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Adhesion in the context of mechanical attachment, signaling, and movement in
cellular dynamics is mediated by the kinetic interactions between membrane-
embedded proteins in an aqueous environment. Here, we present a minimal theoret-
ical framework for the dynamics of membrane adhesion that accounts for the kinetics
of protein binding, the elastic deformation of the membrane, and the hydrodynamics
of squeeze flow in the membrane gap. We analyze the resulting equations using
scaling estimates to characterize the spatiotemporal features of the adhesive pattern-
ing and corroborate them using numerical simulations. In addition to characterizing
aspects of cellular dynamics, our results might also be applicable to a range of
phenomena in physical chemistry and materials science where flow, deformation,
and kinetics are coupled to each other in slender geometries. © 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4919777]

. INTRODUCTION

Intercellular adhesion is critical for the formation, development, and maintenance of any multi-
cellular organism, for it allows cells to make physical contact to communicate information in
both time and space. Adhesive interactions are also critically important for crawling cell move-
ment, signaling, and recognition and enabled by the spatiotemporal patterning of the membrane
embedded proteins.'™ Previous work has focused on understanding the important biophysics of
intercellular interactions using models of adhesion statics,™® diffusion,”” membrane fluctuations,
and stochastic protein kinetics.!®~'® We complement these approaches and describe the time and
length scales associated with passive protein patterning, with a focus on the regime limited by the
viscous fluid flow in the synaptic cleft. We do this by deriving a physiochemical continuum model
to couple membrane deformation, protein binding and clustering, and fluid flow in the membrane
gap, and to analyze it in certain prototypical settings. Our model is inspired by the transmem-
brane protein dynamics during cellular adhesion®* but formulates a class of problems that broadly
links binding kinetics, hydrodynamics, and interface deformation. These coupled processes ought
to be of relevance in a range of settings outside cellular dynamics in such situations as transient
mechanical adhesion, physical chemistry, and problems in materials science to each other in slender
geometries.

Il. MATHEMATICAL FORMULATION

In Figure 1, we schematize cell surface-to-surface adhesion mediated by trans-membrane pro-
teins, limiting ourselves to one-dimension to emphasize the basic physiochemical processes in
the simplest geometry possible. The nucleation and growth of the protein domains are similar to
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FIG. 1. A schematic of membrane adhesion mediated by proteins with two different lengths 71,12 (I1/l2 =15 nm/45 nm
=1/3) and concentrations (C(x, t), Ca(x, t)). As the two membranes come in contact, proteins form and break bonds, which
consequently generates membrane deformation and fluid flow in the gap h(x, 1) ~ O(l2/ho = 1). The lateral scale x spans the
cell size (L ~ 10 pum).

that seen in two dimensions, with the main difference associated with dimensionality due to the
dynamics of coarsening: protein domains can move around each other in 2D but not in 1D.

There are a variety of membrane embedded proteins which form and break bonds during the
adhesion dynamics. Our specific model is inspired by the fact that the two most important adhe-
sion proteins in the immune cell membrane®* have different lengths /;,i = 1,2. These two protein
types have concentrations given by C;(x,?) that vary in space and time and their spring stiffnesses
k; = kl1/1; that are assumed to be inversely proportional to their lengths. When these protein bonds,
modeled as Hookean springs,'”!® are compressed or stretched, the force per unit area scales as
Cik;(h* — I;) leading to a natural scaling for the pressure on the bilayer p = ﬁ—; = Cf::lz’ with Cj be-
ing the equilibrium concentration of the membrane embedded proteins per area. Here and
elsewhere, we use the superscript * to denote dimensional variables. The pressure deforms the
bilayer membrane with a bending stiffness B,, = %,
membrane thickness, and v the Poisson ratio, and transverse force balance for the membrane then

yields the dimensionless equation for its height i(x, ) given by

where Ey is the Young’s modulus, b the

) 21
P = Bhyxx + Ci(h - 1_1) + l—lcz(h - 1), (1)
2 2

where x = Lx*, with the lateral extent of the cell being L and a;, = da/db. Scaling the membrane
gap h with the longest protein bond (/) & = h*/l, leaves us with two dimensionless parameters that
characterize the statics and geometry of the membrane: B = - g (:24 is the ratio of membrane bending
and protein deformation pressure, and /;//, = 1/3 is the ratio between the natural lengths of the two
proteins that are of comparable length.>*

