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Abstract – When a fluid is pumped into a cavity in a confined elastic layer, at a critical pressure,
destabilizing fingers of fluid invade the elastic solid along its meniscus (Saintyves B. et al., Phys.
Rev. Lett., 111 (2013) 047801). These fingers occur without fracture or loss of adhesion and
are reversible, disappearing when the pressure is decreased. We develop an asymptotic theory
of pressurized highly elastic layers trapped between rigid bodies in both rectilinear and circular
geometries, with predictions for the critical fluid pressure for fingering, and the finger wavelength.
Our results are in good agreement with recent experimental observations of this elastic inter-
facial instability in a radial geometry. Our theory also shows that, perhaps surprisingly, this
lateral-pressure–driven instability is analogous to a transverse-displacement–driven instability of
the elastic layer. We verify these predictions by using non-linear finite-element simulations on the
two systems which show that in both cases the fingering transition is first order (sudden) and
hence has a region of bistability.

Copyright c© EPLA, 2015

In continuum mechanics, fingering instabilities are usu-
ally associated with interfacial flow in porous media, or its
analog, flow in a Hele-Shaw cell. Indeed, the prototypical
Saffman-Taylor interfacial instability is associated with a
less viscous fluid pushed into a more viscous liquid in a
confined geometry, leading to the interface between the
two developing finger-like protrusions [1,2], with a wave-
length set by a balance between viscous stresses and sur-
face tension [1]. The fingers show various morphologies
as a function of the fluid properties, e.g. in the limit of
high viscosity contrast and minimal surface tension, or
when the fluid is viscoelastic, shear-thinning or viscoplas-
tic, one sees a range of finger, fracture and fractal-like pat-
terns [3–17]. Crucially, we note that these instabilities are
all manifestations of fluid-like irreversible rate-dependent
deformations.

Recently the solid/elastic analog of the Saffman-Taylor
experiment has been explored by slowly pumping air into
a cavity in a strongly adherent highly elastic layer in a
Hele-Shaw cell [18]. The cavity first dilates laterally and
at a critical pressure, fingers of air invaded the elastic
layer without fracture or loss of adhesion, as shown in

(a)E-mail: lm@seas.harvard.edu

fig. 1. When the pressure was released the cavity com-
pletely recovered its original shape, the hallmark of a
purely elastic quasi-static transition. Two other fingering
transitions have been reported in soft solid layers sitting
betwixt rigid bodies which are then pulled apart. In one
peeling causes adhesion between the layer and body to
fail, and finger-like undulations appear along the resulting
contact line [17,19,20]. In the other, adhesion is main-
tained and finger-like invaginations appear along the free
boundary of the layer [21,22]. Both these latter instabili-
ties involve control of the transverse displacement.

Here we provide a theory for the fluid-driven re-
versible elastic instability of a confined meniscus, and
unify fingering in strongly adherent elastic layers pro-
duced by either pressure-driven fluid invasion or trans-
verse displacement. Though familiar for viscous fingering,
this unification is unexpected in elasticity where force
and displacement loadings typically give different behav-
iors. While the fingering of polymeric fluids in the limit
of high Deborah numbers (when the polymer cannot
relax) [5,15–17] might seem to be similar to the rate-
independent elastic deformations treated here, they are
not since the former lead to irreversible deformations while
the latter are completely reversible.

34001-p1



John S. Biggins et al.

Fig. 1: (Colour on-line) (a) Top view of the experiment used to
study the elastic analog of Saffman-Taylor fingering [18]: two
rigid plates confine a thin elastic layer with a central cavity
containing fluid whose volume is increased by injecting fluid
from above. (b) Cross-section showing the thickness of the
layer. (c) Experimentally obtained finger pattern [18]. The
central hole indicates the original cavity size, while the varying
gray scale is a consequence of the elastic meniscus deforming
without loss of adhesion to the plates. (d) Cross-section of a
finger [18] showing maintained adhesion even when the finger
amplitude is large, well past the onset of the instability.

