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Abstract
A flat plate will bend into a curved shell if it experiences an inhomogeneous 
growth field or if constrained appropriately at a boundary. While the forward 
problem associated with this process is well studied, the inverse problem of 
designing the boundary conditions or growth fields to achieve a particular 
shape is much less understood. We use ideas from variational optimization 
theory to formulate a well posed version of this inverse problem to determine 
the optimal growth field or boundary condition that will give rise to an 
arbitrary target shape, optimizing for both closeness to the target shape 
and for smoothness of the growth field. We solve the resulting system of 
PDE numerically using finite element methods with examples for both the 
fully non-symmetric case as well as for simplified one-dimensional and 
axisymmetric geometries. We also show that the system can also be solved 
semi-analytically by positing an ansatz for the deformation and growth 
fields in a circular disk with given thickness profile, leading to paraboloidal, 
cylindrical and saddle-shaped target shapes, and show how a soft mode can 
arise from a non-axisymmetric deformation of a structure with axisymmetric 
material properties.
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1.  Background

Thin plate and shell-like structures are ubiquitous in nature, arising in such instances as leaves 
and petals in plants to heart valves and epithelial tissues in organisms. They are also used in 
engineering and technological applications that range from flexible electronic circuits and 
prosthetic tissue engineered valves valves, to large scale mechanical and civil structures. A 
basic mathematical model that is used to describe and predict the mechanical behavior of 
these thin structures has its origins in elastic plate theory [1] having been well-studied for 
over a century. Most studies examine how the plate behaves in response to external and inter-
nal stimuli. These stimuli include not only forces applied to the surfaces and edges of the 
plate, but also more general effects such as thermal expansion, swelling, plastic deformation, 
and volumetric growth. While this forward problem remains a rich area of investigation in 
the mathematical, physical and engineering sciences, a natural question concerns the inverse 
problem of design—how can we create optimal thin plate and shell-like structures for specific 
functions? Since shape is a precursor to function in many situations including the examples 
above, the simplest such inverse problem is that of asking how to shape a plate using boundary 
or bulk strains induced by external constraints or inhomogeneous growth. Here we examine 
just this inverse problem: given a target shape that we want the plate to attain, how should 
the external or internal stimuli (henceforth ‘control variables’) be chosen so that the plate is 
deformed into the target shape?

Early work on optimization of plate shape using boundary constraints includes studies 
focused on using normal traction on the plate surface to change its shape [2–4]. However, 
while optimizing for a specific target configuration for the plate, the target was character-
ized by specifying both the normal displacement field w and the Airy stress function χ. This 
formulation is unnecessarily restrictive as a certain target shape for the deformed plate can be 
provided by many combinations of w and the in-plane displacements v v,1 2 (which are linked 
to χ) along the boundary.

Recently, a new twist to this problem was added as a number of different groups have real-
ized the ability to incorporate inelastic effects such as volumetric growth into elastic plate 
theory, a subject that has recently attracted much interest [5]. One area of particular interest 
is the imposition of inhomogeneous growth strains. These give rise to residual stresses which 
are relieved by the plate’s buckling out of plane. This can be seen at the edges of certain leaves 
and flowers [6, 7], which can have a rippled configuration due to inhomogeneous growth. 
Analogously, irreversible plastic deformation causes ripples at the edge of torn sheets of plas-
tic. It is also possible to shape elastic plates made of gels and other polymeric materials that 
can swell by imbibing fluids [5, 8–11]. By blocking the ability of certain parts of the plate to 
swell or causing the plate to swell inhomogeneously, it is then possible to cause the plate to 
assume a variety of different shapes. In particular, these inhomogenous strains and boundary 
conditions cause the plate to deform, primarily by bending out of the plane, since that mode 
of deformation is usually inexpensive. That this is indeed possible in a controllable way was 
shown recently [12] by analytically characterizing a class of in-plane volumetric growth that 
can transform an originally flat plate assuming certain symmetries in the shape, and then vali-
dated experimentally.
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Here, we complement and generalize the idea of devising controllable swelling to program 
the shape of a thin plate or shell to the case of using either boundary or bulk forcing and either 
in-plane or out-of-plane growth that can lead to variations in the natural curvature, all of which 
can be inhomogeneous. Our aim then is to find the growth strains so that this buckling—and 
other growth-dependent deformations—cause the reference plate shape to achieve a given tar-
get shape by balancing the requirements of closeness to the target while at the same time not 
having large inhomogeneities in the growth strain field (which are typically hard to engineer 
in technology or control in biology).

Our analysis will be more general than the specific instances outlined above in that we will 
develop a numerical method for arbitrary target shapes, and also consider not just in-plane 
growth but also active changes of curvature (caused by growth which is greater at one side of 
the plate than the other). The equations for growing plates are described in section 2, and the 
optimization process is explained in section 3. Following this we solve the system numerically 
for a general non-symmetric configuration (section 4), and for simplified one-dimensional 
(section 5) and axisymmetric (section 6) geometries. Finally, in section  7 we use a semi-
analytic approach on a circular disk to investigate how axisymmetric growth can give rise to 
so-called soft deformation modes.