The relation linking pressure, membrane deformation, and protein concentration (1) needs to
be supplemented by noting that the entire process of cell adhesion occurs in an aqueous environ-
ment, with the lateral dimension L >> [;. The small aspect ratio € = [,/L <« 1 of the adhesion cleft
implies that the squeeze flow driven by adhesion can be very slow and is well described by an
asymptotic theory for elastohydrodynamic lubrication. The thin film model couples fluid flow and
the membrane deformation that has been employed in other similar situations'®?° and reads, in

dimensionless form, as
1 h
—h;—|—=p<] =0, 2

P t ( 1217 )X 2)

where we have rescaled time here and below by the viscous time 7, = % with p the viscosity
and the pressure p is given by (1). To mimic an experimental setup of an anchored lipid-bilayer that
interacts with a cell, the lower surface is considered as a rigid wall.
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The dynamics of the trans-membrane proteins (C; = C;/Cp), which can react, diffuse, and move
by flow and are described by a dimensionless reaction-convection-diffusion equation that reads
ll -1 on Ton
Ci;=—Pe ' Ciyx+ 7K (h)(l—C,-)—TCiX—. (3)
B ll i) L Toﬂ
Here, K;(h)"" are the Gaussian protein binding rates, which are described in detail below. By
choosing 7,,/7,; = 1/3, we favor binding to unbinding, noting that although 7,,/7,; < 1 in many
systems,>* this ratio can vary substantially across biological systems. Since the membrane is much
more viscous than the interstitial fluid, we neglect the influence of the advection velocity gener-
ated by the squeeze flow and the diffusion coefficient D; is assumed to follow the Stokes-Einstein
relation, which makes D; = (I;/1;)D. Although membrane diffusivity can also be determined by its
anchors, our results are fairly insensitive to molecular diffusion, so that these alternate formulations
lead to similar results. We see the appearance of two more dimensionless parameters, a Peclet num-

2
ber Pe = %2”2 that describes the ratio between advection and diffusion where we note that #

is the viscous-spring velocity, and a dimensionless time 7 = :—’k‘ that describe the ratio between the
hydrodynamic time 7,, and the kinetic rate coeflicient 7. If 7 > 1, bond formation is fast compared
to the fluid relaxation time and the dynamics is hydrodynamically limited. Conversely when 7 < 1,
the flow relaxation time is short and the dynamics is kinetically limited.

We assume that the protein kinetics can be described minimally in terms of first order rates
of binding. For diffusion limited reactions, the kinetics can be described in terms of a Kramers
mean-first-passage-time over an energy barrier,”?> determined by the equilibrium length of the
molecules, and are therefore written in dimensionless form as

L _p\?

K{"(h) = exp| -

“)

b
Here, we have assumed that proteins of different lengths bind at different heights with a Gaussian
form for K" and a scaled width o, = 0.2 relative to the most probable length h(x,t) ~ ;. We
have kept the width of the binding zone o, fixed in the numerical simulations. However, if o, is
reduced protein binding would occur within a narrower range of 4, leading to a smaller number of
attached proteins in the membrane that would generate slower dynamics. Increasing o, generates a
faster dynamics with more bound transmembrane proteins, but different protein types would overlap
which is unphysical. Our choice of o, = 0.2 and initial condition for i(x,z = 0) = 0.5 ensure that
both short and long proteins will bind. This scenario of having no “gaps” in the Gaussian distribu-
tion of protein binding implies that very little of the membrane area will be free of bound proteins.
Therefore, fluctuations will be damped. Contrariwise, reducing o, will lead to a larger “gap” in
the Gaussian distributions leading to a smaller number of bound proteins where fluctuations become
more important.