We begin with scaling estimates for fluid-driven elastic
fingering in a thin incompressible neo-Hookean annular
layer (fig. 1(a), (b)) adhered to rigid plates at z = ±a/2
and with in-plane extent r1 < r < r2 (r1 � a) and shear
modulus μ. Since adhesion is maintained, an in-plane dis-
placement u, applied mid-way between the plates, will
generate strains γ ∼ u/a localized in plane by an elas-
tic screening length of O(a), which we expect to be the
finger wavelength scale. A fluid (pressure Pf ) pumped
into the cavity will induce such a displacement radi-
ally on the inner circumference, increasing its volume by
δVf ∼ 2πr1ua. Since the layer is incompressible, this
displacement decays radially as u(r) ∼ ur1/r. Equat-
ing the layer elastic energy, E ∼ a

∫ r2

r1

1
2μγ22πrdr ∼

μu2r2
1 log(r2/r1)/a, and the work done by the fluid, PfδVf ,

yields u ∼ (Pf/μ)a2/(r1 log(r2/r1)). Since fingering oc-
curs when the strain is finite, i.e. γ ∼ u/a � 1,
this yields a critical threshold pressure for the instability
Pf ∼ μ(r1/a) log(r2/r1).

To verify and improve these estimates, we build a min-
imal 2d theory, taking advantage of the scale separation
induced by confinement. Consider a point with position
R = r + zẑ, and displacement V(R) = u(R) + v⊥(R)ẑ,
where r and u are in plane and ẑ is the layer normal. Ex-
panding V(R) to second order in z, imposing symmetry
around z = 0 and requiring V(R) = 0 at z = ±a/2, we
get an approximate form for the displacement1,

V(R) = (1 − 2z/a)(1 + 2z/a)u(r), (1)

reminiscent of the quadratic flow profile that underpins
the theory of viscous fingering [1]. Soft incompressible

1Figure 1(d) shows a non-quadratic profile, but the finger is in
the non-linear regime well past the point of instability.

solids are well modeled by the neo-Hookean energy den-
sity 1

2μ(Tr(F · FT ) − 3), where Fαβ = δαβ + ∂βVα, and
incompressibility requires Det(F ) = 1. Implementing in-
compressibility in a depth-averaged sense we define our 2d
energy density by

L =
∫ a/2

−a/2

1
2
μ
(
Tr(F · FT ) − 3

)− P (Det(F ) − 1)dz. (2)

The quadratic form for V gives F = I+(1−4z2/a)∇u(r)−
8z/a2u(r)ẑ + zz, where I and ∇ are the in-plane identity
and gradient. Conducting the thickness (z) integral gives

L(u, P ) =
5a

6

(
1
2
μ(Tr(G · GT )−2)+

16
5

μ
u · u
a2 − P (Det(G) − 1)

)
,

(3)

where G = I + 4
5∇u is an effective 2d deformation gradi-

ent, and P is a 2d pressure. Minimizing the elastic energy
E =

∫
LdA over u and P leads to the Euler-Lagrange

equations

8μ

a2 u =
4μ

5
∇2u − Det(G)G−T · ∇P, (4)

Det(G) = 1. (5)

To derive the associated boundary conditions, we imag-
ine a small additional displacement δu that gives rise to
a change in E arising at the boundary δE = 2a

3

∮
δu ·(

μG − PDet(G)G−T
) ·n̂ ·ds, where n̂ is the boundary out-

ward normal. At a free boundary δE would vanish. At an
interface with fluid at pressure Pf we must add the virtual
work term −PfVf (Vf is the fluid volume) to E, generat-
ing an additional boundary term −PfδVf . A small patch
of boundary at height z, thickness dz and in-plane extent
ds has initial vector area dA = dzdsn̂. After deformation,
this becomes Det(F )F−T · dA. An incremental displace-
ment δu displaces the patch by (1 − 4z2/a2)δu and hence
changes the fluid volume by −(1−4z2/a2)δu·Det(F )F−T ·
dA. Integrating this over the boundary gives δVf =
− ∮ δu·∫ a/2

