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When a fluid-immersed array of supported plates or
pillars is dried, evaporation leads to the formation
of menisci on the tips of the plates or pillars
that bring them together to form complex patterns.
Building on prior experimental observations, we
use a combination of theory and computation to
understand the nature of this instability and its
evolution in both the two- and three-dimensional
setting of the problem. For the case of plates, we
explicitly derive the interaction torques based on the
relevant physical parameters associated with pillar
deformation, contact-line pinning/depinning and
fluid volume changes. A Bloch-wave analysis for our
periodic mechanical system captures the window of
volumes where the two-plate eigenvalue characterizes
the onset of the coalescence instability. We then
study the evolution of these binary clusters and their
eventual elastic arrest using numerical simulations
that account for evaporative dynamics coupled to
capillary coalescence. This explains both the formation
of hierarchical clusters and the sensitive dependence
of the final structures on initial perturbations, as
seen in our experiments. We then generalize our
analysis to treat the problem of pillar collapse
in three dimensions, where the fluid domain is
completely connected and the interface is a minimal
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surface with the uniform mean curvature. Our theory and simulations capture the salient
features of experimental observations in a range of different situations and may thus be useful
in controlling the ensuing patterns.

1. Introduction

While the assembly of complex macromolecular structures on microscopic length scales [1] is
driven by van der Waals interactions, dispersive forces and chemical interactions, on mesoscopic
length scales of the order of micrometres to millimetres in the context of colloids and larger
particles, other surface forces such as those due to capillarity play an important role [2-4]. When
particles interact with each other via capillary forces, the resulting patterns are a function of the
size and shape of the constituents, and the constraints on their movement. Capillary coalescence
is a natural consequence of this and occurs when free particles aggregate at an interface [5,6], and
also when extended objects such as pillars and plates are brought together by interfacial forces
which drive aggregation [7-10]. Sometimes, these systems coarsen indefinitely leading to a single
cluster, while at other times elastic deformations eventually arrest the process leading to many
finite-sized clusters. In a typical experimental setting characterizing the latter, soft, slender pillars
or plates are fully immersed in a liquid which is subsequently evaporated so that capillary forces
at the liquid-gas interfaces bring the constituents together. The competition between capillarity
and elasticity selects the structures formed, which can be used to construct substrates with tunable
wetting and adsorption properties [11,12]. A variety of experimental systems that fall into this
category include millimetre-scaled macroscopic brush hairs [8], micrometre-scaled mesoscopic
polymeric surface mimicking gecko foot hairs [13], as well as nanometre-scaled carbon nanotube
forests [14,15].

Elastocapillary interaction has been well characterized in two-body systems [9,16,17]. Building
on this, aspects of collective bundling behaviour of elastic pillars and plates were studied
using one-dimensional static energy minimization arguments to estimate the assembled bundle
size [8,18,19]. Recent work has delved into the dynamics of elastocapillary coalescence of an array
of elastic elements separated by thin fluid films, where the fluid flow is described by a low-
dimensional lubrication-type model. In particular, Gat & Gharib [20] have shown that pairwise
clustering is the fastest growing mode by using a linear stability analysis of the unpatterned
base state; iterating this pairwise collapse results in an ordered hierarchical coalescence structure.
Singh et al. [21] have also captured the same most unstable pairwise mode in terms of a
spring-block model, but their numerical results suggest that the dynamics arising from different
perturbations can be considerably more complex than pairwise collapse. Complementing these
discrete approaches, a phenomenological continuum mean-field approach has been used to
model the arrested coarsening [22], while a recent continuum theory based on microscopic
physics for the coupled dynamics of drying and coalescence explains the kinetics and refinement
seen in experimental studies [23].

However, unlike in ergodic systems where the state space is stochastically sampled due to
thermal excitations, the structures in elastocapillary systems are often not selected by energetics
alone. Instead, they depend critically on the dynamics of the drying process. This leads to a
path dependence caused by the strong coupling of the geometry of the air-liquid interface
to the local evaporation when multiple unconnected liquid domains are formed. Additional
aspects, such as pinning and contact angle hysteresis, as well as the permanent adhesion of
contacts formed in intermediate structures, make purely energetic arguments unable to have any
predictive power.

Thus, to predict and control the assembled structures in capillarity-driven self-assembly
experiments, we need to (i) include the irreversible effects associated with evaporation, contact
line motion and adhesion, that have not been treated so far, (ii) account for geometrically
nonlinear effects due to large deviations from the background state that go beyond a linearized
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Figure 1. Dynamics of coalescence of arrays of (a—b) plates and (c—e) pillars driven by drying. (a) The plates are of thickness
h =10 um, depth W = 40 jxm and height L = 40 . m, and spaced a distance D =10 jum apart. As the liquid evaporates,
a front of dimerization coalescence initiates and propagates from right to left, after which a front of quadrimerization moves
through the system in the same direction. After the liquid dries out, the quad-bundles separate and the dimers persist. (b)
The plates are of depth approximately Tmm, and other geometric parameters are the same as those in (a). Owing to the
imperfections in the system, e.g. the plate geometry, roughness of the surface, etc., coalescence initiates simultaneously here.
The two-plate mode still appears to be dominant at the onset of instability, and irreqular bundles with a size distribution from
2 to 5 arise thereafter and persist even after the liquid dries out. The large difference in the time over which the patterns in
(a) arise compared with (b) is because of two factors: (i) the ratio of the surface area of the air—liquid interface to the liquid
volume in (a) is approximately three times of that in (b) taking into account the exposed surface parallel to the screen and (ii) an
inhomogeneous coalescence happens in the depth direction in (b), resulting in a further reduced area/volume ratio and hence
a longer evaporation time. (c) The final structures of the two-dimensional array of pillars of diameter after the liquid dries out
form fourfold rhombic clusters. (d) Here the tips of the fourfold clusters form squares. (e) A larger domain shows that the four-
fold clusters are more asymmetric, and the tips form both rhombi and squares. The geometric parameters of the pillars and the
material properties are the same in all three images; the pillars have a diameter 300 nm, height 4.5 jLm and spacing 2 jum. The
only difference is the size of imperfections in the system.

analysis, and finally, (iii) generalize our study to the three-dimensional problem of pillar
coalescence, that also remains unexplained.

Here we use a combination of theory and computation to understand the instability and the
hierarchical evolution of cluster formation for both two- and three-dimensional elastocapillary
systems driven by drying. Those systems represent generic situations, allow for a thorough
theoretical treatment and can be validated by well-controlled experiments. For the two-
dimensional case, we describe the drying induced collapse of an one-dimensional array of evenly
spaced plates immersed in the evaporating liquid (figure 1a,b). For this system, all relevant
physical forces are considered, allowing us to derive the interaction potentials and forces, analyse
the linear stability of the system and compute the nonlinear dynamics associated with pattern
coarsening. We demonstrate that different dynamical paths through the system’s state space
indeed lead to different final structures which are observed in experiments.

In the three-dimensional case, our theory focuses on explaining experiments associated with
the bundling of a regular square grid of fluid-immersed elastic posts anchored to a substrate [7]
(figure 1c—e). We determine the constant mean curvature surface for the air-liquid interface
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subjected to the global liquid volume constraint on the multi-connected domain. This allows us to
compute the interaction forces and thence the primary unstable mode. Finally, we use a numerical
method to compute the aggregation dynamics.

