulation techniques can be found in [38].

Fig. S4: Data reported by various authors and corresponding best fit lines (see Section 3) are
plotted as Re versus Sw. a Dace (�), trout (�) and goldfish (�) [42]. b Mackerel Trachurus symmetricus
[43] c Sturgeon Acipenser fulvescens [44] d Rainbow trout [45]
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Fig. S5: Data reported by various authors and corresponding best fit lines (see Section 3) are
plotted as Re versus Sw. a Giant bluefin tuna Thunnus thynnus [46]. b Saithe Pollachius virens (�)
and mackerel Scomber scombrus (�) [47] c Several species of sharks [48]. d Stingrays Taeniura lymma with
characteristic length L = 14.3cm [49].

Fig. S6: Data reported by various authors and corresponding best fit lines (see Section 3) are
plotted as Re versus Sw. a African lungfish Protopterus annectens subject to fluid viscosity variations
[50]. b Beluga (Delphinapterus leucas) (�), killer whale (Orcinus orca) (�), false killer whale (Pseudorca
crassidens) (�), and dolphin (Tursiops truncatus) (♦) [51]. c Harp seal (�) and ringed seal (�) [52]. d
Florida manatee Trichechus manatus latirostris [53].
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Fish data considered

in the present study

Fig. S7: Fish phylogenetic tree and species considered in the present study. Image adapted from
[69].

Fig. S8: Data reported by various authors and corresponding best fit lines (see Section 3)
are plotted as Re versus Sw. a Fin whale Balaenoptera physalus [54]. b Penguin data [57] (�), [58] (�)
with corresponding best fit lines (dashed line for data of [57] and solid line for data of [58]). c Tadpole data
[59], Rana catesbeiana for organisms of average length L = 6cm (�), Rana septentrionalis of average length
L = 4.75cm (�), Rana clamitans of average length L = 5.25cm (∇), and Bufo americanus of average length
L = 2.23cm (�). d American alligator Alligator mississippiensis [60].
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Fig. S9: Mammal phylogenetic tree and species considered in the present study. Image adapted
from [70].

Fig. S10: Data reported by various authors and corresponding best fit lines (see Section 3)
are plotted as Re versus Sw. a Larval zebrafish Danio rerio [40]. b Larval zebrafish Danio rerio [61]. c
Ascidian larvae [62, 63].
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Fig. S9: Mammal phylogenetic tree and species considered in the present study. Image adapted
from [70].

Fig. S10: Data reported by various authors and corresponding best fit lines (see Section 3)
are plotted as Re versus Sw. a Larval zebrafish Danio rerio [40]. b Larval zebrafish Danio rerio [61]. c
Ascidian larvae [62, 63].
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SOURCE DATA*SET SLOPE INTERCEPT R2 N*SAMPLES

LAMINAR**********(Sw*<*10^4) 1.310 0.029 0.946 100
TURBULENT******(Sw*>*10^4) 1.018 0.400 0.985 902

FISH 1.051 0.281 0.968 635

AMPHIBIANS 1.219 0.044 0.906 39

REPTILES 1.244 0.011 0.499 19

MAMMALS 1.124 0.065 0.939 212

BIRDS 0.943 1.232 0.976 15

LARVAE 1.522 0.008 0.956 82

10^4-<-Sw-<-10^7 1.004 0.473 0.968 757
10^5-<-Sw-<-10^8 1.006 0.485 0.980 668
10^6-<-Sw-<-10^9 1.061 0.193 0.945 275

Bainbridge DACE 1.029 0.377 0.968 153
Bainbridge GOLDFISH 1.088 0.185 0.958 100
Bainbridge TROUT 1.073 0.210 0.978 103
Hunter MACKEREL 1.234 0.027 0.977 70
Webb TROUT 1.329 0.011 0.827 64
Webb STURGEON 1.193 0.041 0.575 57
Wardle TUNA 1.156 0.043 0.530 33
Videler SAITHE 0.889 3.136 0.817 13
Videler MACKEREL 0.836 5.880 0.967 12
Webb SHARKS 1.368 0.002 0.815 6
Rosenberger STINGRAY 1.294 0.025 0.620 24

TOTAL 635

Wassersug TADPOLE-RANA-CATESBEIANA 1.223 0.038 0.948 16
Wassersug TADPOLE-RANA-SEPTENTRIONALIS 1.247 0.048 0.694 5
Wassersug TADPOLE-RANA-CLAMITANS 1.916 0.00006 0.919 9
Wassersug TADPOLE-BUFO-AMERICANUS 1.236 0.036 0.826 9