−a/2(1−4z2/a2)Det(F )F−T dz ·n̂·ds. Conducting
the z integral then gives δVf = − 2a

3

∮
δu·Det(G)G−T ·n̂·ds

and hence the appropriate boundary conditions are

(μG + (Pf − P )Det(G)G−T ) · n̂ = 0, (6)

which, with eqs. (4), (5), specify the problem.
We first solve these equations for fingering in a simple

Cartesian geometry to uncover the basic mechanisms at
play, considering an elastic layer in an infinite strip with
0 < y < l and −∞ < x < ∞, an invading fluid at pressure
Pf for y < 0 and a vacuum for y > l. We expect fingering
of the y = 0 boundary at a critical Pf , so we write the
fields as a translationally invariant base state plus a small
perturbation:

u = Y1(y)ŷ + εu2(x,y), P = P1(y) + εP2(x, y). (7)

Substituting these into eqs. (4), (5) and setting ε = 0, we
see that Y1 is a constant and P1 is linear in y. Applying

34001-p2
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eq. (6) at y = 0 and at y = l (where Pf = 0) then yields

Y1(y) = a2Pf/(8lμ), P1(y) = μ + Pf − Pfy/l. (8)

Expanding eqs. (4)–(6) to O(ε) around this state gives us
an eigenvalue problem for the base-state’s stability:

8μ

a2 u2 =
4μ

5
∇2u2 − ∇P2 +

4
5
∇P1 · (∇u2), (9)

∇ · u2 = 0, (10)(
4
5
μ∇u2 − P2 +

4
5
μ(∇u2)T

)
· n̂ = 0. (11)

Assuming explicit oscillatory perturbative fields, P2 =
P2(y) cos(kx), u2 = Y2(y) cos(kx)ŷ + X2(y) sin(kx)x̂, we
solve these equations and see that, provided l � a, the
boundary destabilizes when

Pf =
2μl

5a

a2k2
(
ak
(
ak − √

a2k2 + 10
)

+ 10
)

+ 25
ak

. (12)

Minimizing this threshold over k, we see that fluid-driven
fingering of a rectilinear elastic meniscus occurs with wave-
length and pressure

λ ≈ 2.75 . . . a, Pf ≈ 10.1 . . . lμ/a. (13)

We next consider the experimental circular geome-
try [18]. A naive extrapolation of our Cartesian stability
analysis result to the circular case by taking l ∼ r2 − r1
would predict threshold pressures far beyond those ob-
served because the Cartesian base state is 1d whereas in
the circular one is 2d, with different qualitative forms for
the decay of the elastic fields. Assuming an annular elastic
layer occupying the region r1 < r < r2, −π < θ < π with
a fluid at pressure Pf in the cavity r < r1 and a vacuum
for r > r2 allows us to write the displacement and pressure
fields as

u = R1(r)r̂ + ε(R2(r) cos(nθ)r̂ + Θ2(r) sin(nθ)θ̂), (14)
P = P1(r) + εP2(r) cos(nθ). (15)

Substituting these expressions into (4), (5), then setting
ε = 0, allows us to solve (5) for R1,

R1(r) =
5r

4

(√
1 +

(c4

r

)2
− 1

)
, (16)

where the integration constant c4 parameterizes the inner-
boundary displacement. We can solve for P1 analytically
then solve the perturbative equations (9)–(11) numeri-
cally to find the fingering threshold and mode without
further approximation (see appendix) but the algebra is
cumbersome. However, the expressions simplify in the
limit of thin layers, a � r1, a case of much interest. As
in the Cartesian geometry, we expect an instability when
R1(r1) ∼ a, when strains become geometrically large.
Such displacements require c4 ∼ √

