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Synopsis: Mimicking the Brain

Neuromimetic devices—artificial electronics that mimic the brain’s neurons—could be used to study how the brain
works or to design circuits that borrow from the brain’s computing ability. Such devices emulate neurons and the
synapses between them with voltagedriven circuits that exchange signals in a connected network. But
conventional circuits cannot easily reproduce the synapses’ ability to strengthen and weaken over time with
stimulation—a key property, known as “plasticity,” that forms the basis of learning and memory. A research group
at Harvard University, led by Shriram Ramanathan, has now demonstrated neuromimetic circuits that replicate the
plasticity of synapses. Their schemes are able to simulate a variety of neural processes: learning, unlearning, and
storing memories.

The authors use a synapselike unit they previously demonstrated: a transistor whose current depends on the
resistivity of its channel, made of a samarium nickel oxide (SNO). SNO’s properties are key to plasticity: unlike
conventional semiconductors, this strongly correlated system can have a much greater range of possible resistivity
states. When the synapse is stimulated electrically, the resistivity changes to a different value. Based on such
plastic behavior, the researchers demonstrate small circuits, consisting of several transistors, which carry out a
variety of neural functions. The devices are capable, for instance, of learning that two stimuli are linked (like the
association between food and a bell ring in Pavlov’s famous experiments with dogs). They can also unlearn (if the
stimuli are not coupled for some time, the association is forgotten) and store memories of received stimuli.

This research is published in Physical Review Applied.
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Strongly correlated electron systems such as the rare-earth nickelates (RNiO3, R denotes a rare-earth
element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic
liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to
stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using
nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory
neurons. We establish a physical model for the device behavior based on electric-field-driven coupled
ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to
simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent
network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be
readily generalized to other forms of cellular learning and extinction. The simulation of neural function
with electronic device analogs may provide insight into biological processes such as decision making,
learning, and adaptation, while facilitating advanced parallel information processing in hardware.
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I. INTRODUCTION

In nervous systems, information is processed by a network
of neuron cells that each transmit and receive electrical
signals through ionic transport. Neurons are connected
through synapses, which control the amount of charge that
is transmitted from a preceding (presynaptic) neuron to a
subsequent (postsynaptic) neuron, much like resistors in
electronic circuits. Neurons fire signals when the combina-
tion of input signals from all preceding neurons is above a
threshold value within some time window. Excitatory
(inhibitory) neurons generate positive (negative) signals that
promote (suppress) postsynaptic firing. A powerful and
crucial aspect of nervous systems is that synapse weights
can be persistently enhanced or reduced, denoted as plas-
ticity. This ability is believed to be linked to learning and
memory in nervous systems. At the cellular level, there are
several mechanisms by which synapse weight modulation
occurs, such as Hebb’s Rule, in which temporal correlation
between pre- and postsynaptic signals drives weight
enhancement [1]. At the system level, learning often involves
many neurons and synapses. Learning generally occurs
through associative (e.g., the name of an object becomes
attributed its physical appearance) or nonassociative

(e.g., the startle response to a loud noise reduces with
repetition) means. Simulating neural function with electron-
ics may be a powerful tool for enhancing understanding of
system-level brain function and for brain-inspired parallel
computation. However, current software simulations are
known to be energy- and space-intensive [2], and conven-
tional CMOS electronic device implementations are limited
by lack of components that mimic biological synapse
behavior [3–5]. Here, we demonstrate a broad array of
device-level learning mechanisms using rare-earth nickelate
synaptic devices in a circuit architecture analogous to
biological systems. Our nickelate devices and electronic
circuit are capable of using both excitatory and inhibitory
neurons for associative and nonassociative learning, which
are some of the core elements in any neural circuit [6]. We
start by implementing a Hebbian-like mechanism with
excitatory neurons to experimentally demonstrate associative
learning. We then show compatibility with inhibitory neu-
rons to experimentally show associative unlearning before
generalizing to other learning mechanisms and more com-
plex networks through simulations.
Classical conditioning is a fundamental associative