In §2, we describe the experimental observations for the two-dimensional case, derive a
discrete two-plate model for the deformation of the plates driven by capillary forces, and carry
out a linear stability analysis of the base state. We then study the coalescence dynamics of a
collection of plates in the nonlinear regime. In §3, we describe the experimental observations
for the three-dimensional case, and introduce a dynamical model that allows us to simulate the
morphology of clustered pillars, and compare these results with experiments. In §4, we conclude
with a description of open problems in this rich area.

2. Collective dynamics of elastic plates

(a) Experimental observations

For the two-dimensional case of plate coalescence (figure 2), we consider a one-dimensional array
of elastic micro-plates with height L, thickness & and uniform spacing D, Young’s modulus E and
Poisson’s ratio v, respectively, wetted by a liquid of surface tension o, density p and viscosity .
Each plate is assumed to be free at one end and anchored at the other end to a substrate [10].
Between neighbouring plates, defining a cell, we assume that there is a liquid reservoir. When
the system is completely immersed in the liquid, the stable configuration is a uniform array of
non-interacting vertical plates. However, when the liquid evaporates, it is not necessarily locally
stable any more: capillary forces associated with the liquid-air menisci between the free ends of
the soft plates may cause them to deflect laterally and adhere together. In an experimental system
with small imperfections, we observe a regular cascade of successive sticking events that leads
to a hierarchical bundling pattern: every two neighbouring plates tilt towards each other to form
a dimer, which then collapses into quadrimers (figure 1a). The process repeats until the elastic
resistance owing to bending eventually becomes large enough to prevent further coarsening. In
a system with large imperfections, irregular bundles can and do arise but the two-plate-collapse
mode still appears to be dominant at the onset of instability (figure 1b). After the liquid dries
out, bundles separate if the adhesion between pillars or plates is not strong to counterbalance the
elastic forces; else they persist. In our experiments, the liquid used is isopropyl alcohol (IPA), and
the plates and the substrate are made of polydimethylsiloxane (PDMS). Throughout this entire
section, we use the following experimental parameters o =0.022Nm~!, p=786kgm=3, u=
1.96 x 1073 Pas, E=15MPa, v =0.5, h = 10 pm, L = 40 um, D = 10 pum and gravity g =9.8 ms~2.

(b) Mechanics: coupling plate bending to fluid interface shape

In our experiments, the plates are short and stiff, and remain almost straight as they are
deflected by capillary forces, bending primarily in the neighbourhood of the base. Therefore, we
approximate each plate as a rigid element with a localized bending response in an elastic hinge
at the base [12]. This simplifies our analysis relative to the case of inhomogeneous bending and
buckling (electronic supplementary material, appendix A) of individual plates [20,24]. The hinge
elastic constant can be approximately derived from the bending response of a short cantilever by
a transverse force F at its free end, with

_dFs) (3L 6 \'
k=" _<ﬁ+7chL> / @1)

where § = 4FL3(1 — v2)/ENW3 + asFL/Gh is the deflection at the free end, 6 is the tilting angle
between the straight plate and the horizontal direction (figure 2a), G is the shear modulus and
s is the shear coefficient. The second term of the right-hand side of equation (2.1) is due to shear
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Figure 2. A unit cell confined by two adjacent plates. (a) Each plate is modelled as a rigid plate elastically hinged at the base.
The plate is of height L and thickness h. 9, is the angle of the nth plate with respect to the horizontal. The plate spacing is D and
the distance between the two free tips is 2ay. V, is the volume per unit depth of the liquid confined in the cell. The curved line
represents the air—liquid interface, an arc of a circle of radius r,, with 8, being the half angle subtended by the meniscus arc. o
is the critical contact angle at which the meniscus slides down from the tip. Ly, is the wetting length on the left side of the
(n + 1)th plate and Ly, is the wetting length on the right side of the nth plate. (b) 1-8 are the eight possible cases of menisci,
showing that the menisci can be pinned on both tips, or slip down from one or both tips. 7 and 8 show that when the two free
tips are so close that no circular arcs exist to connect them, in which case the arc is replaced by a line. These situations are solely
used to prevent simulation failure in rare cases. (Online version in colour.)

deformations in the so-called Timoshenko beam theory [25] for beams with moderate thickness.
We have taken v=0.5 and as =10(1 + v)/(12 + 11v) as an approximation for the rectangular
cross section.

To explicitly derive the torques due to capillarity, we consider a unit cell consisting of two
plates, with liquid confined in between and air outside (figure 2a). The pressure inside the liquid
can be non-uniform owing to the effects of gravity and flow. However, in our system, gravity
can be neglected, because the Bond number Bo= ApgD?/o ~107° is small. Comparing the
viscous moment owing to flow M, ~ uL%6 /D3 (electronic supplementary material, appendlx Q)
with that caused by the surface tension M, ~oL?/D, we find that M, /M, ~10~* « 1 for 6 ~
O(1)rads™! (the estimation of 6 is based on the observation that plates rotate approximately
0.12rad in 0.12s as shown in figure 1a.), which indicates that pressure due to fluid flow can
be neglected. Then, the air-liquid interface is always an arc of a circle because of the uniform
pressure in each cell. For each plate, the bending moment results from both the line tension
at the contact line, and the pressure jump across the plate caused by the curvature difference
between two neighbouring menisci. To calculate the moment we need to find the wetting
length, the contact angle, and the pressure difference across the air-liquid interface owing to its
local curvature.

We assume the contact angle can take any value equal to or larger than a critical value «,
consistent with the fact that the meniscus can be pinned at the tip of the plate while being concave-
up (figure 2b1), flat (figure 2b2) or concave-down (figure 2b3). We assume that once the contact
angle reaches the critical value «, it remains constant as the meniscus starts to slide down from
the tip (figure 2b4-b6). The meniscus profile and the resulting moment per unit depth M, can
be calculated for any given tilting angles 6,_1, 6,, 6,41 and the liquid volumes per unit depth
Vyu—1 and V,,. All the lengths, volumes V;; and moments M;, henceforth in this entire section are
dimensionless and have been scaled by L, L2 and oL, respectively.
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Then, the dynamics of the nth plate, neglecting inertia (electronic supplementary material,
appendix C), follows the overdamped first order equation of motion

20, 7
Cot k(8 = 5 ) + O LMu(Gu1, 61,011, Vi, V1) =0, (22)

where C is the damping coefficient, k is defined in equation (2.1) and the dimensionless moment
M, is due to capillarity (electronic supplementary material, appendix B). To estimate C, we need to
account for both the internal viscosity of the solid and the external viscosity of the fluid, and find
that the former dominates, which gives C & tk (electronic supplementary material, appendix C),
where 7y, is the time scale for the plate to relax mechanically due to the internal material viscosity
of PDMS.

() Onset of bundling: linear stability of the uniform base state

The base state consists of 2N vertical plates with 6, =n/2,n=1,2,...,2N and a uniform meniscus
associated with constant liquid volume V in each cell that separates the plates. As this volume is
decreased, there is a potential for instability as the curvature of the menisci increase. To determine
the stability of this state, we study the perturbations in the bending moment as a function of
variations in the angles 6, linearized around the current state

dM = (K1 + Ky)de, (2.3)

where K; and K are the 2N x 2N stiffness matrices owing to the elasticity of the plate and the
geometrical change of menisci, respectively. K; is a diagonal matrix with all elements being the
dimensionless hinge constant k;, = (30 L2/EN® + 60 /7Gh)~}, and K, is a tridiagonal matrix, which
in the base state with 6, = /2, is given by

“k 2k -k O 0 ...
Ko=|... 0 —k 2k -k 0 ...|, (2.4)
0 0 -k 2k -k

where ki =0M,;,/30,,41 =M, 11/36, and ky=—0M,/00, = —30M,11/36,,11 are the effective
spring constants associated with the two neighbouring plates owing to capillarity and M,, are
the effective capillary bending moments (see electronic supplementary material, appendix B for
a detailed derivation).