r1a � r1, so R1 can
be replaced by its first-order expansion R1(r) = 5c2

4/(8r).
Furthermore, R′

1(r) ∼ c2
4/r2 is negligibly small so we

can neglect gradients of u, setting G = I. This re-
duces eq. (4) to 8μ

a2 R1(r) = −P ′
1(r), which on integra-

tion yields P1 ∼ log(r). Similarly, applying the boundary

Fig. 2: (Colour on-line) A thin annular elastic layer with thick-
ness a, shear modulus µ and radius r2 = 125 mm has a central
cavity of radius r1 = 11.5 mm filled with a fluid at pressure
Pf . Above a threshold Pf , fingers of fluid invades the layer.
We show the inverse number of fingers 1/n (left) and the in-
verse scaled threshold pressure µ/Pf (right) as a function of the
layer thickness. The plots compare the predictions of the full
2D theory based on eq. (16) (red lines), the asymptotic results
for a/r1 � 1 given in eq. (19) (blue lines), full finite-element
results and, in the left plot, experimental results [18].

conditions (6) allows us to determine R1, P1 as

R1(r) =
a2Pf

8μr log (r2/r1)
, P1(r)=μ+

Pf log (r/r2)
log (r1/r2)

. (17)

Both fields only vary on length scales comparable to r1, so
around the inner boundary (|r − r1| � r1) they are well
described by their Taylor expansions around r1:

R1 =
a2Pf

8μr1 log (r2/r1)
, P1 =μ+Pf +

Pf (r − r1)
r1 log (r1/r2)

. (18)

Identifying (r − r1) → y and r1 log (r2/r1) → l, these re-
sults match the base state for the rectilinear case (eq. (8)).
Fingering only occurs within a characteristic distance a
from the boundary where base states match, so the in-
stability will proceed in the same way with mode number
(n = 2πr1/λ) and threshold

n ≈ 2.28r1/a, Pf ≈ 10.1μ(r1/a) log (r2/r1) . (19)

This pressure diverges logarithmically as r2 → ∞ so fin-
gering will occur in a pressurized cavity in an almost infi-
nite layer, but not in a wide rectilinear strip.

In fig. 2, we compare these predictions with experi-
ments [18] and non-linear finite-element simulations car-
ried out using a commercial package ABAQUS, using a
pressure-based Lagrange multiplier method to enforce in-
compressibility to within 10−9 variations in the pressure,
and see that the numerical results agree well with the the-
ory and experiments for very thin layers. Our data extends
to layers with a/r1 � 1 which are not thin; unsurprisingly,
here the depth-averaged asymptotic theory predicts too
few fingers and too high pressures. A better approxima-
tion, also shown in fig. 2, can be obtained by returning to
the full expression for R1(r) (eq. (16)) without assuming
a � r1 (see appendix). The theory is still depth averaged
so that it cannot capture the full behavior of thick layers,
but it captures the qualitative nature of the non-linear
deviations.
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As alluded to in our introduction, fingering of a con-
fined elastic layer can also be driven by transverse dis-
placement [21,22]. Layer incompressibility implies that
pulling the plates apart causes the meniscus to be inwardly
displaced and, at a critical separation, fingers form in a
manner reminiscent of fig. 1. The similarity arises despite
the difference in the origin of the base states because both
add volume to an incompressible layer, resulting in long-
ranged displacements that only vary on in-plane length-
scales. In the boundary region of characteristic width a
where fingering occurs, both base states are essentially
constant inward displacements, and finger identically. We
now show how our theory makes this connection concrete.
If the invading fluid is removed (Pf = 0) and instead the
rigid plates are separated to z = ±(a + Δz)/2, we must
modify V(R) to

V(R) = (1 − 2z/a)(1 + 2z/a)u(r) + zẑΔz/a. (20)

Since separation adds volume to the whole layer area,
while the inward displacement only does so at the bound-
ary, for thin wide layers, the Δz required for displacement
comparable to a will be small. Assuming Δz/a � 1, the
above V leads to the equations of equilibrium [22],

8μ

a2 u =
4μ

5
∇2u − Det(G)G−T · ∇P, (21)

Det(G) = 1 − 6Δz/(5a), (22)
(μG − PDet(G)G−T ) · n̂ = 0, (23)

identical to the pressure-driven case except for the change
of driving from Pf in the boundary condition to 6Δz/(5a)
in eq. (22).