learning process in which an unconditioned stimulus
(US) consistently produces an unconditioned response
(UR) and an initially neutral stimulus (NS) does not
produce a similar response. An example of a US-UR pair
in humans is striking of the patellar tendon below the knee
and jerking motion of the knee [7]. An NS could be the
sound of a bell, which normally does not cause the knee to
jerk. In classical conditioning, after sufficient repeated
activation of NS directly before US, an association is
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developed between NS and US such that NS produces a
similar response as US, after which the NS is referred to
as the conditioned stimulus (CS) and the corresponding
response as the conditioned response (CR). Extinguishing
of the CS-US association is denoted as unlearning,
although there are other processes by which CS stops
generating a response, collectively known as extinction [8].
While classical conditioning often involves a multitude

of neuronal connections, individual neurons and synapses
can also display conditioning in response to external stimuli
[9]. Efforts in constructing electronic conditioning circuits
have focused on such cellular-level learning, with one
neuronlike component each for the US, CS, and UR (or
CR) [Fig. 1(a)]. Fabricating electronic neural circuits with
conventional semiconductor technology has not been wide-
spread because of limited options for devices with synaptic
characteristics (i.e., modifiable, persistent resistance,
charge, or spin state). There have been recent experimental
demonstrations of conditioning using resistive switches
[10,11]. These devices have two or more stable resistance
states between which electronic switching occurs, and they
are of interest primarily for computer memory and infor-
mation processing [12]. For neural simulation, resistive
switches have limitations due to difficulties in obtaining a
continuum of stable resistance states [13], as in biological
synapses, with high uniformity between devices [14].
Moreover, the aforementioned circuit demonstrations with
resistive switches, while they do show gradual resistance
changes and may be potentially useful for computation
[14–16], are not analogous to biological neural architec-
tures in certain fundamental ways and may not be general-
izable to arbitrary neuronal systems. For example, in the
work of Bichler et al. [10], neurons do not explicitly
transmit signals through synapses to other neurons, and a
nonbiological read-write synchronization scheme is neces-
sary to independently modify and measure synaptic
weights. In the work of Ziegler et al. [11], the focus is
on demonstrating classical conditioning and not on emu-
lating neural architectures. Thus, they do not claim to use
neuronlike or synapselike components, and learning func-
tionality is achieved by including plasticity in the signal
transmitters (i.e., neurons) themselves, with the require-
ment that different transmitters need to output dissimilar
voltage levels. While these works show classical condi-
tioning and may have application in computation, our
device and resultant network design are more similar to
biological neuronal systems, which enables us to demon-
strate a greater general variety of neural processes, includ-
ing associative unlearning, nonassociative learning and
unlearning, and usage of excitatory and inhibitory neurons.
We have recently shown that three-terminal electronic

devices using the rare-earth nickelate SmNiO3 (SNO)
display synaptic behavior when gated with an electrolyte
[17]. SNO has unusual electronic properties such as a
temperature-dependent insulator-metal transition arising

from strong interactions between electrons, spins, orbitals,
and phonons [18]. These interactions cause the resistivity
of SNO to have a much larger range of values as compared
to conventional semiconductors for similar changes in
defect density [19], which is highly useful for synapse
simulation. In three-terminal SNO devices [Fig. 1(c)], the
room-temperature insulating resistance between source and
drain terminals can be modulated in a continuous persistent
manner by applying a voltage to the gate terminal. In our
SNO devices, positive (negative) gate voltage induces
resistance increase (decrease). Such plasticity simulates
biological long-term potentiation and depression (LTP,
LTD), which refer to persistent synaptic weight modifica-
tion over long time scales relative to signal transmission
[20]. As detailed below in Sec. IV, gating of SNO devices
induces reversible electrochemical changes to the oxygen
stoichiometry and resistance in the thin films. This can be
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FIG. 1. (a) Schematic of neural classical conditioning circuit.
Circles represent neurons and triangles represent synapse con-
nections and neuron outputs. Neurons N1 and N2 accept US and
NS (or CS), respectively. (b) Schematic of electronic classical
conditioning-unlearning circuit used in this work. US and NS
(or CS) signals transmit through SNO1 and SNO2 to neuron N3.
Backpropagating signal (dashed line) from N3 correlates with
signals from N1 and N2 at logic blocks, which apply voltage to
gate of SNO1 and SNO2 for potentiation or depression, if
necessary. (c) Illustration and optical micrograph of three-
terminal SNO synaptic device. Illustration shows ionic liquid
(IL) interfaced with SNO channel along with source (S), drain
(D), and gate (G) electrode labels. SNO substrate is LaAlO3.
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considered analogous to the biological case, in which
synaptic weight modulation involves a change in the
number of ion-conducting channels (AMPA-type glutamate
receptors) present at the synapse between two neurons [21].
Furthermore, the source and drain terminals of the SNO
device are akin to neuronal interfaces between a synapse
and its corresponding pre- and postsynaptic neurons. The
usage of a third gate terminal for synapse modulation is
similar to certain biological learning mechanisms known as
retrograde signaling [22]. From an electronic perspective,
advantages of three-terminal devices over two-terminal
resistive switches include reduced sneak path problem
(i.e., cross-talk noise) [23], potential low-power operation
[24], and the ability for concurrent signal transmission and
LTP or LTD, which is similar to neural circuits and which
removes the need for complex circuit timing algorithms.