For the case when the meniscus is pinned pinned at both tips,

k1 =ky +sin B,

_cosp—dsinp [1 L 1-d(Besc?p —cotﬂ)} _sinp+dcosp @5)

d k ,
an 2 d d2 csc? B(1 — B cot B) dz

where g is determined by the volume (electronic supplementary material, appendix B)

d 2
V=d- <§> (B csc? B — cot B). (2.6)

Here we have omitted the subscript n for the translationally invariant base state. Note that k; and
ky in this case are not necessarily equal, because while the wetting length is constant, the contact
angles change by different amounts on the two tilted neighbouring plates.
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Figure 3. Stability analysis of a vertical array of plates. (a) The curve of 2k + 2k, following equations (2.5) and (2.7) as a
function of IV given by equations (2.6) and (2.8) intersects with the line —ky. The interval between the two intersections
indicates the region where the system is unstable as according to equation (2.9), A(7r) = 2k + 2k, + k, < 0. For typical
experiments, any V /d € (0.507, 0.939) leads to coalesce given infinitesimal perturbations to the system. Inset figure shows the
effective dimensionless spring constants k;(V) (i = 1, 2); k; switches signs from positive to negative as I/ decreases, while the
discontinuity corresponds to the meniscus sliding down from the tip. (b) The positive bifurcation branch using both simulations
of equation (2.2) and the asymptotic result in equation (2.11). When V > V* = 0.9393d, ¢ = 0 and when V < V*, ¢ ~
V¥ — V, which is a clear indication of supercritical bifurcation. The inset illustrates the dimer mode. To capture the dimer
mode in equilibrium, we numerically integrate equation (2.2) in a periodic domain of two plates with the initial condition of
tilting one plate by 0.1% from 90°. The inset is a periodical display of dimers for visualization. To determine if the dimers are
stable, we simulate 32 plates with the same boundary and initial conditions and the same volume of liquid in each cell. The black
dots correspond to stable dimers, while the dots correspond to unstable dimers that will further coalescence. (Online version
in colour.)

For the case when the meniscus is no longer pinned at both tips,

L 12 2Ly +dt
ki=ky=—| Ysina + -2 +sin’a M, 2.7)
r 2r2 4cosa

with r=d/(2cosa) the radius of the meniscus and L,, the wetting length determined by the
volume (see electronic supplementary material, appendix B)

o T — 2

V = Lyd + d tan(%) —d 2.8)

8cos?a’
In this case k1 and k; are identical, because the contact angle is constant, and the change of wetting
length is the same on both plates when they are deflected. From equations (2.5)—(2.8), we see that
for any given geometric parameter 4 and critical contact angle «, k; =k;(V) (i =1, 2). The inset of
figure 3a shows that k; switches sign as V' decreases, corresponding to the case when the system
becomes unstable. We note that the discontinuity in k; corresponds to the transition from a static
meniscus to a dynamic one that slides down from the tip.

To study the instability of the system, we investigate the eigenmodes of the stiffness matrix
K =K;j + K3 which resembles a discrete Laplacian, with eigenvectors

[1, eif, eZif, ., ei(ZNfs)f, ei(ZNfz)f, efif], (2.9)
and the corresponding eigenvalues
AMf) = —2kq cos(f) + 2ko + k,, where f = %T andn=1,2,...,2N. (2.10)

K must be positive definite to ensure stability, which is equivalent to requiring the smallest
eigenvalue positive. When k; > 0, the meniscus is pinned at both tips, and the smallest eigenvalue
is A(2mw) = —2k; + 2k + kp =k, — 2sin B, which follows from equations (2.5) and (2.10). In our
experiments, kp= (30 L2/EN® + 60 /7Gh)~1 ~13.5 > 2sin B, so that the array of vertical plates is
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stable. When k; < 0, the smallest eigenvalue is A(rr) = 2k; + 2k + ky,, so that stability is controlled
by the competition between elasticity and capillarity. As k; =k;(V) (i=1, 2), the condition A(7) < 0
sets the range of V in which the system is unstable (figure 3a). The primary eigenmode
corresponds to f =, and the eigenvector thus is [1,—1,1,—1,...,1,—1] from equation (2.9),
corresponding to dimerization of the plates.

This result is consistent with the predictions of spring-block models for the same process
[20,21] that show that a pair of blocks should be unstable whenever the dimensionless spring
stiffness is below a critical value, which in our case corresponds to the critical volume of the liquid.
However, by correctly accounting for the geometry of the deforming pillars and the changes in
fluid volume induced by their deflection as well a minimal model for contact line pinning and
depinning, we also see there is both a lower and an upper limit on the volume of liquid for which
instability can be observed, resulting in a finite window of instability. This is because at relatively
large volumes, the meniscus is pinned at the plate or pillar tips and can have either a concave or
convex shape with a relatively small curvature so that the capillary stiffness is positive and the
capillary pressure jump across the plates is able to stabilize any perturbations. This calculation
also shows that to avoid the plate collapse, it suffices to have ki > 0 or increase ky, when kj < 0.
Practical approaches to implement this include the use of liquid with low surface tension and
contact angle close to 90°, so that k; is at its maximum positive value, the use of stiff solids,
and/or a proper choice of geometric parameters, e.g. a large aspect ratio /1/L.

To explain the nature of the instability, we note that the fastest growing mode is the dimer
mode and assume 6,1 — /2 =7/2 — 6, =0, 41 — /2= ¢. In the vicinity of the critical volume
V* at which the instability happens, the dynamics of a plate is determined by expanding
equation (2.2) in powers of ¢ and yields the equation

do

ey =~k + 2k + ko) - (V993 + 0(¢?), (2.11)

where c is the dimensionless damping coefficient, and g(V*) > 0 is an algebraic coefficient of the
cubic term (electronic supplementary material, appendix C). In (2.11), even orders of ¢ do not
appear due to the reflection symmetry ¢ — —¢ inherent in the system. When the volume in a
cell reaches the critical value V =V* (equivalently g = %), 2k; + 2k, + k, =0, while when 0 <
V* — V « 1, a Taylor series expansion of equation (2.5) in the neighbourhood of * gives us 2k; +
2ky + ky, ~ p* — B, while a similar expansion of equation (2.6) in the neighbourhood of g* yields
V* -V ~p — B* and hence 2k; + 2ky + ky ~ V — V*. From equation (2.11), we see that the stable
equilibrium state has two branches of solutions ¢ = —¢» ~ +/V* — V for V* >V and only one
solution ¢ =0 otherwise, suggesting that the bifurcation is supercritical. Figure 3b shows both
the positive branch of the asymptotic solution ¢1, and the results of simulation for two plates
obtained by solving equation (2.2) with periodic boundary conditions. The results agree well, and
confirm that the supercritical instability leads to plate dimerization, as shown in the inset.