2. Theory

We start by noting that growth is not the only phenomenon that can be described using this 
formalism; both thermoelastic expansion and plastic deformation are also kinematically 
described (especially in the small-thickness limit of plate theory) by additive decompositions 
of the strain tensors. The difference between these three theories is of course in how the non-
elastic part (growth, thermal expansion, plastic deformation) is described, and in how these 
effects alter the properties of the material (including material density, stiffness tensors, and 
porosity). With this caveat, from now on, we will use the terminology of volumetric growth to 
describe these problems.

The equations  governing volumetric growth in plates can be derived from one of two 
equivalent viewpoints: either by changing the definition of the reference metric, or by decom-
posing the strain tensors into growth and accommodation components. In the first approach, 
the reference metric of the plate is changed from its usual Euclidean form to a prescribed 
non-Euclidean metric. If a plate can be visualized as a collection of evenly-spaced points in a 
plane, connected by springs with a constant rest length, then imposing a non-Euclidean metric 
is equivalent to changing the spring rest lengths in such a way that a stress-free planar configu-
ration of the points is impossible. This is kinematically equivalent to imposing an inhomoge-
neous in-plane growth field. Thus, a plate with an imposed non-Euclidean metric will tend to 
buckle out of plane in order to minimize its stored energy—as long as the applied strains are 
sufficiently large. A second approach to this problem is to consider the elastic growth process 
directly, and to derive the equation in the limit of small strain and small plate thickness.

Either approach leads to very similar equations albeit approached from different perspec-
tives—from a differential geometric perspective [13, 14], and formal perturbation theory 
[15–17], and bear deep similarities to the equations written down nearly half a century ago 
by Mansfield [18, 19] for the thermoelastic deformations for plates. In all cases, the nonlinear 
growth in an elastic body is kinematically described by a multiplicative decomposition of the 
deformation gradient but in the plate limit the growth becomes an additive contribution to the 
strain fields. In this section we will present the main equations, modified to account for vary-
ing plate thickness.
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We restrict our analysis to small-strain weakly nonlinear plate theory, modeled by the so-
called Föppl–von Kármán equations [19] in the purely elastic limit. This framework is used 
extensively to model moderate deformations of plates, and in recent years it has had great 
success in modeling deformations of thin sheets in the context of a variety of contexts includ-
ing wrinkling, crumpling [20], and many engineering applications, most recently applied all 
the way to the atomic level in graphene [21, 22, 23]. The small strain theory is thus critically 
important for many applications, and forms a basis on which other nonlinear theories can be 
superimposed if necessary.

With this in mind, we define a plate using Cartesian coordinates = ( )X X X,1 2 , with its defor-
mation characterized by the in-plane displacements ( )α Xv  and out-of-plane displacement ( )Xw , 
where Greek indices vary over 1,2. The growth in the plate may be characterized by the growth 
strains Γαβ and Ψαβ, such that the in-plane strain γαβ and the change-of-curvature tensor ραβ may 

be additively decomposed into growth and accommodation components: γ γ= Γ +αβ αβ αβ
e  and 

ρ ρ= Ψ +αβ αβ αβ
e . This decomposition is valid if the strain fields remain small. In terms of dis-

placement the elastic accommodation strain tensors are thus given by

γ = ( + ) + − Γαβ α β β α α β αβv v w w
1

2

1

2
,e

, , , ,� (1)

ρ = − Ψαβ αβ αβw ,e
,� (2)

and an index preceded by a comma indicates differentiation with respect to that coordinate. 
The elastic energy density is given by

γ γ ρ ρ= +αβλμ αβ λμ αβλμ αβ λμW DA BA
1

2

1

2
el e e e e� (3)

(applying the summation convention), where

ν ν
=

−
=

( − )
D

Eh
B

Eh

1
,

12 1
,

2

3

2� (4)

⎜ ⎟
⎛
⎝

⎞
⎠

ν δ δ δ δ νδ δ= − ( + ) +αβλμ αλ βμ αμ βλ αβ λμA
1

2
,� (5)

and E, ν and h are the Young’s modulus, Poisson ratio and thickness of the plate respectively. 
We scale the displacements v and w with L, a typical lengthscale of the problem; Ψαβ with 1/L; 
the variable thickness h with typical value h0, leading to typical values ν= ( − )D Eh / 10 0

2 , 
ν= ( − )B Eh /12 10 0

3 2  for the stiffnesses. Finally we define β = ( ) = ( )B D L h L/ / 120 0
2

0
2 2  to be 

the dimensionless stiffness ratio.
The dimensionless equations  governing the plate deformation under the action of the 

growth strains Γαβ and Ψαβ (assuming no surface loading) are the generalized Föppl–von 
Kármán (FvK) equations:

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥ν

χ
ν

χ λ
( − )

∇ ∇ −
( − )

+ [ ] + =
h h

w w
1

1

1 1

1

1
,

1

2
, 0,

2
2 2 g� (6)

β β ν χ β∇ ( ∇ ) − ( − )[ ] − [ ] + Φ =h w h w w1 , , 0.2 3 2 3 g� (7)