II. EXPERIMENT

A detailed description of SmNiO3 growth and device
fabrication by lithography can be found elsewhere [17].
SNO films were grown on LaAlO3 (LAO) by cosputtering
Sm and Ni from metallic targets (ATC Orion system from
AJA International) followed by annealing in a custom-built
furnace at 1500 psi O2 and 500 °C for 24 h. Three-terminal
devices were fabricated using standard photolithography
(channel dimensions 400 μm × 2000 μm), and the ionic
liquid N, N-diethyl-N-methyl-N-(2-methoxyethyl)ammo-
nium bis(trifluoromethylsulphonyl)imide (DEME-TFSI,
Kanto Chemical) was used as the ionic liquid gate dielectric.
SNO devices were interfaced with other circuit components
via an environmental probe station (MDC Corporation).
Details of the circuits can be found in the Appendix.
Neuronal stimuli were implemented using Keithley 2400
source-measure units, and neuronal output was monitored
with a Keithley 2000 multimeter. All equipment was
controlled with customized LABVIEW code, and all mea-
surements were performed in ambient conditions. Circuit
modeling was implemented using the SimElectronics pack-
age in MATLAB-Simulink. A customized Simscape com-
ponent was created to model the gated-SNO device behavior.

III. CIRCUIT DESIGN AND EXPERIMENTAL
LEARNING AND UNLEARNING

Our circuit architecture for classical conditioning and
unlearning is analogous to that of a biological neural circuit
[Figs. 1(a) and 1(b), full circuit diagram and explanation in
the Appendix]. The design is guided by prior software
simulations showing conditioning in a circuit with resistive
switching devices [25], which have not yet been realized
experimentally. We utilize one neuronlike component each
to receive or transmit the US (N1), CS (N2), and UR (or
CR) (N3), and we have one synapselike block each for the
US-UR (synapse 1) and CS-CR (synapse 2) connections.
The neurons fire when the respective total input voltage is

above a set threshold value. Each synapse block is
composed of a SNO device and a logic block. The logic
block [Fig. 7(b)] temporally correlates forward-propagating
signals from the presynaptic neuron with backpropagating
signals from the postsynaptic neuron, and it sends the
correct signal to the SNO gate corresponding either to LTP
(resistance decrease) or LTD (increase). Such temporal
correlation occurs in certain classes of Hebbian learning
[25,26]. LTP occurs if the signals overlap, and LTD occurs
if the presynaptic neuron fires without the postsynaptic
neuron [27]. The strength of this logic block design is that it
requires no external power supply. The logic block and
SNO device together are therefore electrically passive,
similar to biological synapses. The input signal arriving
at N3 is directly determined by the separate resistances of
SNO1 and SNO2. The N1 and N2 voltage signals here are
equivalent 2-V square pulses corresponding to excitatory
neurons. Our design can be general to any magnitude and
polarity input neuron signal. Here, SNO resistance is
reversibly modifiable and intuitively related to synaptic
weight (conductance is the analog of weight); synaptic
weight is persistent; and no external power is needed for
the synapselike blocks. These are all important characteristics
of biological synapses. While we use discrete square voltage
pulses as pseudoenvelope functions of neuronal spike trains,
all of the functionality should remain for short voltage spikes.
Classical conditioning experimental data are shown in