(d) Nonlinear dynamics: drying, coarsening and refining

(i) Controlled liquid volume

For an initially translationally invariant system although the two-plate-collapse mode is the
fastest growing mode. However, the cluster of dimers is not necessarily the final stable state
(dots in figure 3b). We note that for a range of sufficient liquid volumes in each cell, both the
deflection of the plates and the geometric change of the liquid menisci are large so that the linear
approximation in §2c breaks down. Therefore, we numerically integrate equation (2.2) directly
to follow the hierarchical dynamics by which an array of vertical individual plates first forms
dimers, then quadrimers, and so on until the very large bundles are arrested due to elastic
effects. Figure 42 shows snapshots of dynamical coarsening for different values of the control
parameter V, in a periodic domain of 32 plates, triggered by tilting one plate by 0.1% from 90°
as the initial condition. As expected, for volumes outside the range V/d € (0.5073,0.9393), e.g.
for the cases of V/d=0.95 and 0.4, the array is stable to perturbations and remains uniformly
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Figure 4. Elastocapillary coalescence of plates. (a) A periodic domain of 32 plates is simulated by solving equation (2.2) for
different prescribed volumes V. The tilting angle 6 of the first plate is perturbed by 0.1% from 90° as the initial condition. The
left column shows a sequence of transient states and the right column shows the steady states. (b) The standard deviation of
deflection angle ¢ as a function of time. t is time and t,, is the time scale for mechanical relaxation. (c) Complementing (b),
these plots show the evolution of hierarchical formation of bundles for different prescribed volumes. The time resolution of the
plots is 0.257;, and plates are considered as a bundle if the tilting angle gradient is positive and larger than the perturbation
amplitude. (Online version in colour.)

vertical. In the unstable parameter range, the primary mode corresponds to two plates collapsing
into dimers (figure 3a,c). These dimers may further collapse into quadrimers or stay as the
final stable state with different amplitudes of deformation angles as shown in figure 4a,b. For
the same initial perturbation, the dynamical path of successive bundle aggregation depends on
the control parameter V. As examples, we see that for V/d = 0.92, quadrimers sweep through the
domain right after the dimers form and the system reaches the stable equilibrium, for V/d = 0.80
the dimers persist for a while before they eventually collapse to quadrimers, and for V/d =0.70
the dimers stay stable, as shown in figure 4c. The propagating waves of coalescence that we see as
these patterns evolve are similar to those in earlier models [21] wherein a localized perturbation
generates a propagating front that leaves behind clusters of a finite size. In the context of our
model, when V < V*, the springs have a negative stiffness. Then, a localized perturbation results
in a single plate element escaping from its equilibrated vertical configuration. Rotation of one
plate causes the effective stiffness of its adjacent neighbours to change, with one increasing and
another decreasing due to the changing meniscus levels and contact angles even as the liquid
volume of a cell is conserved. The local change in stiffness then breaks the symmetry between two
adjacent plates and either pushes them apart or brings them together to form pairs. Repeating this
pair-wise clumping at the front where the deflected and undeflected elements meet results in a
propagating wave of disturbance from the localized perturbation in both directions. The clumped
pairs behave as effectively new elements. Iterating this process until the elastic resistance prevents
further coalescence selects a well-defined bundle size.

Having seen how the system coarsens when the fluid volume in each cell is controlled, we now
turn to the more realistic case when the volume itself evolves dynamically.
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Figure 5. Drying induced elastocapillary coalescence of plates assuming evaporation rates to depend on the surface area in
each cell. A periodic domain of 100 plates is simulated by solving the coupled equations (2.2) and (2.12), of which only 32 are
displayed. (a) Snapshots of the array of plates and menisci at different times. The initial conditions are V, /d = 0.92 except
that Vgg is smaller by 2% and 6, = 90°. (b) Number count of bundles of different size as a function of time for (a). (c) Same as
(a) but with uniform random initial perturbations with the maximum amplitude of 5% on both V, /d = 0.92 and 6, = 90°.
(d) Number count of bundles of different size as a function of time for (c). Note the three- and five-plate bundles. (Online version
in colour.)

(ii) Coupling capillary coalescence to drying dynamics

For an evaporation dominated situation, the rate at which the liquid volume in each cell is
reduced depends on the local surface area of the air-liquid interface and thus on deflection angles
of the adjacent plates. Consequently, the drying dynamics is coupled to the evolution of the
geometric configuration, and new instabilities associated with inhomogeneous cell volumes are
expected, which cannot be captured by either energy minimization [8,18,19] or renormalization
analysis [20].

A minimal evaporation model that is sufficient to capture the qualitative features of
hierarchical bundle formation is given by

dv, 2r—mcernﬂn when V;; >0,
T

= e

dr 0

(2.12)
otherwise,

where c¢ is a constant, 7y, and 7. are time scales for mechanical relaxation and evaporation,
respectively, 1, is the radius of the meniscus and 2, is the angle subtended by the meniscus arc.
Equations (2.2) and (2.12) coupled together determine the dynamics of plate coalescence driven
by evaporating liquid, with three regimes. When t, < 7e, V;; decreases quasi-statically so that
equation (2.11) relaxes to a static state for a prescribed value of V;. When 7y, ~ 7, the evolution of
the cell volumes V}, and the plate configuration 6, are coupled. When 1, 3> e, the evaporation is
so fast that the plate array does not coarsen. In our typical experiments, 7, ~ 16 ms and te is of the
order of seconds, and we choose ¢, in equation (2.12) so that the liquid dries out in approximately
5 s. Figure 5 shows the simulation results for a periodic domain of 100 plates with two different
initial perturbations.

In figure 5a, all plates are perfectly vertical, and the liquid volume in each cell is constant
for all cells except that Vgg is smaller by 2% to mimic boundary effects in an experimental
system. The evolution of the system indicates that a front of dimer coalescence propagates from
the imperfection site and sweeps through the entire domain, followed by a successive front of
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quadrimer coalescence. If adhesion between contacting plates is neglected, capillary forces are
not sufficiently large to hold the plates together, and the bundles separate symmetrically when
the liquid volume falls below a second threshold, and a perfectly vertical configuration is restored.
Figure 5b shows the number of bundles of different sizes as a function of time corresponding to
the configuration shown in figure 52, and highlights the fact that bundle formation/separation is
perfectly hierarchical and regular.

In figure 5c, we show the results associated with an initial uniform random perturbation with
maximum relative amplitude of 5% that is applied to all the tilting angles and liquid volume in
all cells. Irregular bundles of size ranging from two to five plates form transiently, and separate
as the liquid evaporates. Figure 5d presents the number count of bundles of different size for
figure 5c; although the dimer is still the dominant mode in the early stages, bundle formation
can be irregular. This is because the jump in the location of the contact line when the contact
angle reaches a critical value leads to a sudden decrease in the effective stiffness as shown
in figure 34, and the uniform random initial perturbation generates multiple sites from which
the front of dimer coalescence starts propagating. Consequently, the sites are not necessarily
separated by an even number of plates. Therefore, trimers and pentamers also arise in addition
to quadrimers. Bundles of larger size do not appear because of the large elastic energy associated
with their formation.

The dynamics of coalescence in these two cases shows how the number of plates per cluster
varies in a step-like manner, very similar to the experimental data reported by Pokroy et al. [7]
and Gat & Gharib [20]. All these features also agree qualitatively well with our own experimental
observations shown in figure 14,b.

3. Collective dynamics of a two-dimensional array of pillars

(a) Experimental observations

We now generalize our study of the one-dimensional dynamics of plate aggregation driven by
capillarity to the coalescence of a two-dimensional array of epoxy nano-pillars immersed in an
evaporating wetting liquid as reported in detail in previous work [7,26]. The dynamics of pillars
is different from that of plates in three qualitative ways. First, fluid can flow freely around the
multi-connected domains associated with pillars, so that the interaction between them occurs
over much longer ranges rather than being limited to just nearest neighbours. Second, the three-
dimensional geometry allows the pillars to bend in two principal directions, and also twist after
the pillars are in contact to further reduce the surface energy. For pillars with a circular cross-
section, the twist must be a constant. If we neglect friction between adhering pillars, the twist
must identically vanish, and here we will assume that this is the case. Third, experimentally we
see that the segmented, ‘wormlike” geometry of specially treated pillars increases pinning of the
receding contact line by reentrant curvature [7]; here will neglect the reentrant curvature and
consider the menisci to be pinned at the pillar tips for simplicity.