In the Cartesian strip geometry, we can solve eq. (22)
for the translationally invariant displacement Y1(y) =
3
4a(lΔz/a2)(1−2(y/l)), which is symmetric about y = l/2
and hence substantially different from the pressure-driven
case. However, since this displacement only varies over
distances comparable to l, in a region of width compa-
rable to a around the y = 0 boundary, it is essentially
constant, Y1(0) = 3

4 lΔz/a. Substituting this constant
into eqs. (21) and (23), we see that, in the same bound-
ary region, the pressure is given by P = μ − 6μlyΔz/a3.
Thus, identifying Δz → a3Pf/(6l2μ), in this boundary re-
gion the separation-driven fields match the pressure-driven
ones (eq. (8)), up to an offset Pf in the pressure.

We next consider the stability of these base states by
considering small perturbations, P = P1(y)+εP2(x, y) and
u = u1(y) + εu2(x, y), localized to the y = 0 boundary. If
we expand eqs. (21)–(23) to first order in ε, this is analo-
gous to deriving eqs. (9)–(11). The only two differences are
the offset in the base pressures by Pf , which simply can-
cels the offset by Pf between the two boundary conditions,
and the 6Δz/(5a) term in eq. (22) which, in the thin-layer
limit, is negligibly small. Thus, the stability of a thin layer
is also governed by eqs. (9)–(11), and the instability pro-
ceeds in the same way, with threshold Δz ≈ 1.68a2/l. The
same reasoning applies even with large perturbations, so
the full non-linear finger development is identical.

In the annular geometry, we solve eq. (22) for the base

state to get R1(r) = 5r
4

(√
1 − 6Δz

5a +
(

c4
r

)2 − 1
)
. As in

the pressure-driven case, for thin layers with a/r1 � 1,
we may expand the root in the previous expression to get
R1(r) = 5c2

4
8r − 3Δzr

4a . Solving eqs. (21)–(23) for the full
base state then yields

P1(r) = μ

+
3Δzμ

a3 log (r1/r2)

(
r2 log

(
r1

r2

)
+ r2

1 log
(r2

r

)

+ r2
2 log

(
r

r1

))
, (24)

R1(r) =
3Δz

(
r2
1 − r2

2
)

8ar log (r1/r2)
− 3Δzr

4a
. (25)

These fields vary on length scales comparable to r1 � a, so
in a region around the inner boundary with characteristic
width a they are well approximated by their Taylor series
around r1. Identifying

Δz → Pf

3μ

a3

2r2
1 log (r1/r2) − r2

1 + r2
2
, (26)

we see that the equivalent series differ from those in the
pressure-driven case (eq. (18)) by the same offset of Pf to
P1 as in the Cartesian strip case. Thus, as before, the base
states differ on long length scales but match around the
inner boundary, and are susceptible to exactly the same
fingering instability. Substituting the threshold pressure
into the above expression for Δz, we find the threshold
separation for fingering which, when r2 � r1, reduces to
Δz
a ≈ 3.37 a

r2

r1
r2

log (r2/r1), and is indeed small.
We confirm this equivalence between fluid- and

displacement-driven fingering via non-linear finite-element
simulations using the commercial package ABAQUS,
with incompressibility implemented using a pressure-
based penalty method to an accuracy of 10−9. Figure 3
shows the hysteresis loops and fingering patterns for the
two cases. Despite the layers being only modestly thin
(r1/a ∼ 0.3), the loops are very similar. The fingering
transition is sub-critical in both cases, and hence both
systems exhibit bistability.