Fig. 2(a). Initially, we a priori set SNO1 to 2.5 kΩ,
representing the US, and SNO2 to ∼9 kΩ, representing
the NS. In the conditioning phase, both N1 and N2 are
triggered simultaneously for an extended time period. N3
fires during this phase, which applies a negative voltage to
the gate of SNO2 and which creates the association
between N2 and N3 through Hebbian learning. After the
conditioning phase, probing the inputs shows that both
N1 and N2 cause N3 to fire, indicating that the resistance of
SNO2 decreased (LTP) during the prior phase in accor-
dance with conditioning (NS → CS). Subsequent measure-
ment of the SNO2 resistance reveals that it decreased
to ∼3.0 kΩ while that of SNO1 remained relatively
unchanged after the conditioning phase. This is clear
evidence that our circuit design with SNO synapselike
devices exhibits classical conditioning. After conditioning,
N2 firing will now trigger N3 and additional LTP of the
SNO2 synaptic connection, regardless of N1. This will
occur until SNO2 reaches its minimum resistance value
(∼1–2 kΩ, corresponding to maximum oxygen content as
discussed in Sec. IV). This is similar to the nonassociative
biological process of sensitization, whereby repeated
stimulus causes an enhancement in cellular response
[9,28]. The time scale of conditioning is expected to be
proportional to 1=A2, where A is the SNO channel area.
For microscopic devices the time scales should be reduced
well into the μs range. For comparison, biological neuronal
voltage spikes occur on the ms time scale [6].
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The CS-CR association can be unlearned if the firing of
N3 is suppressed when N2 fires. This can be accomplished
simply by modifying N1 to simulate an inhibitory neuron
(see the Appendix). The remainder of the circuit used for
classical conditioning is unchanged. We show experimental
unlearning results from this circuit in Fig. 2(b). Nowwith N1
as an inhibitory neuron, N3 only fires when N2 is triggered,
although both SNO1 and SNO2 are in low-resistance states.
Note that the input to N1 represents the stimulus, which is
still positive, but that the output of N1 is negative. When
both N1 and N2 fire, the negative signal from N1 suppresses
N3 firing, causing a positive voltage to be applied to the
gate of SNO2, increasing the resistance of SNO2 and
inducing LTD. After sufficient simultaneous application of
N1 and N2, it is shown that N3 no longer responds to N2.
Measurement of the resistance of SNO2 before and after the
unlearning process showed an increase from ∼3.0 kΩ to
∼7.2 kΩ, while that of SNO1 again remained relatively
stable. This can be viewed as device-level unlearning. Both
the usage of inhibitory neurons and demonstration of
unlearning have not been previously shown with electronic
devices, but they are crucial components of neural behavior.
With one circuit design, we are able to experimentally show
classical conditioning, sensitization, and unlearning.

IV. SmNiO3 SYNAPTIC MODIFICATION
MODELING

To illustrate that the SNO device and our network design
are capable of a wide variety of neuronal processes and

more complex neural circuits, we model the time and
voltage dependencies of potentiation and depression in
the SNO devices for use in future designs [29,30].
The resistance modulation in the SNO devices follows
an electrochemical mechanism in which oxygen vacancies
serve as dopant species to regulate the composition and
thereby the resistance of the channel material [17]. The use
of the ionic liquid provides electrochemical redox species
for reducing and oxidizing the SNO channel. More oxygen
vacancies lead to more divalent nickel species, which leads
to a higher resistance state of the SmNiO3−x channel.
The reverse process oxidizes the divalent nickel species
back to trivalent species, recovering the low-resistivity
state. Thus, the minimum resistance of the synaptic device
corresponds to near-ideal maximum oxygen content, and
the maximum resistance is relatively unbounded. After a
gate voltage is applied to a SNO device to modify the
resistance, the resistance may decay slightly towards its
pregated state when the voltage is removed [17]. However,
the resistance will not fully return to its initial state, and
the longer the gate voltage is applied, the less decay is
observed. This is similar to synapse behavior in biological
nervous systems [6], and it can be qualitatively viewed as
the need for repeated conditioning before a behavior is
permanently learned.
The rate of divalent nickel species change can be

modeled, to first order, by combining the Cottrell equation
(time dependence) and Butler-Volmer equation (voltage
dependence) [29]. Here, the Cottrell equation is applied to
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FIG. 2. (a) Classical conditioning experimental results. N1 and N2 inputs are positive excitations representing US and NS (or CS),
respectively. Initially, SNO1 is in a low-resistance state and SNO2 is in a high-resistance state. After the conditioning phase, both resistances
are low and N3 fires when either N1 or N2 is triggered. (b) Unlearning experimental results using same circuit as for part (a). N1 is
reconfigured as an inhibitory neuron, which accepts a positive input stimulus but outputs a negative signal. Initially, both SNO1 and SNO2
have low resistances. After the unlearning phase, the resistance of SNO2 is increased such that triggering N2 no longer causes N3 to fire.
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model two events occurring during the electrochemical
gating process: (1) electric field-induced oxygen vacancy
formation; and (2) ionic migration in both the channel
material and ionic liquid. It is given by

iðtÞ ¼ nFAD1=2
O C�

O

π1=2t1=2
ð1Þ

where i is the ionic current, n is the number of electrons
involved in the reaction, F is the Faraday constant, A is the
electrode area, DO is the diffusion constant of species
O, C�

O is the initial concentration of species O, and t is time.
According to the Cottrell equation, the increasing rate of
divalent nickel species is a nonlinear function of gating
time duration. The Butler-Volmer equation with asymmet-
ric electron transfer is applied to describe the influence of
gate bias on regulating the changing rate of the divalent
species. It is given by

i ¼ i0½eneη=kBT − 1� ð2Þ

where i0 is the exchange current, η is the applied over-
potential, kB is the Boltzmann constant, and T is temper-
ature. The Butler-Volmer equation shows that the rate is
exponentially dependent on the gate bias. The application
of both the Cottrell and Butler-Volmer equations allows
for formulating the changing rate of nickel species. This
approach is commonly used to study charge transfer
processes in electrochemical reactions at interfaces. A
detailed account of the formulation of the equations and
their applications in electrochemical phenomena and devi-
ces can be found elsewhere [31,32].
The change in conductivity of SNO can be estimated

using the calculated divalent nickel species concentration
from a percolation model [30]. As we are starting with near-
stoichiometric films with high conductivity, we use the
percolation model in the high-density limit given by

σðpÞ ∼ σmðp − pcÞl ð3Þ

where σm is the conductivity in the low-resistance state of
SNO, p is the volume fraction of conductive regions to
insulating regions, pc is the percolation threshold, and l is
the critical exponent that determines the percolative behav-
ior and is approximately 2 in three-dimensional systems.
Here, divalent nickel regions are considered insulating, and
trivalent nickel regions are considered conductive, typical
of nickel oxides. The ratio of insulator to metal matrices can
be simulated by the ratio of divalent nickel to trivalent
nickel matrices. Divalent nickel species concentration can
be approximated as discussed above. This leads to an
expression for the voltage- and time-dependent resistance
of the SNO device as

σðV; tÞ
σm

¼ ½A∓Bðe�CðVþVoÞ − 1Þt1=2 − pc�2
1

ð1 − pcÞ2
ð4Þ

where A, B, C, and Vo are fitting parameters. A ≤ 1 is a
measure of the conductive region volume fraction before
gating; B is a combination of several constants including the
prefactor of the integrated Cottrell equation (to obtain
number density), exchange current, and normalization
factors; C is related to the number of electrons in the
reaction and Vo is the overpotential at zero external bias.
We use the common percolation threshold of pc ¼ 0.5.
The top (bottom) operator in the∓ or� operator is used for
positive (negative) gate bias. Several important effects due to
electrode geometry, temperature, multiple defect types,
gating history, and catalyst formation are difficult to quantify
and are not considered here. The model should therefore be
regarded as qualitative. Experimental data have been col-
lected to characterize the relevant parameters, and sample fits
for constant �2.5 V gate voltage are shown in Fig. 3.

V. SIMULATED NEURAL MECHANISMS

We implement the model for potentiation and depression
in our SNO devices into a custom MATLAB-Simscape
component, which is in turn integrated into the circuit
shown in Fig. 7 for system simulations. The custom SNO
component has three user-specified parameters: the mini-
mum source-drain resistance, the initial source-drain resis-
tance (which is akin to a priori experimentally gating the
SNO to the neutral state), and the source-gate resistance
(∼20 MΩ). SNO1 is initially set to a low-resistance level
(800 Ω), corresponding to the US, and SNO2 is initially set
to a moderate resistance level of 2 kΩ, corresponding to the
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FIG. 3. Representative time-dependent conductivity of SNO
synaptic device for −2.5 V (solid shapes, left axis) and þ2.5 V
(hollow shapes, right axis) gate voltage applied and held at t ¼ 0,
and fit to data using Eq. 4. Experimental data are in black and
results of model fit are in red.
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NS. The output signals from N1 and N2 are shown in the
top two panels of Fig. 4(a). The voltage sequence is similar
to that in Fig. 2. The simulation environment allows for
direct reading of the time-dependent resistances of SNO1
and SNO2. The output of N3 is shown in the third panel of
Fig. 4(a), and the simulated resistances of SNO1 and SNO2
are shown in the bottom panel of Fig. 4(a). It is clear that
the circuit simulates classical conditioning similarly as the
experimental demonstration in Fig. 2(a).
To simulate unlearning, we set the initial resistance of