TOTAL 39

Fish ALLIGATOR 1.244 0.011 0.499 19
TOTAL 19

Fish BELUGA 0.945 1.206 0.845 19
Fish KILLER-WHALE 1.440 0.0002 0.572 28
Fish FALSE-KILLER-WHALE 0.958 1.284 0.673 42
Fish DOLPHIN 0.961 1.150 0.772 53
Fish RINGED-SEAL 0.754 19.617 0.626 7
Fish HARP-SEAL- 1.066 0.209 0.640 5
Kojeszewski MANATEE 1.471 0.0002 0.492 50
Goldbogen FIN-WHALE 0.670 222.541 0.123 7
Calambokidis BLUE-WHALE * * * 1

TOTAL 212

Clark PENGUINS 0.993 0.572 0.981 7
Sato PENGUINS 0.889 2.806 0.980 8

TOTAL 15

Muller ZEBRAFISH-LARVAE 1.523 0.008 0.882 49
Green ZEBRAFISH-LARVAE 1.233 0.036 0.642 23
McHenry ASCIDIAN-LARVAE 0.472 1.489 0.193 7
Brackenbury MAYFLY-LARVAE * * 1
Budick ZEBRAFISH-LARVAE * * 2

TOTAL 82

Fig. S11: Statistical data analysis.

a Length Ampl. Freq. Speed
(m) (L) (Hz) (L s−1)

Nurse shark 2.25 0.21 0.67 0.34
Leopard shark 0.98 0.20 1.12 0.58
Lemon shark 2.25 0.18 0.95 0.47
Bonnethead shark 0.93 0.18 1.25 0.84
Blacktip shark 0.97 0.18 1.13 0.80
Bull shark 2.25 0.16 0.78 0.58

b Length Ampl Freq. Speed
(cm) (L) (Hz) (L s−1)

ν = 10−6m2/s 55 0.10 0.83 0.20
ν = 10−5m2/s 55 0.11 1.20 0.23
ν = 10−4m2/s 55 0.14 1.44 0.14
ν = 10−3m2/s 55 0.13 1.94 0.15

c Length Ampl. Freq. Speed
(m) (m) (Hz) (m s−1)

Ringed seal 1.03 0.15 0.77 0.75
1.09 0.12 1.09 1.00
1.03 0.18 1.14 1.10
1.09 0.16 1.00 1.10
1.09 0.18 1.20 1.28
1.03 0.15 1.14 1.38
1.03 0.15 1.26 1.42

Harp seal 1.64 0.19 0.55 0.60
1.64 0.15 0.71 0.70
1.43 0.17 0.80 1.04
1.43 0.15 0.92 1.18
1.43 0.17 1.14 1.26

d Length Ampl. Freq. Speed
(m) (L) (Hz) (m s−1)

Fin whale 19 0.2 0.28 3.0
19 0.2 0.28 4.0
19 0.2 0.25 3.0
19 0.2 0.27 3.0
19 0.2 0.28 2.5
19 0.2 0.28 3.2
19 0.2 0.23 2.7

e Length Freq. Speed
(cm) (Hz) (m s−1)

Emperor penguin 115 1.47 2.2
King penguin 90 1.35 1.7

90 1.55 2.1
Gentoo penguin 80 2.18 2.3
Adelie penguin 70 2.33 2.1
Chinstrap penguin 68 2.56 2.3
Macaroni penguin 70 2.29 2.0
Little blue penguin 33 3.50 1.8

Emperor penguin 115 1.50 2.26
King penguin 90 2.85 3.35
African penguin 68 3.24 3.23
Macaroni penguin 70 2.62 2.29
Adelie penguin 70 2.50 1.98
Rockhopper penguin 51 3.13 2.18
Little blue penguin 33 3.91 1.72

f Length Ampl. Freq. Speed
(mm) (L) (Hz) (L s−1)

Larval zebrafish 3.5 0.22 40 9.3
3.5 0.20 71 37.5
3.9 0.26 31 8.1
3.9 0.23 100 55.3
4.2 0.24 68 43.8
4.3 0.19 42 16.0
4.3 0.25 80 48.4
4.4 0.11 56 17.8
4.4 0.21 73 44.9

g Length Ampl. Freq. Speed
(mm) (L) (Hz) (mm s−1)