Our study highlights the geometrical similarity and
the essential physical differences between elastic and
viscous fingering. Elastic fingering is governed by an
equilibrium subcritical bifurcation that is reversible
whilst viscous fingering is a rate-dependent dynamic
process with a supercritical bifurcation driven by a
competition between surface tension (γ) and viscous
shear/pressure gradients. Furthermore, we also show that
both displacement-controlled and pressure-controlled sce-
narios may be described by the same theory, contrary
to what might be expected. Although we have ignored
the effect of surface forces, surface tension will become
important in elastic fingering if the layer thickness be-
comes comparable to the elastocapillary length scale γ/μ.
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Fig. 3: (Colour on-line) Finite-element hysteresis loops showing
finger amplitude A for displacement (top) and fluid pressure
(bottom) driven fingering, using a = 3.5 mm, r1 = 11.5 mm
and r2 = 125 mm. Both show a first-order transition to
very similar fingered states (see insets) at threshold separa-
tion Δzt = 0.02a and pressure Pt = 69.4µ, respectively. The
dimensionless threshold ratio (Pt/µ)/(Δzt/a) = 3510 ± 10 is
close to the theoretical estimate of 3640 from eq. (26).

These may be relevant to many phenomena in adhesion
science/engineering and perhaps even biological morpho-
genetic processes where branching and fingering abound.
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Appendix

Here, we provide the details of the calculation for the
fingering threshold and mode in an annular layer, contin-
uing from eq. (16). In an (r, θ) circular polar coordinate
system we note that,

∇P =
(

P,r
P,θ
r

)
, ∇u =

(
ur,r

ur,θ−uθ

r

uθ,r
uθ,θ+ur

r

)
, (A.1)

∇2u =
(

ur,rr +ur ,θθ

r2 + ur ,r
r − 2uθ,θ

r2 − ur

r2

uθ,rr +uθ,θθ

r2 + uθ,r
r + 2ur ,θ

r2 − uθ

r2

)
, (A.2)

where A,b = ∂A/∂b. We find the base pressure, P1(r), by
considering the r̂ component of eq. (4) which, for a radial
base-state displacement R1(r)r̂, reduces to

8μ

a2 R1(r) =

4μ

5

(
rR′

1(r) − R1(r)
r2 + R1(r)

)
+
(

1 +
4R1(r)

5r

)
P ′

1(r).

(A.3)

Substituting in R1 from eq. (16) and simplifying gives

a2r
(
c2
4 + r2)2 P ′

1(r)

+ μ

(
a2c4

4+10r2 (c2
4+ r2)(− r

√
c2
4+ r2+c2

4+ r2
))

= 0

(A.4)

which we can solve to find P1(r) as

P1 = P0 − μ

(
5r2

a2

(
1 −

√
c2
4

r2 + 1

)
+

c2
4

2 (c2
4 + r2)

+
5c2

4

a2 log
(√

c2
4 + r2 + r

)
− log

(√(c4

r

)2
+ 1

))
, (A.5)

where P0 is a constant of integration. Applying the bound-
ary condition, eq. (6), on the inner and outer radii, gives

μ

(
1 +

4
5
R′

1(r1)
)

+ (Pf − P1(r1))
(

1 +
4R1(r1)

5r1

)
= 0,

(A.6)

μ

(
1 +

4
5
R′

1(r2)
)

− P1(r2)
(

1 +
4R1(r2)

5r2

)
= 0. (A.7)

For algebraic convenience, instead of solving these for the
integration constant, P0 and c4, in terms of the applied
pressure Pf , we solve them for Pf and P0 in terms of c4:

P0

μ
=

5r2
2

a2

(
1 −

√
c2
4

r2
2

+ 1

)
+

5c2
4

a2 log
(√

c2
4 + r2

2 + r2

)

− c2
4

2 (c2
4 + r2

2)
− 1

2
log
(

c2
4

r2
2

+ 1
)

+ 1, (A.8)

2Pf

μ
=

10c2
4

a2 log

(√
c2
4 + r2

2 + r2√
c2
4 + r2

1 + r1

)

+ 10

⎛
⎝r2

1

a2

⎛
⎝
√

1+
(

c4

r1

)2

−1

⎞
⎠− r2

2

a2

⎛
⎝
√

1+
(

c4

r2

)2

−1

⎞
⎠
⎞
⎠

− r2
1

c2
4 + r2

1
+ log

(
c2
4

r2
1

+ 1
)

+
r2
2

c2
4 + r2

2
− log

(
c2
4

r2
2

+ 1
)

.