SNO2 to the conditioned level of 800 Ω and we reconfigure
N1 as an inhibitory neuron that transmits negative forward-
propagating voltages (see the Appendix). Now, during the
phase in which both N1 and N2 fire concurrently, N1
suppresses the excitatory signal from N2, and N3 does not
fire. Thus, although SNO2 is conditioned, the signal from
N2 does not trigger N3. The circuit responds by causing
depression (resistance increase) of SNO2, as shown in
Fig. 4(b). This process can be associated with the
unlearning or counter Hebbian process in biological sys-
tems. After sufficient depression, the resistance of N2
becomes appreciably large such that N2 no longer triggers
N3, and the CS-CR association is destroyed.
We can obtain similar classical conditioning with Hebbian

learning between two inhibitory presynaptic neurons

connected to an excitatory postsynaptic neuron using a
modified synapse logic block while keeping the remainder
of the circuit unchanged from above. The modified synapse
logic block is shown in Fig. 8 and is described in the
Appendix. The block is a modified pass transistor logic
AND gate. It maintains the property of not requiring an
external power source, similar to the logic block of Fig. 7(b).
With this synapse logic block, we can simulate identical
conditioning behavior as shown in Fig. 4(a) but with
inhibitory presynaptic neurons [Fig. 5(a)].
Aside from associative learning mechanisms, it is also

useful to demonstrate nonassociative mechanisms such as
sensitization and habituation at the electronic device level.
Sensitization is the process by which repetition of a
stimulus leads to enhanced response to that stimulus,
and habituation is the converse process. As discussed
above, the circuit of Fig. 7 has a priori sensitizationlike
functionality. A presynaptic signal that triggers a postsy-
naptic signal will cause LTP of the synaptic SNO inter-
connection until the SNO device reaches the minimum
resistance level. With the same logic block of Fig. 7, we can
modify the circuit slightly to exhibit habituation as well.
Simply by removing the backpropagating connection from
N3 to the logic block of synapse 1, for example, we cause a
situation where now there is no correlation between
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achieved after the conditioning of (a). Here, firing of N3 is suppressed by the inhibitory signal of N1, causing resistance increase of
SNO2 with time. In the final probing phase, N3 is no longer triggered from N2 firing.
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pre- and postsynaptic signals. In this case, each time N1
fires, a positive voltage is applied to the gate of SNO1
(causing LTD) because there is no backpropagating signal
with which temporal overlap may occur. We simulate
habituation with this circuit modification [Fig. 5(b)].
The resistances of SNO1 and SNO2 are initially both set
to low values, and the input to N2 is grounded so that
only N1 is active. With each pulse from the output of N1,
the resistance of SNO1 increases slightly. Eventually, the
resistance is sufficiently large as to no longer transmit an
input voltage to N3 that is above threshold, and N3 is no
longer triggered by N1. Therefore, not only can the circuit
of Fig. 7 be used for classical conditioning, sensitization,
and unlearning, but a simple modification can extend the
circuit capabilities to include habituation. In certain bio-
logical systems, synapses can exhibit both habituation and
sensitization even though they are opposing processes,
although the latter may occur only through interactions
with neighboring synapses and neurons [33]. This is more
of system-level learning rather than the device-level learn-
ing we are demonstrating here.
Aside from a variety of neuronal learning and unlearning

mechanisms, we can implement the model to construct a
more complex neural network based on feedback and
recurrent excitation [Fig. 6(a)] for memory storage. This
network is inspired by the CA3 region in the hippocampus