As in the case of plates, the uniform array of non-interacting straight pillars loses stability
as the liquid evaporates. The dynamics of the ensuing structures is a result of the competition
between elasticity and capillarity, and the morphology of the final assembly is determined
by intrapillar elasticity and interpillar adhesion [26]. Figure 1c-e show the scanning electron
microscopy (SEM) images of the assembly into uniform periodic fourfold clusters of nanopillars,
in which the pillar height L = 4.5 um, the pillar radius R = 150 nm, the pillar spacing D =2 pm, the
Young’s modulus E = 0.2 GPa, the surface tension of the liquid o = 0.022N m~! and the density
of the liquid p =786 kgm~3. Unlike in the one-dimensional array of plates, where the dimer is
the primary unstable mode, for pillars the quadrimer is the primary unstable mode. As the liquid
evaporates, this mode leads to a hierarchical growth of larger assemblies which eventually get
arrested elastically.
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(b) Mechanics: coupling pillar deformation to fluid interface shape

As in the plate case, inertial effects can be neglected here, so that the dynamics of each pillar
tip can be characterized by its displacement vector relative to its base X(x,y) (figure 6a), and is
given by

c% + Fp(X)+ Fo(X, V) =0, (3.1)
where cis the drag coefficient, Fy, is the elastic bending resistance force at the tip, F, is the capillary
driving force owing to surface tension o and V is the liquid volume in the system.

To estimate the drag coefficient ¢ and the time scale in equation (3.1), we consider both the
internal contribution from viscoelasticity of the solid material and the external contribution from
the viscous fluid and find that viscoelastic effects dominate. Indeed, AFM characterization of
the epoxy micropillars [27] show that the force versus displacement curve has a clear hysteresis
loop, which reveals that the epoxy micropillars are viscoelastic. For a pillar of radius R = 1.5 um,
length L =9um and bending spring constant k =37ER*/4L3 ~3.3Nm™!, where E=0.2GPa
is the Young’s modulus, the measured hysteresis accounts for 32% of the total work done
at max deflection x =1.5pm and rate of deflection v=6ums~!. Thus, the effective damping
coefficient ¢1 from internal viscoelasticity can be calculated from 2cqvx=0.32 x 0.5 x kx2, based
on the Kelvin—Voigt model. To calculate the damping coefficient ¢, from the external viscous
fluid, we consider a circular cylinder of radius R moving with velocity U normal to its axis
at small Reynolds number Re=2RpU/u~7 x 107, in which case, the drag of magnitude
47 pul/In(7.4/Re) per unit length [28] and w~ 1072 Pas is the viscosity of the fluid. As the
centre of the pillar is moving at a velocity of almost v/2 when the cantilever tip is deformed
at a velocity of v in the AFM test, we take cp =27 uL/In(7.4/Re) as an approximation. Then
c1/c2 ~ 107 for the experimental parameters listed above, so that external damping from viscous
fluid can be neglected and c ~ c¢;. Therefore, the time scale for the pillar to relax mechanically
is tm =c/k~10"2s in equation (3.1), and 1, is a material property and does not depend on the
geometric dimensions of the pillar.

To compute the bending resistance force Fy, in the horizontal direction, we use the theory of
the elastica for the inextensional, unshearable deformation of thin pillar. Letting ¢ be the angle of
the tangent to the pillar centreline with the vertical, with s € [0, L] the arc length coordinate, and
|Fp| the force amplitude at the tip, equilibrium implies that

%R%mVH&k%ﬁza (3.2)

Geometry implies that | X| = fé cos[¥(s; |Fp)]ds, so given X, |F| is uniquely determined, and Fy, =
|Fp1X/|X]. To obtain F,;, we need to determine the shape of the air-liquid interface. Since the Bond
number Bo~107% is small, gravity can be neglected. Moreover, the time scale for the fluid to
equilibrate in the porous brush f¢ is much smaller than that for the pillars to relax mechanically ¢,
which is much smaller than that for the evaporation t, i.e. tf ~ 10 3s < tm~102s < te~100s
(electronic supplementary material, appendix D). Assuming the ambient pressure to be zero, the
pressure in the liquid domain can be regarded as uniform and the air-liquid interface z = S(x, )
will thus be a surface of uniform mean curvature that satisfies the equation

14 528, — 25¢5,S4 + (1 + S2)S,,
ZO'HZO’( Doy xSyS +{ » XY:Pr (3.3)
(14 5%+ 55)32

where H is the mean curvature of the interfacial surface. Volume conservation in the whole
domain yields

N

V= J S(x,y)dxdy +7R*> > "(h; — L), (3.4)
A i—1
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Figure 6. Elastocapillary coalescence of a square array of pillars. (@) Demonstration of triangular meshes on a domain that
contains an array of 2 by 2 vertical pillars, where the white solid circles represents pillar tips. The mesh density used in the
actual simulation is four times denser. (b) The three-dimensional air-liquid interface is obtained by solving equation (3.3) on
the domain shown in (a) for a given liquid volume V / Vg, = 0.85in equation (3.4). (¢) Given a slight perturbation to the vertical
state in (b), four pillars coalesce to form a bundle. (d)—(g) A domain of 14 by 14 pillars evolves to the steady state of fourfold
clusters for a given liquid volume V/ Vg, = 0.90. The dynamics follows the coupled evolution equations (3.1—(3.4). 7 is the
dimensionless time scaled by t,, (see text). The grey scale shows the air—liquid interface height, scaled by the pillar spacing.
White solid circles represent pillar tips, and the black open circles represent pillar bases. The dashed lines connecting bases and
tips correspond to a projection of pillars viewed from the top. (Online version in colour.)

and serves to determine p. Here A is the projected domain of the air-liquid interface to the
horizontal plane (meshed area in figure 6a), and h; is the elevation of ith pillar tip. Since the
menisci are always pinned on the pillar tips, we need to solve equation (3.3) on a multiply
connected domain, in which pillar tips are regarded as solid circles with the identical radius

€6S0VL0 “LLb ¥ 205 201 BioBuiysiqndizaposieforredss


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on January 26, 2015

(figure 6a) and the height of the surface is fixed at the elevation of pillar tips (figure 6b)
h= jé sin? ds calculated from equation (3.2). As the pillars are effectively immersed in liquid,
the integration of pressure over the lateral surface of the cylinder does not contribute to F,
and the only active contribution is the line tension at the contact line. For a given air-liquid
interface (figure 6c), the angle of the meniscus tangent with the horizontal direction on the
circular boundary of the tip is known, which we denote as ¢. To calculate the capillary driving
force on each pillar, we integrate the interfacial force over the contact line contour at the tip
and determine the component in the horizontal direction that contributes to the deflection, with
F, = §,oncos ¢ ds, where the subscript c represents the tip circle and nis its unit outward normal.
Note that for very small values of V, the assumption of the surface being pinned at the pillar tips
breaks down; however, clusters form well before this assumption is violated, so that this is not a
cause for concern.

To prevent penetration upon collision between pillars, we treat each pillar as a rod with finite
radius with a short-range repulsion force when the discs representing pillar tips come close
enough (10% of the pillar diameter), but do not consider the elastic deformation of the cross
section owing to contact.