We note that for hydrodynamically limited dynamics (7 > 1), the local protein on-rate and
off-rate in (3) dominate over all gradient terms and by balancing the rate terms leads to rapid
equilibration of transmembrane protein concentrations so that

K"(h(x.1))

CEhe) = o D)
O K + 2

®)

similar in shape to K?"(h), Figure 2(b). Later we will use (5) below to set the Dirichlet boundary
conditions for C;(x = 0,¢) and C;(x = 0,7) and to derive a simplified model for hydrodynamically
limited adhesion.

Before proceeding to analyze the system, we note that including membrane tension is straight-
forward via the additional Laplace-like term ~ A, in the expression for the pressure in Eq. (1); this
sets another length scale for protein patterning. Since protein patterning occurs on nano-scales, ther-
mal fluctuations may influence the membrane dynamics. They can be represented by a source term

in (2) of the form Tf(h%N (x,1))x,2>** where N(x,t) is the spatio-temporal Gaussian white noise
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FIG. 2. (a) Graphical description of the kinetic rates of protein binding correspond to (4). The protein binding rates are a
function of the membrane gap h(x, t), where binding is most probable as h(x,t) ~ l;. We use o,,=0.2 in (4) to ensure the
same probability of binding for the initial condition (0, x)~0.5. Increasing o, generates a wider distribution, leading to
overlapping protein species which is unphysical. Reducing o, makes on the other hand the region for binding narrower
and would lead to a wider transition region between the two protein phases. (b) For hydrodynamically limited adhesion
T > 1, concentration equation (3) can be reduced to (5) by assuming that the gradient terms are vanishingly small. C :q(h)
are illustrated graphically here, where the concentrations are similar in shape to kinetic binding rates (4), but with wider
distributions and shift in maxima.

with (N(x,7)) = 0,(N(x,/)N(x’,t")) = 6(x — x')6(t — t’), and Ty = (C;f% is a dimensionless num-

ber representing the ratio of the thermal energy (kzT) and the protein spring energy ((Coxhg)L?).
To simplify our description of the protein patterning, we focus here on the deterministic part of
the equation and let 7y = 0. Linearization of (2) with respect to 6 using & = 1 + 6h in the absence
of spring pressure yields 12/, — €2Bli,yyxxx = 0, with h(x,1) ~ exp(ikx + ot) yields o ~ —Be2k®,
i.e., short wavelength fluctuations are strongly damped by viscosity. In contrast, long wavelength
fluctuations are damped out by springs. However, if the number of transmembrane proteins is low or
if they are floppy, fluctuations can be important.

To complete the formulation of the problem, we need to prescribe some initial and boundary
conditions. The membrane is initialized with A(x,z = 0) ~ 0.5 so that we have the same probability
of binding both short and long proteins. This leads to an equilibrium configuration where the mem-
brane is saturated with either short or long proteins. For boundary conditions, we assume that the
membrane edge is pinned so that 4(0,7) = A(1,t) = 0.5, and further that the membrane edge is free
of torques so that /1,,(0,¢) = hyx(1,1) = 0 and maintained at constant pressure p(0,7) = p(1,t) =0,
which allows for fluid flux into the cleft. Furthermore, for (3) and (4), we assume the equi-
librium concentration at the boundary C;(0,7) = C;(1,1) = C;*(h(0,1)) = C;*(h(1,1)), given by (5).
These boundary conditions correspond to the case where a cell interacts with an anchored lipid-
bilayer. Alternative boundary conditions for a clamped membrane (4(0,t) = h(L,t) = 0.5, h,(0,1)
= h(L,t) =0,p(0,1) = p(L,1) =0) or a free edge (hyx(0,1) = hy(L,t)=0,hy(0,1)
= hyxx(L,1) = 0,p(0,1) = p(L,t) = 0) that allow fluid in/out flux through the boundary do not
affect the results in any significant manner. However, assuming the edge to be a wall with a
pinned (h,x(0,7) = hyx(L,t) = 0) or clamped (4,(0,1) = hy(L,t) = 0) membrane (h(0,t) = h(L,1)
= 0.5,p.(0,7) = px(L,t) = 0) will naturally lead to stable protein clusters at steady-state due to mass
conservation.