In these expressions, [ ] = − +f g f g f g f g, 2,11 ,22 ,12 ,12 ,22 ,11, and χ is the Airy stress function 
for the plate, defined (non-dimensionally) through the stress resultant tensor,
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γ ε ε χ:= =αβ αβλμ λμ αλ βμ λμN hA ,e
,� (8)

where

⎜ ⎟
⎛
⎝

⎞
⎠ε = −αβ

0 1
1 0

� (9)

is the two-dimensional alternating tensor. The source terms in (6)–(7) due to growth are

λ ε ε= Γ = Γ + Γ − Γαβ λμ αλ βμ 2 ,g
, 11,22 22,11 12,12� (10)

and

ν νΦ = −( − )∂ ( Ψ ) − ∂ ( Ψ )αβ αβ ββ ααh h1g 3 3� (11)

or

⎡⎣ ν νΦ = − ( Ψ ) + ( Ψ ) + ( Ψ )h h hg 3
11 ,11

3
11 ,22

3
22 ,11� (12)

⎤⎦ν+( Ψ ) + ( − )( Ψ )h h2 1 .3
22 ,22

3
12 ,12� (13)

Note that for isotropic growth, i.e. δΓ = Γαβ αβ and δΨ = Ψαβ αβ, the source terms simplify to 
λ = ∇ Γg 2  and νΦ = −( + )∇ ( Ψ)h1g 2 3 . Furthermore, if the material was perfectly accommodat-
ing of growth, the equations simplify to

κ λ χ+ = [ ] =w
2

0, , 0,G
g� (14)

where κ = [ ]w w,G  is the Gaussian curvature of the deformed surface.
The FvK equations are solved with appropriate boundary conditions. If αt , αn  are the com-

ponents of the tangent and normal vectors to the plate edge, then the natural boundary condi-
tions, corresponding to force-free and moment-free conditions, are

χ χ= ⇒ = ∂ =αβ βN n 0 0 and 0,n� (15)

+ ∂ ( ) =αβ α β αβ α βM n M n t 0,t,� (16)

=αβ α βM n n 0,� (17)

where αβN  is the stress resultant tensor given in (8), and αβM  is the (dimensionless) moment 

resultant tensor, β ρ=αβ αβλμ λμM h A3 e . We will also be applying pinned boundary conditions, for 

which (15) and (16) are replaced by = =αw v0, 0.
The Föppl–von Kármán equations (6) and (7) outlined above do not involve the tangential 

displacement field v1, v2 directly. Thus an extra step would be needed to calculate v1 and v2 
from χ before measuring the distance between the deformed plate and the target shape. An 
alternative to this approach is to write the system explicitly in terms of the three displacement 
components v v w, ,1 2 .

We find it more convenient to write these equations in weak form, as they may be solved 
straightforwardly using finite elements. The Föppl–von Kármán equations with growth were 
written in weak form by Lewicka et al [13]. However, in their formulation the normal dis-
placements w are required to be twice differentiable. As we will be using linear finite ele-
ments, we modify the equations following Reinhart [24], who treats the curvature ραβ as three 
new independent variables, with three additional weak-form equations to solve.
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In summary, the six equations to solve for the six variables v1, v2, w, ρ11, ρ12, ρ22 are shown 
below. Quantities with a tilde are the variations; the weak equations hold for all admissible 
(once-differentiable) values of these variations.

⎡
⎣⎢

⎤
⎦⎥∫ ∫ ∂

∂
+ ∂

∂
− =

∼ ∼ ∼
Ω

X
v

X
N

v

Y
N v q d 0,1

11
1

12 1 1
2� (18)

⎡
⎣⎢

⎤
⎦⎥∫ ∫ ∂

∂
+ ∂

∂
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∼ ∼ ∼
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X
v
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N
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Y
N v q d 0,2

12
2

22 2 2
2� (19)
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In these expressions,

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ν ν ν= ∂

∂
+ ∂

∂
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∂
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β ρ ν ρ= [ − Ψ + ( − Ψ )]M h ,11
3

11 11 22 22� (27)

β ν ρ= ( − )( − Ψ )M h 1 ,12
3

12 12� (28)
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β ν ρ ρ= [ ( − Ψ ) + − Ψ ]M h ,22
3

11 11 22 22� (29)

and we have included the normal and tangential surface tractions, p and αq  respectively, for 
completeness. Ω is the domain of the undeformed plate.

On solving equations (18)–(23) in the space of once-differentiable functions, the natural 
boundary conditions are the free boundary conditions (15)–(17). For pinned boundary conditions 
the space of admissible functions must in addition specify that = = = = = =∼ ∼ ∼v v w v v w 01 2 1 2  
on the plate boundary.

For clamped boundary conditions (for instance, in the example provided in the introduc-
tion) the right-hand sides of all six equations must be set to zero, in order to impose ∇ =w 0 
on the boundary without specifying (17) there also.

3.  Optimal control

While the previous section allows one to calculate the plate displacements subject to certain 
stimuli (growth fields, surface tractions, edge displacements), the key calculation from our 
viewpoint is to find what form of stimulus will give a desired property of the displacement 
field. Abstractly, we denote the stimuli as control variables d and the displacement and cur-
vatures as state variables u. Then the condition on the displacement field can be written as 
a minimization of a certain functional E ( )uD  of the state variables. Thus we obtain a PDE-
constrained optimization problem:

E ( ) ( ) =u u dcmin subject to  , 0
u d

i
,

D� (30)

for = …i m1, , . The equations ci   =   0 are the constraints, which comprise the FvK equations 
(18)–(23).