(<) Nonlinear dynamics: simulations and comparison with experiments

To complete the formulation of the problem, we need some boundary conditions. We consider
a square array of pillars inside a domain with straight vertical walls and impose symmetry-
related conditions on the walls for the fluid interface and the pillar deformations. On the pillars,
the contact lines are assumed to be pinned on all pillar tips. For initial conditions, the pillar
bases (open circles in figure 6g) are assumed to form a perfect periodic square lattice, while
the pillar tips (solid white circles in figure 6g) are perturbed from the vertical configuration
so that the layer of pillars closest to the boundaries inclines inwards to trigger the inward
motion from the boundaries, and other pillar tips are uniformly and randomly perturbed. We
numerically solve the coupled evolution equations (3.1)—-(3.4) using a custom finite element code.
For a given pillar tip displacement X;, equation (3.2) is solved with the geometric condition
| X;| = fé cos[9(s; | Fy;|)] ds to determine the reaction force Fj; and tip elevation of each pillar h;.
Given X; and h;, equation (3.3) is solved using the finite element method to determine the interface
S(x,y) on the multiply-connected domain with the liquid volume constraint equation (3.4), which
determines p and thence F,;. Then equation (3.1) is integrated in time explicitly to update the
pillar tip positions, and the domain is re-meshed accordingly at every time step.

Figure 6d4—¢ show the simulated evolution of an array of 14 by 14 pillars collapsing into fourfold
bundles for a prescribed liquid volume of V/Vg, = 0.90, where Vg, is the control volume inside
the system when all the pillars are vertical and the air-liquid interface is flat, using the parameters
from experiments in figure 1c—e. Due to the initial boundary perturbations, coalescence is initiated
from the boundary and propagates towards the centre of the domain. We observe that there is a
critical liquid volume above which uniform vertical pillars are stable, and below which pillar
coalescence occurs, similar to the case of plate collapse. However, here the primary eigenmode of
instability has a fourfold symmetry (figure 6¢) independent of initial perturbations as observed
in experiments (figures 6¢ and 7). An intuitive way to understand this is to recognize that the
fourfold bundles have two principal directions, along each of which one sees dimers. Although
the interaction potential between pillars in the three-dimensional case has a much longer range
than in the two-dimensional case because of connectivity, it is still monotonic and decreases
with distance. Provided that the effective spring constants in the two principal directions are
decoupled, which is true in the linearized regime, the dimer is the primary mode in each direction
as in the one-dimensional plate array. Beyond the linear regime, our simulations capture the
coarsening that is arrested and eventually leads to a maximum bundle size. We also note that
the tips in a bundle can form either rhombi or squares depending on the initial perturbations,
although rhombi are more likely as they are stable against shear deformations; indeed as we
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Figure 7. More examples of final structures of the fourfold clusters for different prescribed volumes and domain sizes with
random initial perturbations and symmetric boundary conditions. (a) 14 by 14 pillars with a given liquid volume V / Vg5 = 0.90.
(b) 10 by 16 pillars with a given liquid volume V/ /Vg,x = 0.88. Simulations were done by solving equations (3.1)-(3.4).

neglect friction between the tips, the rhombus is a more energetically favourable configuration
than the square. However, the energy difference between these two states is very small, so that
contact and friction in real experiments leads to both square tips (figure 1d) and rhombi tips
(figure 1c).

4. Conclusion

Our study has focused on understanding the onset and evolution of elasto-capillary coalescence
of plates and pillars driven by evaporation. For the case of plate collapse, we explicitly derived the
conditions for the primary dimerization instability in terms of the state variables—tilting angles
0y and liquid volumes V), and the relevant geometrical and physical parameters. Our analysis
correctly accounts for the geometry of the system and consequently predicts a finite window of
liquid volumes over which the vertical configuration is unstable, consistent with observations.
Complementing our linear analysis, we also present full numerical simulations that show how
the final coalescent states sensitively depend on initial perturbations because of the discontinuous
motion of the contact line when the contact angle reaches a critical value. This implies that
the self-organization of clusters cannot be predicted by energy minimization arguments alone,
but depends on the dynamics of the drying process—this is especially true when the coupling
of geometry to local evaporation rates is taken into account. Our model accounts for this and
is in qualitative agreement with experimental observations of the intermittence of coalescent
transitions. For the case of pillar collapse, our model correctly accounts for the multiply connected
nature of the fluid interface, and the large elastic deflections of the pillars. The analysis based
on this model captures the primary fourfold eigenmode associated with the onset of collapse,
consistent with experimental observations. Numerical simulations of the full dynamics allow
us to follow the evolution of the clusters whose eventual size is determined by the competition
between capillarity and elasticity. For both cases, our numerical results agree well with many of
the salient experimental observations. In particular, we can explain the eigenmodes at the onset
of instability, and the time scales on which clusters form, while providing explanations for both
regular and irregular hierarchical bundling till the final state.

However, our analysis still leaves out some effects and thus cannot explain some observations.
Neglecting adhesion and friction between pillars implies that we cannot explain the twisting
of pillars that leads to the formation of chiral clusters often seen. This is a natural next step
in the analysis. Furthermore, we have limited ourselves to a discrete theory in both cases, but
in the thermodynamic limit of a large number of pillars or plates, one might ask what the
nature of a continuum theory might be. A recent continuum theory that addresses the explicit
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connection of the essential geometric and physical parameters to determine the maximal size and
dynamics of the assembly has been carried out for plate coalescence [23], but the question for
three-dimensional coalescence remains an open question.
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1 Appendix A: Critical buckling length of a plate
The critical buckling height of a thin plate under compression due to surface tension o is

Lerit ~ Lee = V Eh3/(7, (Sl)

where L. is the typical elastocapillary length scale. For the case when the plate is clamped at one
end and axially compressed at the other, the exact expression [I] for L., is

L = [48(1 — )] 7V2 L. &~ 1mim, (S.2)

where we have substituted in the experimentally observed parameter values. As L.+ is much larger
than the plate height L = 40um, the plates do not buckle when they pierce the gas-liquid interface.

2 Appendix B: Moment calculation for the 2D case

There are a total of 8 possible meniscus configurations shown in Figure 2(b), which can be classified
into 6 cases where we explicitly express the moments in terms of the state variables - tilting angles
#,, and liquid volumes V,,. We have scaled all lengths by L and moment by oL, so all results below
are dimensionless.



Case 1: The meniscus is pinned on both tips (Figure 2(b1)). The half angle /3,, subtended by
the meniscus arc is determined by solving

1 1
V, = id(sin Op +sinf,41) + B sin(f,, — Op41) — ai(ﬁn csc? B, — cot Bn), (S.3)

for given V,,, 0,, and 6,1, where d = D/L and half of the tip distance a,, is

1
an = 5\/2 —2¢08(0p 11 — On) + 2d(cos Oy, 11 — cos by,) + d2. (S.4)

By, must satisfy 8, < Bn, where Bn is the critical angle at which the meniscus starts to slide down
from at least one lamella. 3, < 0 when the meniscus concaves down, 5, = 0 when the meniscus is
flat, and 8, > 0 when the meniscus concaves up. The moments on the nt" and (n+ l)th plates are
given respectively by

M, = _2i (Sin(B + O — Op11) + dsin(By + 0)] (S.5)
Mn+1 = % [Sin(ﬁn + en - 9n+1) - dSin(ﬁn - 9n+1)] ) (86)

Case 2: The meniscus is below both tips (Figure 2(b3)). The contact angle is fixed at «. When
0, # 0p11, the radius of the meniscus r, is determined by solving

2 . . _
- df S‘lIl 0, sin 0,41 B 7“721 052 o cot Ont+1 — On
2 sin(fp4+1 — 6On) 2

7T+9n+1 —Hn—20é:|
5 .