[6]. We use a modified synapse logic block that has only
LTP functionality and not LTD. There are five input
neurons (INi) connected to five output pyramidal neurons
(ONj). Each of the input neurons can fire or idle. Here, IN1
and IN3 are firing, and the rest are silent [Fig. 6(b), left].
In this network, the direct synaptic connections (hatched
boxes) between the input and output neurons are suffi-
ciently strong such that firing of an input neuron always
activates the corresponding output neuron. Overall, this
topology is a feedforward excitation circuit. The important
aspect is the recurrent excitation: every postsynaptic
pyramidal output neuron is connected through axon col-
laterals (dashed lines) to all other output neurons, thus
creating feedback. This means that every output neuron
receives convergent information from all the other neurons
in the network. We denote each synapse by the two neurons
it connects, forming a connectivity matrix [Sði; jÞ is the
synapse between INi and ONj]. Now letting the appro-
priate input neurons fire, and starting with low-connectivity
synapses (high resistances), only the synapses connected
between two firing neurons (input and output) will
strengthen through Hebbian-like learning, thus forming a
true connectivity matrix between the firing pattern of
the input and the output neurons. Results of the simulation
can be seen in the right panel of Fig. 6(b), showing
successful modification of only the appropriate synapses
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S(1,1), S(3,1), S(1,3), and S(3,3). The initial firing pattern
is effectively stored in this connectivity matrix. The original
input value can be retrieved by firing all input neurons
over short time scales relative to the potentiation process.
In this case, the appropriate output neurons (ON1 and ON3)
will exhibit higher values, since they receive not only the
original input, but also the feedback from other firing
neurons.

VI. CONCLUSIONS

In this work, we implement a model strongly correlated
complex oxide samarium nickelate as a synapselike device
component in a brain-emulating neuronal circuit. Three-
terminal SmNiO3 devices in such networks are compatible
with both excitatory and inhibitory neurons for exhibiting
device-level classical conditioning, unlearning, and sensi-
tization without circuit modifications. The SmNiO3 devices
can be modeled using an electrochemical ionic diffusion
process under the conditions studied, and with the model,
we simulate classical conditioning with excitatory and
inhibitory neurons, associative unlearning, habituation,
and a memory storage network. With the expansive ability
to exhibit associative and nonassociative learning modes
with excitatory and inhibitory neurons, these studies may
ultimately enable system-level neural simulation in elec-
tronic circuits, such as for investigating fear extinction [34],
neurodegenerative disease [35], or perceptual learning [36]
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APPENDIX: CLASSICAL CONDITIONING
AND UNLEARNING CIRCUIT

The full diagram for the circuit implemented in this work
is shown in Fig. 7(a). Timed voltage sources are used as
input stimuli for N1 and N2. The signals from N1 and N2
transmit through SNO1 and SNO2 as well as to the logic
blocks. The signals from SNO1 and SNO2 then become
inputs to N3, which sends backpropagating signals from
NoutBP to the logic blocks associated with SNO1 and
SNO2. We use the excitatory neuron convention put forth by
Pershin and Di Ventra wherein forward-propagating signals
are positive voltage and backpropagating signals are negative
voltage [25]. The presynaptic signals and SNO devices
behave as a weighted-averaging circuit such that the input
to N3 is given by VN3;in ¼ ðVN1;out=RSNO1 þ VN2;out=
RSNO2Þ=ð1=RSNO1 þ 1=RSNO2Þ, according to Millman’s
theorem. Here we use VN1;out ¼ VN2;out ¼ VN. To illustrate
the circuit behavior, let us assume that before conditioning
we have RSNO2 ≫ RSNO1. Thus, when only N1 fires,
VN3;inðN1Þ¼VN=ð1þRSNO1=RSNO2Þ≈VN, and when only
N2 fires, VN3;inðN2Þ ¼ VN=ð1þ RSNO2=RSNO1Þ ≈ 0. After
conditioning, RSNO1≈RSNO2 and VN3;inðN1Þ≈VN3;inðN2Þ≈
VN=2. The threshold voltage for N3 to fire is therefore set
slightly below VN=2.
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FIG. 6. (a) Schematic of feedforward recurrent memory net-
work composed of SNO synaptic devices. Input neurons and
signals (red) are the presynaptic connections to the synapses
(gray). Output signals from the synapses sum at the output
neurons (blue), and backpropagating signals (dashed lines) feed
back to the synapses. Firing neurons (solid circles) cause certain
synaptic resistances (solid rectangles) to decrease, while the
remaining neurons and synapses remain idle (unfilled circles and
rectangles). The hatched rectangles represent direct, permanent
low-resistance connections between input and output neurons for
the feedforward functionality. (b) Input neuron signals (left) and
corresponding synaptic response (right). Only synapses related to
the input firing pattern exhibit enhanced weight and decreased
resistance.
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The neuron blocks [Fig. 7(c)] are composed of two
stages. In the first stage, a comparator compares the above
weighted average to the threshold voltage connected to the
noninverting input of the comparator. If the input is above
threshold, the comparator outputs a specified positive
voltage, otherwise it outputs 0 V. The output of the
comparator is taken as the forward-propagating output of
the neuron. The second stage of the neuron block is an op-
amp wired as a unity-gain inverting amplifier that reverses
the signal polarity of the comparator output. This is taken
as the backpropagating negative voltage from the neuron