The problem (31) is ill-posed, since there will be many combinations of u and d that mini-
mize ED, and non-smooth solutions are often the most accessible to numerical methods. Thus 
a regularization term ES must be added to ED, so that some property of the control variables is 
minimized. Tikhonov regularization is a commonly-encountered example of this method. The 
optimization problem becomes

E Eη[ ( ) + ( )] ( ) =u d u dcmin subject to  , 0
u d

i
,

D S� (31)

for = …i m1, , . The parameter η is chosen as a trade-off between numerical well-posedness 
and adherence to the requirement that the target displacement be met.

3.1.  Application to edge-displacement problems

As an example of the situation that we envisage, consider a flat plate of arbitrary shape. The 
edges of the plate are clamped and are allowed to be displaced in-plane. In this situation the 
inverse problem to be solved is how to choose these edge displacements so that the interior is 
deformed into a given configuration. For example, consider a circular plate of radius 1. How 
should the clamped edges be deformed so that the center point of the plate attains a given 
vertical displacement, = *=w wr 0 ?

The theory of section 3 can be used to solve this problem—and other plate optimization 
problems—with certain modifications. The constraints to the problem are the FvK equa-
tions (18)–(23), with Γ = Ψ = 0 and = =αp q 0. The boundary conditions are clamped, so the 
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right-hand sides of (18)–(23) are set to zero. At the boundary we impose =v vi i
c and w   =   0 

(and = =∼ ∼v w 0i ), where vi
c are the prescribed edge displacements, used as control variables.

Finally we must specify an objective function. An appropriate form is E = ( − *)=w wrD 0
2 — 

but as we have seen, the problem is ill-posed without a regularization term ES. For this problem 
we set

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥E ∮= ∂

∂
+ ∂

∂∂Ω

v

s

v

s
sd .S

1
2

2
2

� (32)

Then the problem is solved by minimizing E Eη+D S—subject to the FvK equations with 
zero growth and clamped boundary conditions—by varying the state variables w, vi and the 
control variables vi

c.
In figure 1 we display the results of this optimization calculation for w*   =   0.3.

3.2.  Application to growing plates

We will now formulate an optimization problem for the growing plate—in other words, to 
determine the optimal growth strains that allow the plate to achieve a given target shape. We 
propose that the optimal solution should minimize the functional E E E= +D S, with the regu-
larization parameters to be introduced later. In this functional, ED is a measure of the distance 
between the deformed plate and the target shape and ES is a regularization term which has the 
effect of smoothing the growth fields. In general the solution will therefore comprise a balance 
between closeness to the target shape, and spatial smoothness of the growth fields.

The Fréchet distance [25] and Hausdorff distance [26] are general measures of the distance 
between two surfaces in three dimensions. However, if the target is known as an analytic func-
tion, simpler formulations are possible.

If the target shape and plate deformations are axisymmetric or otherwise one-dimensional, 
we can make use of the following scaled arclength implementation. Consider a 1D plate of 
length 1, with a target shape z   =    f (x) for ∈ ( )x x0, max . Then the parametric definitions of the 
curves traced out by the deformed plate (under in-plane displacement v and normal displace-
ment w) and the target shape are respectively

( + ( ) ( )) ∈ ( )X v X w X X, for  0, 1 ,� (33)

( ( )) ∈ ( )x f x x x, for  0, .max� (34)

Figure 1.  The output of the example optimization procedure, with a given vertical 
displacement w*   =   0.3 at the plate center achieved by solving for the plate edge 
displacements. Plate thickness h   =   0.11, Poisson ratio ν = 0.3 and regularization 
parameter η = 0.01.

G W Jones and L Mahadevan﻿Nonlinearity 28 (2015) 3153



3161

The arclengths of the curves are then

∫( ) = [( + ( )) + ( ) ] = ( )′ ′S X v X w X X S S1 d , 1 ,
X

0

2 2 1/2
max� (35)

∫( ) = [ + ( ) ] = ( )′s x f x x s s x1 d ,
x

0

2 1/2
max max� (36)

respectively. These can be inverted to give ( )X͠ S , ( )∼x s , and thus the deformed and target shapes 
parametrized by arclength:

( ( ) + ( ( )) ( ( ))) ∈ ( )͠ ͠ ͠X S v X S w X S S S, for  0, ,max� (37)

( ( ) ( ( ))) ∈ ( )∼ ∼x s f x s s s, for  0, .max� (38)

We can then define a distance function D by scaling S and s to provide a correspondence 
between these two parametrizations: let

D σ σ σ σ

σ σ σ

( ) = [ ( ) + ( ( )) − ( )]

+ [ ( ( )) − ( ( ))] ∈ ( )

∼

∼

͠ ͠

͠
X S v X S x s

w X S f x s for 0, 1 ,

arc 2
max max max

2

max max
2

� (39)

and define

E D∫η σ σ= ( ) dD
arc

D
0

1
arc 2� (40)

for some tunable parameter ηD.
In the more general two-dimensional case, if the target shape is given as an elevation—i.e. 