(S.7)

+ sina cos o +

The wetting length on the right side of the n” plate and that on the left side of the (n + 1) are
given respectively by

sin 6,41 . Ont1 — On
Lwrn =0+~ I'n -5 . .
d81n(9n+1 o) T |:Sln05 + cos accot ( 5 )] (S.8)
sin 9n . en - Hn
Lwln+1 = dm — Tn |:Sané + cos a cot (<|»12>:| . (Sg)

When 6,, = 0,11 = 6, the meniscus radius is independent of V,,, and r, = dsin6/(2cos ). I, is
determined by solving

20, —dcosf _ . dsing\ 2 7 —2a [ dsinf\?
Vn—2dsm9—< 5 ) tana — 5 <2cosa> . (S.10)

The wetting length on the right side of the n!” plate and that on the left side of the (n + 1) plate
are given respectively by

d
Lyry, =1y — B sin 0 tan o, (S.11)

d
Ly =ln — 3 sinftan a — dcos 6. (S.12)



In either case, the moment on the n*” plate and that on the (n+1) plate are given respectively
by

2
L’LUTn

LU)I’?L-Fl .
My = 5 + Ly sina. (S.14)
n

Case 3: when the meniscus slides down from the n'® plate and is pinned on the (n + 1) one.
In this case Ly, = 1, and Ly, = 1.

1
ay, = 5\/1 + 12 — 21, cos(0p, — Opy1) + 2d(cos b1 — 1 cos0y) + d?, (S.15)

vV, = %ln sin(6, — O0p41) + %d(ln sin @, + sin 1) — ai(ﬁn csc? B, — cot ). (S.16)
From the condition that contact angle on the n'”* plate is a, we can get the following relations,
cos(a + 0, — Opt1) + dcos(a + 6,,) — I, cos @ = 2ay, cos By, (S.17)

and

sin(a+ By + 0n, — Ony1) + dsin(a + B, + 6,,) = Ly sin(a + ()
when 0, # 0,41,

dcosf+1—1, = cos(a+ ) (S.18)
when 6, =0,11 =20.
l, and (3, are determined by solving either (S.16|) and (S.17]) or (S.16|) and (S.18]).
Moment on the n* plate and that on the (n + 1) plate are given respectively by
M, = _Sg;f” 2 —1,sina. (S.19)
My = Sma'B" — sin(Onsr — O — 0 — 28,). (S.20)

Case 4: when the meniscus slides down from the (n 4 1) plate and is pinned on the n'* one.
In this case Ly, = 1 and Ly,41 = .

1
Gp = 5\/1 + 12 — 21, cos(bp, — Opny1) + 2d(1, cos Oy — cosby,) + d?, (S.21)

1 1
Vi = Slnsin(0n = Ony1) + 5d(sin 0y + Ly sin O g1) — a2 (Bn csc? By — cot Br). (S.22)

From the condition that contact angle on the (n + 1) plate is a, we can get the following
relations,
cos(a+ 0, — Op41) — deos(a — O 41) — 1y cos v = —2ay, cos By, (S.23)

and
sin(a+ By + 6y, — Opt1) — dsin(a + By — Ony1) = lpsin(a + Gy)
when 0, # Opy1,
dcos@ + 1, — 1 = cos(a+ ()
when 6, =0,+1 =¢6.

(S.24)



Similarly, I,, and 3, are determined by solving either (S.22) and (S.23]) or (S.22)) and (S.24).

Moment on the n'? plate and that on the (n + 1) plate are given respectively by

sin 3,

M, = — 5y +sin(0p 1 — 0 — a—28,). (S.25)
M1 = 512“5”52 + I, sinov. (S.26)
an,

For certain given V,,, 6,, and 6,1, although one end of the meniscus is depinned from the tip,
there is no arc satisfying the enforced contact angle condition. In the following two cases, the
menisci are approximated by straight lines. They are used to prevent the numerics from blowing
up when two plates almost contact, yet very unlikely to happen.

Case 5: when the meniscus slides down from the tip of the n* plate and remains flat. The
moment on the n'" plate and that on the (n 4 1) plate are given respectively by

In
My = =3 [sin(0 = 1) + dsin ) (8.27)

n

Miyyr = bi[zn Sin (0, — Ons1) + dsin O], (S.28)

n

where [,, is determined by solving from the given volume

ln d
Vi, = 5 sin(f,, — Op41) + §(ln sin 6, + sin 0, 11), (S.29)

and b, is

by = \/1+12 — 21, cos(0p — Ons1) + 2d(cos Oy 1 — 1, cos b,,) + d2. (S.30)

Case 6: when the meniscus slides down from the tip of the n!* plate and remains flat. The
moment on the n'? plate and that on the (n + 1) plate are given respectively by

1
My = = [ln$in(0n — Ons1) + dsin b, (S.31)

Ly . :
My = b—[sm(en — Opt1) + dsinbpiq], (S.32)

where [,, is determined by solving from the given volume

V, = %sin(@n —Opy1) + g(sin On + Ly sinb,11), (S.33)

and b, is

bp = /1412 — 21, co8(6, — Opy1) + 2d(ly cos Oy 1 — cos By,) + d2. (S.34)

To get the total moment on a plate, we must add the contributions from adjacent cells. For
example, we can obtain the full expression of M, simply by replacing n by n — 1 in Eq. and
add up to Eq. for the case when the meniscus is pinned at both tips, which readily yields
Mn — Mn(enfly 9717 9n+1, an anl)-



3 Appendix C: Damping coefficient for the 2D case of plates

In order to calculate the damping coefficient, we need to account for both the viscosity of the fluid
and the viscoelasticity of the solid. First we consider the contribution from the fluid. The Reynolds
number Re ~ 1075 or less, so that inertia of the fluid is negligible. We use lubrication theory to
calculate the moment acting on the plate caused by flow although the ratio of plate height L to
the spacing D does not strictly satisfy that L/D > 1. Figure illustrates 3 rigid plates hinged
at the base. The upper and lower one are perpendicular to the substrate, and the middle one is
rotating clockwise at the angular velocity 6. The liquid is confined between two plates and the
ambient pressure is set to be 0.

In the bottom chamber, the momentum conservation of the fluid in the z and y directions are

op™ 0%u op™

where p* is the pressure and p is the fluid viscosity. The boundary conditions are

u=0 at y=0 and y=H(z,1). (S.36)

From (S.35)) and (/S.36|), we can get

_ 1 ap*
The mass conservation is
d |1
ﬁ[pMD+Hﬂ plQ(0.1) — Q1) (5.39)

where Q(z,t) is the flux. As u =0 at y =0, Q(0,t) = 0. Substitute (S.37) into (S.38)),
Q)= [ wteptity = [ %2 )y

2 O (S.39)
_ H¥opt 1 L4
120 0z 2 dt”
From (S.39) and H(z,t) = D — Otz in the linear regime, we get
3p+ 6p 220
e 0. S.40
or  H3"' (S.40)
Integrate (S.40|) and use the boundary condition on pressure p™(L,t) = 0, and we see that
2uL? .
pt(s,0) = 7) 6(1 — ), (S.41)

where s = z/L € [0,1].
So far we have only considered the pressure acting on the lower side of the middle pillar. The
pressure difference between two sides is

AuL? .
D3

pT(5,0) —p (5,0)=2pT(s,0) = 9(1 —s%). (S.42)
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Figure S.1: Sketch of two neighboring cells. When the middle plate is rotating, the nonuniform
pressure caused by flow acts on the plate from both sides and hinders the rotation.