lll. RESULTS

The systems (1)-(4) describing the kinetics and elastohydrodynamics of membrane adhesion
can be characterized in terms of the dimensionless numbers €, Pe, B, and 7 that determine the
magnitude of advection, elasticity, and hydrodynamics, respectively. In the absence of a general
analytical solution to the nonlinear systems (1)-(4), we use a combination of scaling analyses
and numerical simulations to understand the behavior of the simulation. Our simulations used a
second-order finite difference method for the spatial discretization (6x = 1/400 — 1/1600) and a
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time-adaptive Gear method® for time marching. Choosing the fluid viscosity u ~ 1072 Pa - s, pro-
tein stiffness « ~ 107 N/m,”'* protein diffusion coefficient D ~ 1073 m/s2,?%?” thermal energy
kgT ~ 1072' J, and equilibrium membrane protein densities Cy ~ 10'* m~2,3 we find that the hydro-

dynamic time scale 7, = ﬁ ~ 1073 s, the bending moduli B, ~ (1072 — 10718) J,>72% and the

inverse kinetic rate 7 ~ 107 = 107! s. Therefore, in all our simulations we use € = 4.5 x 1072,
Pe =5.4x10* and let 7 € [1073,30] and B € [107°,107°] to understand the dependence of pro-
tein patterning on the kinetics of protein binding and the scaled forces associated with membrane
bending.

To derive some scaling predictions for the characteristic spatiotemporal features of intercellular
adhesion, we note that the micro-cluster size /. is determined by balancing the scaled bending
pressure (Bhy ) in the membrane with the scaled protein pressure (~ Cy(h — ;—;)) in (1), which
gives the dimensionless cluster size

=

l-.~B

B, \*
~ (KC0L4) . (6)

1

In dimensional units, this reads [} = (f—gg)z, so that for B € [107°, 10‘6], the scaled cluster size

1
I, ~ 0.005 — 0.05 or dimensionally /.* ~ (g—(:'l’() * =50 nm — 500 nm, qualitatively consistent with

experimentally observed protein domain sizes.>*

Similarly, the characteristic time scales are associated with the time for fluid drainage through
the membrane gap and are determined by the balance inherent in (2). For micro-cluster formation of
size [, the dimensionless time scale T then reads

2 1
l. 12 x B2
Tsz 12)((—6) z—Z’ (7)
€ €
%
which in dimensional units is 7§ ~ %. For protein patterning on the size of the cell (L), the
15(kCo)2
dimensionless time scale reads
12
.~ =, (8)
€
12uL?

which in dimensional units is 77 = . For the range of B € [10‘9, 10‘6], protein domains are

L™ cwi3
predicted to form at Ts = 25 — 500, i.e., irzl dimensional units Ts ~ 0.1 s — 2 s and the protein pattern
on the cell size to relax at Tp, ~ 6 x 10, i.e., in dimensional units 7;, ~ 2400 s. Our numerical
simulations below corroborate these estimates, where micro-scale protein clusters form at short
times and coarsen on long length scales at much longer times as seen in Figure 3.

h(x,t) C 1(x,t) C,(x.0)
150y 0.8 150, 150 |
‘ l 0.6 [ 10.6
100} 0.6 100] 100
o ‘ o 04 0.4
x % %
50) 04 50 50
‘ 0.2 0.2
0 . 05 075 1 02 00 025 05 075 1 0 00 025 05 075 1 0

X X X

(a) (b) ©
FIG. 3. Contour plots of the evolution of (a) membrane height h(x,7), (b) protein concentration C(x,t), and (c) protein
concentration Cs(x, t) for two protein species i =2 obtained by solving (1)-(4) for B=2x10"8 and 7 = 3. The membrane
shape is initialized as h(f =0, x)=1+0.05x (tanh((10x —5))>*—1.0), with protein concentrations corresponding to their
equilibrium values (C :."q(h(t =0, x))). At short times, protein bonds nucleate on the membrane and are sorted into small
clusters. This generates membrane deformation and an inhomogeneous pressure that sets the intervening fluid in motion,
causing the clusters to coarsen.
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FIG. 4. (a) The coarsening dynamics of the protein patterns is illustrated by the scaled membrane bending energy E(t)
= fli xh(x, z)ixdx and is represented here for B =2 x 1078 for three different values of 7 =3 x[1072, 1, 10], corresponding
to the blue filled circles, black squares, and red circles. The black squares correspond to the simulation presented in Figure 3,
linking the membrane shape and E(¢). In the kinetic regime 7 > 1, the membrane deforms significantly at short times and
coarsens through jumps in E(¢) as it slowly approaches equilibrium. In the diffusive regime 7 < 1, the membrane is much
less deformed and as 7 decreases the dynamics are insensitive to variations in 7. (b) 7 =30 and (c) 7 = 0.03 show the different
membrane shapes at two snapshots in time ¢ = 10 (left) and ¢ =30 (right).