(A.9)

This fully specifies the base state. If we have a generic
base state u1 and P1 giving rise to an effective deformation
gradient G1, and we add small perturbations

u = u1 + εu2, P = P1 + εP2, (A.10)

then expanding eqs. (4)–(6) about the base state to first
order in ε yields

8μ

a2 u2 =
4μ

5
∇2u2 − ∇P2 · adj (G1) − 4

5
∇P1 · adj (∇u2) ,

(A.11)
Tr(adj (G1) · ∇u2) = 0, (A.12)
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subject to the boundary conditions(
μ

4
5
∇u2 − P2 adj (G1)

T

+
4
5

(Pf − P1) adj (∇u2)
T

)
· n̂ = 0, (A.13)

where adj denotes the adjugate matrix.
Linearizing about the circular base state, we assume

oscillatory forms for the perturbations

u = R1(r)r̂ + ε(R2(r) cos(nθ)r̂ + Θ2(r) sin(nθ)θ̂),
(A.14)

P = P1(r) + εP2(r) cos(nθ), (A.15)

from which we get

∇u2 =

(
R′

2(r) cos(nθ) −nR2(r)+Θ2(r)
r sin(nθ)

Θ′
2(r) sin(nθ) R2(r)+nΘ2(r)

r cos(nθ)

)
,

(A.16)

∇P2 =
(

P ′
2(r) cos(nθ)

−nP2(r) sin(nθ)

)
, (A.17)

so, the θ component of eq. (A.11) is an algebraic equation
for P2(r) with the solution

P2(r) =
4
(
Θ2(r)

(
μ
(
a2
(
n2 + 1

)
+ 10r2

)
+ a2rP ′

1(r)
))

a2nr (4R′
1(r) + 5)

+
4
(
a2nR2(r) (2μ + rP ′

1(r)) − a2μr (rΘ′′
2 (r) + Θ′

2(r))
)

a2nr (4R′
1(r) + 5)

(A.18)

and, similarly, since G1 is diagonal, eq. (A.12) is an alge-
braic equation for Θ2 with the solution

Θ2(r) = − (4R1(r) + 5r)R′
2(r)

n (4R′
1(r) + 5)

− R2(r)
n

= −
(
c2
4 + r2

)
R′

2(r) + rR2(r)
nr

. (A.19)

The r component of eq. (A.11) yields an ode for R2(r):

a2 (4R2(r)
(
μ + μn2 + rP ′

1(r)
)

+ 4nΘ2(r) (2μ + rP ′
1(r))

+r ((4R1(r) + 5r)P ′
2(r) − 4μ (rR′′

2 (r) + R′
2(r))))

+40μr2R2(r) = 0. (A.20)

Substituting in the above forms for R1, P1, Θ2 and P2
yields a non-linear fourth-order differential equation. It
is accompanied by the four boundary conditions given by
applying eq. (A.13) on the inner and outer radii:

4(Pf − P1(r1))(nΘ2(r1) + R2(r1))
−P2(r1)(4R1(r1) + 5r1) + 4μr1R

′
2(r1) = 0, (A.21)

(Pf − P1(r1))(nR2(r1) + Θ2(r1)) + μr1Θ′
2(r1) = 0,

(A.22)
4P1(r2)(nΘ2(r2) + R2(r2))
+P2(r2)(4R1(r2) + 5r2) − 4μr2R

′
2(r2) = 0, (A.23)

P1(r2)(nR2(r2) + Θ2(r2)) − μr2Θ′
2(r2) = 0. (A.24)

We solve the system (A.20)–(A.24) using the Matlab’s
bvp4c boundary value solver by specifying values for n,
r1, r2 and a to find the lowest value of c4 for which the
equations have a solution, and find the solution. We then
iterate over n until we find the solution with the lowest
value of c4 (that is the lowest displacement on the inner
boundary), to find the first unstable mode, which sets the
threshold and mode-number for fingering. We finally use
eq. (A.9) to recover the fluid pressure threshold from the
value of c4. The threshold and mode-number predictions
from this procedure are shown in fig. 2 in our main text.
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