z   =    f (x, y) in Eulerian components—then we may write the distance between the deformed 
plate and the target as

D = ( ) − ( + ( ) + ( ))w X Y f X v X Y Y v X Y, , , , ,1 2� (41)

and minimize D∫ ∫η
Ω

XdD
2 2 . Note however that we must impose an additional constraint that 

the boundary of the undeformed plate must be mapped to the boundary of the target shape. 
This can be achieved by adding a term EE to the objective function, which is a measure of 
the distance between these two boundaries and can be calculated using the arclength method 
described above. Specifically, if 0 ⩽ θ < 2π, and

θ θ( ( ) ( ) )X Y, , 0 ,b b� (42)

θ θ θ( ( ) ( ) ( )) := ( + ( ) + ( ) ( ))x y z X v X Y Y v X Y w X Y, , , , , , , ,b
d

b
d

b
d

b 1 b b b 2 b b b b� (43)

θ θ θ( ( ) ( ) ( ))x y z, ,b b b� (44)

are the parametric representations of the undeformed, deformed, and target boundaries respec-
tively, then by analogy with (36),

∫θ θ θ θ θ π( ) = ( ( ) + ( ) + ( ) ) = ( )′ ′ ′
θ

S x y z S Sd , 2 ,
0

b
d 2

b
d 2

b
d 2 1/2

max� (45)

∫θ θ θ θ θ π( ) = ( ( ) + ( ) + ( ) ) = ( )′ ′ ′
θ

s x y z s sd , 2 .
0

b
2

b
2

b
2 1/2

max� (46)
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Invert these to give θ ( )SS  and θ ( )ss , and thus the deformed and target shapes parametrized 
by arclength:

θ θ θ( ( ( )) ( ( )) ( ( )))x S y S z S, , ,b
d

S b
d

S b
d

S� (47)

θ θ θ( ( ( )) ( ( )) ( ( )))x s y s z s, , .s s sb b b� (48)

Then

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

E {
}

∫η θ σ θ σ θ σ θ σ

θ σ θ σ σ

= ( ( )) − ( ( )) + ( ( )) − ( ( ))

+ ( ( )) − ( ( ))

x S x s y S y s

z S z s d ,

s s

s

E E
0

1

b
d

S max b max
2

b
d

S max b max

2

b
d

S max b max
2

�

(49)

and E D E∫ ∫η= +
Ω

XdD D
2 2

E.

The regularization term ES noted earlier is given by

⎡
⎣⎢

⎤
⎦⎥E ∫ ∫ η η

= Γ Γ + Ψ Ψαβ γ αβ γ αβ γ αβ γ
Ω

Γ Ψ X
2 2

d ,S , , , ,
2� (50)

where ηΓ and ηΨ are tunable parameters. This objective function embodies the principle that 
the gradients of the growth strains in the optimal solution should be as small as possible. (For 

isotropic growth the regularizing term becomes η η∇ ∇∣ Γ∣ + ∣ Ψ∣Γ Ψ
2 2.) One practical reason for 

this restriction on the growth strains is that if we were to experimentally verify the solutions 
obtained by the optimization process, we would want the solution to be as insensitive as pos-
sible to manufacturing errors, which would be hard to achieve if Γαβ and Ψαβ varied rapidly 
across the undeformed plate.

It would be interesting to see how regularization terms such as the ℓ1 norm can exploit 
compressed sensing theory to search for compactly-supported or piecewise-smooth control 
variables Γαβ, Ψαβ [27], though this is beyond the scope of the current article.

The minimization of E will be subject to the constraint that the control variables Γαβ, Ψαβ 
and state variables ραβ, w, and αv  satisfy the modified Föppl–von Kármán equations (18)–(23), 
in the appropriate function spaces (surface tractions p, αq  are set to zero).

Thus the optimization problem can be stated as follows:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥E ∫ ∫ η η

+ Γ Γ + Ψ Ψ
ρ

αβ γ αβ γ αβ γ αβ γ
Γ Ψ Ω

Γ Ψ

αβ αβ α αβ

Xmin
2 2

d
v w, , , ,

D , , , ,
2� (51)

subject to the FvK equations (18)–(23).
In section 4 we will outline some numerical solutions of the optimization problem (51), 

first in its full two-dimensional implementation, followed by simplified one-dimensional situ-
ations, namely a beam and an axisymmetric target shape. Following this we will discuss a 
semi-analytic approach, where growth leading to simple target shapes can give rise to soft 
deformation modes.
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4.  Results: full two-dimensional shapes

To solve (51), we need to discretize the variables. To this end, the space of admissible solutions 
to (18)–(23) is approximated by the space of piecewise affine functions, and the domain Ω is 
triangulated (for our calculations we used the DistMesh routine [28]). To simplify calculations in 
this section, the domain Ω is a circle of radius 1, the thickness h is set to 1 and growth is isotropic 
( δΓ = Γαβ αβ, δΨ = Ψαβ αβ). The control variables Γ, Ψ and the state variables w, v1, v2, ρ11, ρ12, ρ22 
are all set to be piecewise affine over each triangle element, so that the function values at each 
node of the triangulation become the discrete variables to be solved for, as in the standard linear 
finite element approach. We used the sparse SQP solver e04vh of the NAG toolbox, based on the 
software package SNOPT [29]. This algorithm is well suited to such discrete numerical nonlinear 
optimization problems, and may be accessed through an interface to the numerical analysis pack-
age MATLAB. For a more thorough overview of the numerical procedure, refer to appendix A.