block. Because the stable voltage window for efficient
synaptic modification of the SNO devices is between
−2.5 V and 2.5 V, we use �2.0 V voltage pulses as the
outputs from the comparator and the inverting amplifier to
remain comfortably within the voltage window. An inhibi-
tory neuron block can be implemented simply by taking the
output of the inverting amplifier as the forward-propagating
signal and the output of the comparator as the back-
propagating signal.
The circuit diagram for the synapse blocks is illustrated

in Fig. 7(b). The block is composed of two parts, a resistor

FIG. 7. (a) Overview classical conditioning and unlearning circuit schematic composed of excitatory input neurons (red), synapse
logic blocks (orange), SNO devices (yellow), and excitatory output neuron (blue). (b) Schematic of synapse logic block with
accompanying truth table. Voltage divider is used to apply small but nonzero voltage to SNO device such that VG ≈ VGS and signals
from pre- or postsynaptic neurons can be used directly for depression or potentiation. (c) Schematic of neuron blocks. First comparator
stage compares input to specified threshold value and outputs a positive voltage signal. Second op-amp stage inverts polarity of
comparator output for negative backpropagating signal.

NEUROMIMETIC CIRCUITS WITH SYNAPTIC DEVICES … PHYS. REV. APPLIED 2, 064003 (2014)

064003-9



voltage divider (bottom) and a logic component (top).
The signal from the presynaptic neuron is the input to the
voltage divider, and the output of the voltage divider is
connected to the SNO device source terminal. The purpose
of the voltage divider is such that a small but nonzero
fraction of the presynaptic voltage is applied to the SNO
source. This fraction is sufficiently large so as to be
readable by the comparator of the postsynaptic neuron
block, but it is sufficiently small such that the source
terminal of the SNO device remains near ground. For a
presynaptic voltage of �2.0 V, the voltage divider applies
only �25 mV to the SNO source. This allows us to use the
positive and negative voltages from the pre- and postsy-
naptic neurons directly as gate voltages to achieve Hebbian-
like LTD and LTP, respectively. If instead the full þ2.0 V
was applied to the SNO source from the presynaptic
neuron, then þ4.0 V would need to be applied to the gate
to achieve a net gate-source voltage of þ2.0 V for the LTD
we demonstrate here. However, a þ4.0 V supply cannot be
implemented in our circuit while maintaining behavior
analogous to biological systems such as passive synaptic
circuitry. The logic component consists of two intercon-
nected n-channel MOSFETs, one depletion-mode, one
enhancement-mode, and both with jV thj ∼ 3 V. Connected
in this manner, the logic component outputs the truth table
shown in the inset of Fig. 7(b) to the gate of the SNO device.
LTP occurs only if pre- and postsynaptic signals temporally
overlap, indicating an association between the firing of the
interconnected neurons. If the presynaptic neuron fires but
the postsynaptic neuron does not, then there is no association
and LTD occurs. This is similar to Hebbian learning in
biological neural systems.
The synapse logic block for classical conditioning

between two inhibitory neurons connected to an excitatory
neuron is shown in Fig. 8. The inhibitory neuron transmits a

negative voltage signal, the excitatory postsynaptic neuron
transmits a negative backpropagating voltage signal, and
the voltage that needs to be applied to the SNO gate for
potentiation is also negative. Therefore, the circuit needed
to achieve potentiation only for concurrent pre- and
postsynaptic signals is equivalent to a logic AND gate in
which logic level 1 is −2 V. As with the block of
Fig. 7(b), the circuit should not require external power
for the synaptic block to remain overall passive, as in
biological synapses. The circuit of Fig. 8 is a modified pass
transistor logic AND gate that is suitable for demonstrating
classical conditioning with inhibitory presynaptic neurons.
It is composed of one n-channel and one p-channel
MOSFET, both enhancement-mode with jV thj < 2 V.
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