In Figure 3, we show the resulting numerical evolution of the spatiotemporal dynamics of the
membrane height and protein concentrations by solving (1)-(4). The initial pressure minimum at
the center x = 0.5 generates a centripetal flow from the edges to the center, which transports the
protein clusters and effectively coarsens the protein pattern. At equilibrium, the membrane has a
nearly flat shape at the center of the membrane and the adhesion is dominated by the binding of only
the long proteins. We see that the dynamics of protein patterning occurs in two stages: initially into
micro-clusters at a scale /. over a short time T and eventually at the scale of the cell L over a long
time 77, corroborating our scaling predictions made in (6)-(8).

To illustrate the competition between the protein binding kinetics and the squeeze flow in the
membrane gap, we plot the scaled bending energy E(r) = [ I4h% dx for different choices of 7 in
Figure 4(a). In the hydrodynamically limited regime 7 > 1, the bending energy rapidly increases
at short times ¢ ~ T, due to the nucleation of protein micro-clusters before reaching its maximum.
Thereafter, the membrane starts to coarsen as the clusters move towards each other by the centrip-
etal squeeze flow and generates nearly discrete jumps in E(z) as they coalesce (Figure 4(b)). In the
kinetically limited regime (7 < 1), there are fewer micro-clusters of larger size (Figure 4(c)), and
the dynamics is diffusively dominated.

IV. DISCUSSION

Our theory for membrane adhesion accounts for the kinetics of membrane embedded pro-
teins, membrane deformation, and slow drainage in the narrow gap, allowing us to characterize
the dynamics of the process (Fig. 4). In particular, we show that the competition between mem-
brane deformation, fluid flow, and protein binding kinetics regulates the formation and organization
of protein domains on short and long lengths and time scales. Our simple scaling estimates for
the characteristic time and length scales are consistent both with observations and our detailed
numerical simulations. We now turn to two simplifications that arise naturally as limiting cases
of our model, before concluding with a brief discussion of broader generalizations that might be
worth pursuing. In the regime of very fast binding kinetics, i.e., hydrodynamically limited dynamics
7 > 1, our model (1)-(4) can be further reduced. Similarly, when the adhesion dynamics is medi-
ated by a single type of transmembrane proteins, i.e., i = 1, our model also simplifies for obvious
reasons.
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FIG. 5. Comparison of full models (1)-(4) with simplified model (5), (9), and (10) for (a) the protein concentration Cx(x, t)
and (b) h(x, 1) when B =2x 1078 and 7 = 30. (a) The steady-state membrane bound protein Cy(x, X €2 = 15) is predicted by
(1)-(4) and the analytical equilibrium concentration C;q(h(x, t x € =15)) is predicted by (5) and agree well. h(x, x €2 = 15)
is used as input to (5). (b) The results of full models (1)-(4) are shown using solid lines and those using reduced models (5),
(9), and (10) are shown using dashed lines at two different points in time # X €2=1,28.

In the hydrodynamically limited regime of intercellular adhesion, clusters of membrane-bound
proteins reorganize by domain coarsening similar to our observations.? In this regime (7 > 1), we
can reduce (3) and (4) by noting that the concentrations reach their equilibrium values quickly
so that C; = qu(h(x,t)) in (5). To verify that this is a reasonable approximation, we compare the
prediction from (5) and the numerical solution of the full model (1)-(4). In Figure 5(a), we show that
this is indeed the case.