Distaplia occidentalis 2.6 0.2 18.2 3.9
2.0 0.2 18.2 5.0
1.8 0.2 18.2 5.6
2.0 0.2 18.2 6.0
2.4 0.2 18.2 8.4
3.2 0.2 18.2 5.5

Aplidium constellatum 2.0 0.2 25.2 14.3

h Length Ampl. Freq. Speed
(mm) (L) (Hz) (mm s−1)

Larval zebrafish 3.5 0.2 30.0 10.0
3.5 0.3 54.7 103.8

i Length Ampl. Freq. Speed
(cm) (L) (Hz) (cm s−1)

Mayfly larvae 0.98 0.26 26.9 20.8

Table S1: Kinematic swimming parameters of various swimmers. a Several species of sharks, by
Webb et al. [48]. b Data reported by Horner et al. [50] on African lungfish. c Data reported by Fish et al.
[52] for seals. d Data reported by Goldbogen et al. [54] for fin whale. e Data reported by Sato et al. [57] and
by Clark et al. [58] for penguins. f Data reported by Muller et al. [40] for larval zebrafish. g Data reported
by McHenry et al. [62, 63] for Ascidian larvae and Aplidium constellatum. h Data reported by Budick et al.
[64] for larval zebrafish. i Data reported by Brackenbury et al. [65] for mayfly larvae.

20	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3078

© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys3078


SOURCE DATA*SET SLOPE INTERCEPT R2 N*SAMPLES

LAMINAR**********(Sw*<*10^4) 1.310 0.029 0.946 100
TURBULENT******(Sw*>*10^4) 1.018 0.400 0.985 902

FISH 1.051 0.281 0.968 635

AMPHIBIANS 1.219 0.044 0.906 39

REPTILES 1.244 0.011 0.499 19

MAMMALS 1.124 0.065 0.939 212

BIRDS 0.943 1.232 0.976 15

LARVAE 1.522 0.008 0.956 82

10^4-<-Sw-<-10^7 1.004 0.473 0.968 757
10^5-<-Sw-<-10^8 1.006 0.485 0.980 668
10^6-<-Sw-<-10^9 1.061 0.193 0.945 275

Bainbridge DACE 1.029 0.377 0.968 153
Bainbridge GOLDFISH 1.088 0.185 0.958 100
Bainbridge TROUT 1.073 0.210 0.978 103
Hunter MACKEREL 1.234 0.027 0.977 70
Webb TROUT 1.329 0.011 0.827 64
Webb STURGEON 1.193 0.041 0.575 57
Wardle TUNA 1.156 0.043 0.530 33
Videler SAITHE 0.889 3.136 0.817 13
Videler MACKEREL 0.836 5.880 0.967 12
Webb SHARKS 1.368 0.002 0.815 6
Rosenberger STINGRAY 1.294 0.025 0.620 24

TOTAL 635

Wassersug TADPOLE-RANA-CATESBEIANA 1.223 0.038 0.948 16
Wassersug TADPOLE-RANA-SEPTENTRIONALIS 1.247 0.048 0.694 5
Wassersug TADPOLE-RANA-CLAMITANS 1.916 0.00006 0.919 9
Wassersug TADPOLE-BUFO-AMERICANUS 1.236 0.036 0.826 9

TOTAL 39

Fish ALLIGATOR 1.244 0.011 0.499 19
TOTAL 19

Fish BELUGA 0.945 1.206 0.845 19
Fish KILLER-WHALE 1.440 0.0002 0.572 28
Fish FALSE-KILLER-WHALE 0.958 1.284 0.673 42
Fish DOLPHIN 0.961 1.150 0.772 53
Fish RINGED-SEAL 0.754 19.617 0.626 7
Fish HARP-SEAL- 1.066 0.209 0.640 5
Kojeszewski MANATEE 1.471 0.0002 0.492 50
Goldbogen FIN-WHALE 0.670 222.541 0.123 7
Calambokidis BLUE-WHALE * * * 1

TOTAL 212

Clark PENGUINS 0.993 0.572 0.981 7
Sato PENGUINS 0.889 2.806 0.980 8

TOTAL 15

Muller ZEBRAFISH-LARVAE 1.523 0.008 0.882 49
Green ZEBRAFISH-LARVAE 1.233 0.036 0.642 23
McHenry ASCIDIAN-LARVAE 0.472 1.489 0.193 7
Brackenbury MAYFLY-LARVAE * * 1
Budick ZEBRAFISH-LARVAE * * 2