In figure 2, we plot the result for a monkey saddle target shape, which has an elevation 
profile of = ( − )z x x y0.2 32 2 , and h   =   1, ν = 0.3, β = −10 3, η η =Γ / 0.01D , η η =Ψ/ 0.01D , 
η η =/ 10E D . We see clearly that the dominant factor in the solution is Γ, which is an order of 
magnitude greater than Ψ. Furthermore, Γ is positive at the boundary of the disk but negative 
in the interior. This result tallies with previous results [8, 30] which predict that excess growth 
at the boundary of the disk will cause ripples there, since the residual stress caused by the 
growth is relieved by buckling out of the plane.

5.  Results: one-dimensional growth

We can gain a greater understanding of the optimization results by considering a simplified 
geometry. The first example we present is of one-dimensional growth in a beam, where we set

Figure 2.  Results of the optimization procedure for a monkey saddle target shape, 
showing the distribution of (a) in-plane growth Γ, and (b) active curvature change Ψ in 
the solution. The target shape is shown in (c).
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⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Γ = Γ Ψ = Ψ

αβ αβ
0

0 0
, 0

0 0
� (52)

and assume all quantities are independent of the Cartesian coordinate Y. We imposed a target 
shape π= ( )z x0.1 sin , ⩽ ⩽x0 1, and considered two sets of boundary conditions. In the first 
case both sides are pinned: the displacements are fixed and a zero moment is applied. In the 
second case the tractions and moments at the edges are set to zero. The right-hand side is at 
X   =   1 because the distances have been nondimensionalized.

Due to the one-dimensional nature of the beam, ED
arc is well-defined, and hence so is the 

objective function E in (51). The FvK equations (18)–(23) are imposed as constraints with 
h   =   1. However, the simplified geometry allows us to reduce the problem to solving for 
v   =   v1 and = ( )′u w X  as piecewise affine (linear) functions over the domain, through the weak 
form equations

⎛
⎝
⎜

⎞
⎠
⎟∫ + − Γ =

∼v
X

v

X

u
X

d

d

d

d 2
d 0,

0

1 2

� (53)

⎜ ⎟
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠
⎤

⎦
⎥∫ β+ − Γ + − Ψ =∼ ∼

uu
v

X

u u

X

u

X
X

d

d 2

d

d

d

d
d 0,

0

1 2

� (54)

solved for all admissible variations ∼v , ∼u. The normal displacement is found by integrating u. 
Free boundary conditions are the natural boundary conditions while pinned boundary condi-
tions are set by the imposition of the additional constraint that w(1)   =   0.

We performed sample calculations for β = −10 4, and for η ηΓ / D, η ηΨ/ D both ranging over 
10−7–10−3. Graphs of the objective function E η/ D as a function of η ηΓ / D and η ηΨ/ D are dis-
played in figures 3(b) and (c) for both pinned and free boundary conditions. Inspecting the 
surface plots, one can see a general trend, where the objective function E η/ D is independent of 
the regularization parameter η ( η η= Γ / D or η ηΨ/ D) if η is large, and that E η/ D behaves seemingly 
linearly with η as η → 0.

This behavior reflects a transition between two regimes, where for η ≪ 1 the regularization 
term Eη S dominates the objective function (the optimization therefore prioritizing the close-
ness of the solution to the target), and for large η the main term ED dominates (the optimiza-
tion therefore prioritizing smoothness of the control variables). An illustrative analysis for a 
general quadratic optimization problem is carried out in appendix B. This behavior would not 
necessarily persist if a different regularization term (such as the ℓ1 norm) were used.

The distributions of Γ and Ψ over ∈ ( )X 0, 1  are displayed in figures  3(d) and (e), for 
pinned and free conditions respectively. We choose the representative values of η η=Γ

−10 6
D, 

η η=Ψ
−10 5

D, to enforce the condition η η η≫ ≫Ψ ΓD . The reason for this choice is firstly to 
ensure that matching to the target shape is given the most weight, and secondly to penalize 
changes in Ψ more than changes in Γ, since we speculate that it is simpler to experimentally 
control Γ than Ψ.

The main difference between the solutions using different boundary conditions is that both 
the growth strains Γ and Ψ are larger if the edges are free. This is because in the pinned case, 
the plate can leverage the fixed displacements at the edges to buckle out of plane into the tar-
get shape, whereas with the free boundary condition the structure does not have this freedom 
(at least in one dimension) and must actively bend through Ψ to achieve the shape. Indeed, 
solving the FvK equations directly with the calculated solution in figure 3(d) yields a bistable 
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configuration characteristic of buckling: the plate can achieve both the target shape and an 
inverted solution, much like an Euler column (although in this case the two states have differ-
ent energies, due to the asymmetry introduced through Ψ). This bistability is absent on using 
the solution in figure 3(e).