>

And the moment on the middle pillar due to fluid flow is

1 5

_ 6uL°0
My, = LQ/ (p™(s,0) = p~(s,0))sds = 5D3 (S.43)

0
where the last equality follows from (S.42)).
Therefore the damping coefficient from the viscous fluid is approximately
M 64L°

Cr==-t= . S.44
'T 9  s5D8 (544)

Next we consider the damping coeflicient resulted from viscoelasticity of the solid. We can
estimate it from the vibration of a viscoelastic beam made of the Kelvin-Voigt material, which can
be represented by a viscous damper and elastic spring connected in parallel. The constitutive law
thus is

Y = Ee+ngé, (S.45)

where 3 is the stress, € is the strain, E is the Young’s modulus and 7 is the viscosity. The strain-

displacement relation is
Ly 0%u
€= o —yw»
where r is the radius of curvature due to bending, and u is the transverse displacement of the beam.
The force balance equation is

(S.46)

M

where the moment M = — [ 4 2ydA, and ps is the density of the solid material.

Substitute (S.46)) into (S.45)), then substitute (S.45)) into (S.47), and we can get the vibration

equation of a viscoelastic beam, which is

0*u ot . 2
EI@ + 17[% + psti =0, where I = /Ay dA. (S.48)



For the thin plate, E is replaced by E/(1 — v?), p is replaced by ph and I = h3/12, where
h is the thickness of the plate. We can get two time scales 7,1 ~ /12p(1 — v2)L1/ERh? and
Tma ~ n(1 — v?)/E by balancing the first and the third term, the first and the second term
of the LHS of respectively. Substitute the parameters from the experiment L = 40um,
h = 10um, E = 1.5Mpa, v = 0.5 and ps = 965kg/m?, 71 ~ 10us. We roughly estimate n by
using the indentation experimental result in the literature [2]. For the PDMS cured at the base
to curing agent ratio of 10 : 1, the loss tangent at a vibration rate of 1Hz is around 0.1, which is
(1 — v®)w/E]|w=2x = 0.1, 80 T2 ~ 16ms. AS Tj2 > T, the inertia term is dominated over by
the damping term in for the micro cantilever, and thus can be neglected. Then the damping
coefficient due to internal viscosity of the solid is

6uL°
C:Cerzé%§+mmwnﬁ. (S.49)
where we have omitted the subscript ‘2’ in 7,2 and 7,,, & 16ms is the time scale for the viscoelastic
fiber to relax mechanically.

4 Appendix D: The assumption of uniform liquid pressure for the
3D case

Next, we estimate the time scale for the fluid to equilibrate given nonuniform pressure distribution.
To do so, we use Darcy’s law
g="vp (S.50)
1

where ¢ is the flux (discharge per unit area, with units of length per time), x is the permeability
of the two-dimensional pillar array, p is the viscosity of the fluid, and VP is the pressure gradient.
VP ~ 7, where o is the surface tension of the liquid, D is the pillar spacing, and £ is the system
size. Kk is approximated from a periodic square array of parallel cylinders, which is the initial
configuration of our system. In the dilute solid volume fraction (porosity) regime, the asymptotic
expression [3] for k is
5 —0.5In¢ — 0.745 + ¢ — 0.25¢>

4¢ '
where R is the radius of the pillar, ¢ = 7wR?/D? is the porosity. In our typical experiment,
R = 150nm, L = 4.5um, D = 2um, E = 0.2GPa, and 0 = 0.022N/m. For a domain of size
£ ~ 100pm, which contains thousands of pillars, the time scale for the fluid to relax so that the
pressure inside the domain is uniform can be estimated as 7 = £/q ~ 1073 < 7.

In conclusion, for a reasonably large patch of pillars, it is plausible to assume that the pressure
throughout the liquid is uniform during the evaporation because of the well-separated time scales —
the time scale for the fluid to relax (~ 10735 for 50 by 50 pillars) < that for the pillars to respond
(~ 10725) < that for the evaporation (~ 10%s).

=R

(S.51)

5 Appendix E: Descriptions of movies

Movie 1: 2D Hierarchical Bundles Experiment.mov



A one-dimensional array of elastic lamellae made of polydimethylsiloxane (PDMS) with pre-
polymer and cross-linker weight ratio 10:1 is immersed in the isopropyl alcohol (IPA) at room
temperature 25°C". The lamellae have height 40pm, thickness 10um, depth (into the screen) 40um,
and uniform spacing 10um. The coalescence of lamellae initiates from the right and propagates to
the left. Dimers appear first and further collapse into quadrimers. Bundles separate in the reverse
order as the liquid evaporates. The surface adhesion force traps the final configuration in the dimer
form. The movie is in real time and the duration is about 3s.

Movie 2: 2D Irregular Bundles Experiment.mov

The material and geometric parameters of the lamella array are the same as those in Movie 1
except that the depth of the lamella is of order millimeters. The geometric imperfections of the
system is larger than that in Movie 1. The coalescence initiates from multiple sites simultaneously
and irregular bundles with size varying from 2 to 5, although the primary mode at the onset is still
the dimer. The movie is in real time and the duration is about 34s.

Movie 3: 2D Hierarchical Bundles Simulation.mov

A periodic array of 100 plates is simulated, and only 32 plates are displayed. The system starts
with 0,, = 7/2, and V,,/Vjie = 0.92 except that Vg is 2% less, where Vyq is the control volume
inside the system when all the pillars are vertical and the air-liquid interface is flat. The coalescence
initiates from the 99 cell and propagates in both directions. Dimers arise first and further collapse
into quadrimers right after. The bundles separate in the reverse order as the liquid evaporates. The
system recovers the configuration of uniform vertical lamellae in the end as no adhesion forces are
included in the theoretical model. In order to see the onset of instability and hierarchical transitions
clearly, the movie is not uniform in time, and the dimensionless time is included in the movie. The
time scale is 7 = 22.5ms, and the entire process completes in around 7s in real time.

Movie 4: 2D Irregular Bundles Simulation.mov

The evolution of an array of 100 plates of which only 31 plates are displayed. The initial
condition is the uniform random perturbations with the maximum amplitude of 5% applied on
both V;,/Vfier = 0.92 and 6, = 7/2, where Vyjq; is the control volume inside the system when all
the pillars are vertical and the air-liquid interface is flat. The coalescence initiates from multiple
sites simultaneously. The dominant onset mode is still the dimer. During the process of evaporation,
irregular bundles of size varying from 2 to 5 form and eventually separate. In order to see the onset
of instability and early stages of coalescence clearly, the movie is not uniform in time, and the
dimensionless time is included in the movie. The time scale is 7 = 22.5ms, and the entire process
completes in around 7s in real time.

Movie 5: 3D_14x14_V090.mov

The evolution of an array of 14 by 14 pillars collapsing into fourfold bundles for a prescribed
liquid volume of V/Vyjq = 0.90, where Vi, is the control volume inside the system when all the
pillars are vertical and the air-liquid interface is flat, using the parameters from experiments in
Figure 1(c)-(e). The final stable configuration at the end of this movie corresponds to Figure 7(a).

Movie 6: 3D_10x16_V088.mov
The simulated evolution of an array of 10 by 16 pillars collapsing into fourfold bundles for a



prescribed liquid volume of V//V4; = 0.88, where Vyq; is the control volume inside the system when
all the pillars are vertical and the air-liquid interface is flat, using the parameters from experiments
in Figure 1(c)-(e). The final stable configuration at the end of this movie corresponds to Figure

7(b).
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