Next, we turn to the pressure in the membrane gap, which we obtain by combining (1) and (5),

l 21
P = Bl + C()(h = 1) + TG ()R = 1), ©)
2 2

At equilibrium, p®? = p®(x,t = co) = 0 and with (5), the equilibrium height field reduces to an
ordinary differential equation, which we have verified in additional simulations but not presented
here. In fact, we can go beyond the equilibrium profiles by substituting p with p°? in (2) to derive
a simplified description for the spatiotemporal evolution of membrane shape and protein patterning

that is given by (5)-(9) and
1 n
—h,—|=p¥| =0.
E2 ! ( 12px )_X O

Direct comparison between the reduced mathematical model given by (5), (9), and (10) and full
model (1)-(4) for the membrane shape at different points in time are shown in Figure 5(b) and

(10)

/ a \‘b o (5), (9-10)
N 1/4
/B 10' h‘\b B
“a
B=2x 1071° B=2x 107 B=2x 107 < n
1 1 1 ™, o
'JsIOJS 30.75 ’ﬁms S .o
% 05 % 05 % 05 e,
=025 =025 =025 10° Se,
03 05 1% 03 110 107 10° g)” 10° 107
(a) (b)

FIG. 6. (a) The three panels, starting from left to right, show the equilibrium membrane shapes as a function of B. These
results are obtained by solving (5), (9), and (10) numerically, assuming the membrane is pinned at the boundary (4
(x=0,t)=hxx(x=1,1)=0,h(x=0,1)=0.5, h(x = 1,¢) =0.5) and with no fluid flux (p (0, #) = px(1,¢) =0). (b) To further
test our scaling prediction for the characteristic membrane deformation /. ~ B%, we systematically analyze the steady-state
membrane pattern as a function of B € [107'%,1073]. The dominant wavenumber ¢ extracted from each simulation using a

fast-Fourier transform (square markers) corroborates our scaling prediction (6) with g ~ #ch (dashed line).
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FIG. 7. Contour plots of the evolution of (a) membrane height h(x,7), (b) protein concentration C(x,t) for a single
protein species i = 1, obtained by solving (1)-(4) for B=2X% 1078 and 7 = 3. The membrane shape is initialized as k(7 =0, x)
=1+0.05x (tanh((10x — 5))>— 1.0), with protein concentrations corresponding to its equilibrium value (C fq(h(t =0, x))).
The membrane coarsening dynamics for a single type i = 1 of adhesion proteins is similar to the case with two protein types
i =2 of different lengths as shown in Figure 3.

demonstrate that the reduced model gives an accurate representation of the spatiotemporal features
in this limit.

To further test our scaling prediction for the characteristic membrane deformation /. in (6),
we simulate the equilibrium membrane shape using reduced model (5), (9), and (10) and treat the
boundaries as walls with no fluid flux, i.e., px(x = 0,f) = px(x = 1,¢) = 0 and keeping the mem-
brane pinned, i.e., iy (x = 0,1) = hy(x = 1,¢) =0, h(x = 0,t) = h(x = 1,#) = 0.5. The stationary
membrane shape in Figure 6(a) shows that the final pattern depends on B. A fast-Fourier transform
of the equilibrium patterns is used to determine the characteristic wavenumber g and confirms our
scaling (6) ¢ ~ ;- (Figure 6(b)).

Another simplification of our model (1)-(4) arises by considering just one type of transmem-
brane adhesion proteins, i.e., i = 1. In Figure 7, we show the results of our simulation for i = 1 and
find similar membrane coarsening dynamics as for the case with two protein types i = 2 of different
lengths (Figure 3); here too scaling relations (6)-(8) remain valid. However, we note that the time
scale for the coarsening is much larger when i = 1, a consequence of a smaller driving force due
to a lower number of attached proteins. In addition, the averaged film height is smaller that also
generates a larger viscous resistance that slows the dynamics.

Our study has exposed a range of interesting phenomena that couple hydrodynamics to ki-
netics and elastic deformations in thin films, problems that have a range of applications in biology,
chemistry, and materials science. Natural next steps include quantifying the influence of thermal
fluctuations, understanding the interplay between membrane tension and bending, and accounting
for the active dynamics of the membrane proteins linked to the cytoskeleton, while also accounting
for patterns that form when two-dimensional membranes adhere to a substrate.
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