6.  Results: axisymmetric target shapes

For axisymmetric target shapes, all quantities are presupposed to depend on the radial coordi-
nate = +R X Y2 2 only. Beginning with a flat disk of radius 1 (in dimensionless coordinates), 
we apply an isotropic growth field Γ( )R , Ψ( )R . Zero-traction conditions are applied on the 
outer rim of the disk. Given our experience of one-dimensional growth, we would thus expect 
Ψ to play a greater role than Γ in shaping the plate. We will also, however, repeat the calcula-
tions while holding Ψ = 0 to see if the shapes are attainable through changes in metric alone.

The target shape z   =    f (r) is achieved by minimizing E E+D S as before; the arclength func-
tional (39) is used, using the cross-section of the deformed plate along the meridian θ = 0, 
without loss of generality. We perform calculations for two separate target shapes, which are 
displayed in figures 4(c) and (d):

π( ) = ( ) = ( − )f r r f r r0.1 , 0.05 1 cos ,1
2

2� (55)

for ⩽ ⩽r0 1. The Gaussian curvature of a surface defined by z   =    f (r) can be shown to be 
″( ) ( ) ( + ( ) )′ ′−r f r f r f r/ 11 2 2. As such, profile 1 has a positive Gaussian curvature at all points, 

while the other profile consists of a central region of positive Gaussian curvature surrounded 
by a region of negative Gaussian curvature.

Figure 3.  Plot (a): visualization of the target shape π=z x0.1 sin . Plots (b), (c): surface 
plots of the scaled objective function E η/ D as a function of the scaled parameters η ηΓ/ D 
and η ηΨ/ D, for (b) pinned and (c) free boundary conditions. Plots (d), (e): Distributions 
of Γ (—) and Ψ (----) over ∈ ( )X 0, 1 , for (d) pinned and (e) free boundary conditions.
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As in section 5, there is a simplified weak form system for the solution of such axisym-
metric problems. Where = ( )′u w R , we solve the following for all admissible variations ∼u, ∼v:

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥

∫ ν ν

ν ν ν
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v
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d 2
1 d 0,
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(56)

⎜ ⎟ ⎜ ⎟
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(57)

The distributions of Γ and Ψ for the two profiles are displayed in figure 4, allowing Ψ to 
vary (c) and (d) and setting it to zero (e) and (f). In each case, β = −10 4. We can clearly see 
that increasing η η η η η= =Γ Ψ/ /D D makes the distributions of Γ and Ψ smoother, and this is 
particularly noticeable when we impose Ψ = 0. The greatest difference between the solutions 
with and without the assumption Ψ = 0, is that if Ψ ≠ 0 then the solutions are almost entirely 

Figure 4.  Plots (a), (b): the two target profiles used in the axisymmetric calculations. 
Plots (c)–(f): distributions of Γ (—) and Ψ (----) for profiles 1 (c), (e) and 2 (d), (f), with 
η η η η η= =Γ Ψ/ /D D. Ψ is allowed to vary in plots (c), (d); Ψ is set to zero for plots (e), 
(f). Inset: legend for plots (c)–(f).
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due to a constant Ψ field: as we had predicted, the free boundary conditions mean that the 
plate needs to actively bend to the desired shape. It is interesting to compare the constant Ψ 
results for both profile shapes. For the paraboloidal profile 1, the change of curvature term  
Ψ is positive, while for profile 2 it becomes negative. We would expect the negative constant Ψ 
to also give a paraboloidal shape, but it transpires that this state is bistable: a mechanical ever-
sion gives rise to the desired profile 2. On the other hand, if Ψ is set to zero, then the negative 
Gaussian curvature at the rim of profile 2 is introduced by increasing the growth strains here.

7.  A semi-analytic application

Liang and Mahadevan [7] analyzed modified versions of the equations (6)–(7) in order to 
demonstrate how a blooming flower can be regarded as a mechanical phenomenon caused 
by buckling due to differential growth strains. This analysis was enabled by analyzing a 
simplified shell geometry considered representative of the actual petal shape. Mansfield 
[18] also investigated this system—a circular plate with zero Γαβ and constant isotropic 

δΨ = Ψαβ αβ due to an applied temperature gradient—and showed that initially the deformed 
plate was a spherical cap. However, at a certain critical value of Ψ, this solution became 
unstable and bifurcated to a nonsymmetric shape similar to a section of a cylinder. This 
result illustrates the phenomenon of a soft mode, or a zero-stiffness deformation mode. 
Specifically, while the deformation field is nonaxisymmetric, the underlying mechanical 
properties of the material (undeformed shape, stiffness, growth fields) are independent of 
angle (i.e. axisymmetric). Thus the same non-axisymmetric deformation, rotated by an arbi-
trary angle, is also a solution of the system, with the same stored energy, and constitutes 
a soft mode (analogous to the Nambu-Goldstone mode in field theory and most recently 
shown to be relevant for near isometries in thin elastic shells [31]). The ability of such struc-
tures to change shape without the requirement of large energy input has given them both 
theoretical and practical importance, with applications ranging from actuators to deployable 
structures [32].