TOTAL 82

Fig. S11: Statistical data analysis.

a Length Ampl. Freq. Speed
(m) (L) (Hz) (L s−1)

Nurse shark 2.25 0.21 0.67 0.34
Leopard shark 0.98 0.20 1.12 0.58
Lemon shark 2.25 0.18 0.95 0.47
Bonnethead shark 0.93 0.18 1.25 0.84
Blacktip shark 0.97 0.18 1.13 0.80
Bull shark 2.25 0.16 0.78 0.58

b Length Ampl Freq. Speed
(cm) (L) (Hz) (L s−1)

ν = 10−6m2/s 55 0.10 0.83 0.20
ν = 10−5m2/s 55 0.11 1.20 0.23
ν = 10−4m2/s 55 0.14 1.44 0.14
ν = 10−3m2/s 55 0.13 1.94 0.15

c Length Ampl. Freq. Speed
(m) (m) (Hz) (m s−1)

Ringed seal 1.03 0.15 0.77 0.75
1.09 0.12 1.09 1.00
1.03 0.18 1.14 1.10
1.09 0.16 1.00 1.10
1.09 0.18 1.20 1.28
1.03 0.15 1.14 1.38
1.03 0.15 1.26 1.42

Harp seal 1.64 0.19 0.55 0.60
1.64 0.15 0.71 0.70
1.43 0.17 0.80 1.04
1.43 0.15 0.92 1.18
1.43 0.17 1.14 1.26

d Length Ampl. Freq. Speed
(m) (L) (Hz) (m s−1)

Fin whale 19 0.2 0.28 3.0
19 0.2 0.28 4.0
19 0.2 0.25 3.0
19 0.2 0.27 3.0
19 0.2 0.28 2.5
19 0.2 0.28 3.2
19 0.2 0.23 2.7

e Length Freq. Speed
(cm) (Hz) (m s−1)

Emperor penguin 115 1.47 2.2
King penguin 90 1.35 1.7

90 1.55 2.1
Gentoo penguin 80 2.18 2.3
Adelie penguin 70 2.33 2.1
Chinstrap penguin 68 2.56 2.3
Macaroni penguin 70 2.29 2.0
Little blue penguin 33 3.50 1.8

Emperor penguin 115 1.50 2.26
King penguin 90 2.85 3.35
African penguin 68 3.24 3.23
Macaroni penguin 70 2.62 2.29
Adelie penguin 70 2.50 1.98
Rockhopper penguin 51 3.13 2.18
Little blue penguin 33 3.91 1.72

f Length Ampl. Freq. Speed
(mm) (L) (Hz) (L s−1)

Larval zebrafish 3.5 0.22 40 9.3
3.5 0.20 71 37.5
3.9 0.26 31 8.1
3.9 0.23 100 55.3
4.2 0.24 68 43.8
4.3 0.19 42 16.0
4.3 0.25 80 48.4
4.4 0.11 56 17.8
4.4 0.21 73 44.9

g Length Ampl. Freq. Speed
(mm) (L) (Hz) (mm s−1)

Distaplia occidentalis 2.6 0.2 18.2 3.9
2.0 0.2 18.2 5.0
1.8 0.2 18.2 5.6
2.0 0.2 18.2 6.0
2.4 0.2 18.2 8.4
3.2 0.2 18.2 5.5

Aplidium constellatum 2.0 0.2 25.2 14.3

h Length Ampl. Freq. Speed
(mm) (L) (Hz) (mm s−1)

Larval zebrafish 3.5 0.2 30.0 10.0
3.5 0.3 54.7 103.8

i Length Ampl. Freq. Speed
(cm) (L) (Hz) (cm s−1)

Mayfly larvae 0.98 0.26 26.9 20.8

Table S1: Kinematic swimming parameters of various swimmers. a Several species of sharks, by
Webb et al. [48]. b Data reported by Horner et al. [50] on African lungfish. c Data reported by Fish et al.
[52] for seals. d Data reported by Goldbogen et al. [54] for fin whale. e Data reported by Sato et al. [57] and
by Clark et al. [58] for penguins. f Data reported by Muller et al. [40] for larval zebrafish. g Data reported
by McHenry et al. [62, 63] for Ascidian larvae and Aplidium constellatum. h Data reported by Budick et al.
[64] for larval zebrafish. i Data reported by Brackenbury et al. [65] for mayfly larvae.
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