Mansfield’s bifurcation was reproduced experimentally by Lee et al [33], where a flat disc 
comprising two layers of unequal thermal expansion coefficient was heated, corresponding 
to the imposition of a constant field Ψ was imposed. Under a large enough temperature, the 
initially axisymmetric shape buckled to Mansfield’s nonaxisymmetric soft mode. Other soft 
modes have also been developed experimentally, notably by Guest et al [34], who created a 
zero-stiffness elastic shell by plastically deforming a metallic plate to a shell with a cylindri-
cal geometry.

Taking Mansfield’s work as our starting point, we will simplify the normal displacements 
and growth functions to be quadratic functions of position, and use our optimization technique 
to solve for the coefficients of these functions, rather than for their full pointwise distribution. 
We will show that the near-cylindrical geometry of Mansfield is not the only soft mode achiev-
able by the application of axisymmetric growth functions. These solutions are a special case 
of the solutions found by Seffen and Maurini [23]; our results emphasize the neutrally-stable 
nature of the deformations.

The first difficulty one encounters when performing an analysis on such a simplified 
deformation ansatz is that the boundary conditions will not, in general, be satisfied. To rem-
edy this we must assume a specific form for the variable thickness. In particular, if the plate is 
circular, with radius 1, set the thickness to be h   =   1  −  R2. Because of the dependence of the 
bending and stretching stiffnesses B and D on h, we find that the in-plane stress resultants and 
moment resultants tend to zero as →R 1, so that the boundary conditions are now automati-
cally satisfied. Additionally, with simple forms of the dependent variables, a solution may be 
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found to the FvK equations (6) and (7). For instance, for a circular plate of (dimensionless) 
radius 1, set

= − − = −h x y R1 1 ,2 2 2� (58)

χ = Γ = Γ + Γ Ψ = Ψ + Ψkh R R, , ,3
0 2

2
0 2

2� (59)

κ κ κ θ κ θ= + = ( + )w X Y R cos sin ,1
2

2
2 2

1
2

2
2� (60)

where we have assumed isotropic growth. We have hereby reduced the problem to determin-
ing the seven constants Γ0, Γ2, Ψ0, Ψ2, k, κ1, and κ2 by minimizing the objective function E sub-
ject to the FvK equation constraints. Considering the constraints first, the stress-free boundary 
conditions for this system are satisfied automatically. On substituting (58)–(60) into the FvK 
equations (6) and (7), we obtain the following relations between the coefficients:

ν ν κ κ ν( + ) + Γ ( − ) + ( − ) =k6 7 1 1 0,2
2

1 2
2� (61)

κ κ β ν( − )( + ( − )) =k 1 0,2 1� (62)

β ν κ κ β ν( + )Ψ + ( + )( − ( + )) =k1 1 0,0 1 2� (63)

Ψ = 0.2� (64)

The remaining three degrees of freedom are set by minimizing the objective function E. 

Since Ψ = 02 , ∇ Ψ = 0 and hence E ∫ ∫η πη∇= Γ = ΓΓ ΓXd 2S
2 2

2
2. However, for this applica-

tion the smoothness of Γ is not relevant and we set η =Γ 0, so that E E= D.
To calculate ED, we need the full displacement field, including the in-plane displacements 

vR in the radial direction and θv  in the circumferential direction. These are given by

θ κ κ θ

κ κ θ ν
ν

( ) = Γ − ( − ) ( + )

+
( − )

+ ( ( − ) + − )
−

v R R
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θ
κ κ θ κ κ θ( ) =

( − )
+ ( − )

θv R
R R
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sin 2
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12
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2
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1 2
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� (66)

The expression for θv  does not lend itself well to a simple distance function which may be 
integrated over the area of the circular plate. However, we may approximate a distance func-

tion by calculating the arclength distance measure (43) for θ π= π π0, , ,
2

3

2
 (which is where 

=θv 0), and summing the results:

E E E E E= + + +θ θ π θ π θ π= = = = .D D
arc

0 D
arc

/2 D
arc

D
arc

3 /2� (67)

We can now state the optimization problem for this simplified formulation (F1): Choose Γ0, 
Γ2, k, κ1, κ2, Ψ0 that minimize ED, subject to equations (61)–(63).

We will now illustrate this method by considering the growth patterns required to trans-
form the circular plate to the targets outlined earlier. We consider an axisymmetric profile 

λ= ( + )z x y2 2 , a cylindrical profile λ=z x2 (as an approximation to Mansfield’s bifurcated 
solution) and a saddle geometry λ= ( − )z x y2 2 .
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Substituting these target shapes into the optimization procedure will output the values of 
the constants. However, by exploiting symmetry to write κ2 in terms of κ1, we can find Ψ0, Γ2 
and k in terms of κ1 from (61)–(63), and then Γ0 and κ1 are calculated by minimizing the dis-
tance functional ED.

For the paraboloid of revolution λ= ( + )z x y2 2 , κ κ=2 1 and equation  (62) is automati-
cally satisfied. The optimization thus has an extra degree of freedom. However, the solution 
obtained has Ψ0 much greater than both Γ0 and Γ2, making it comparable with Mansfield’s 
original solution with Γ = 0. In fact, setting Γ = 02  we obtain his result exactly:

κ
κ ν
β ν

Ψ = +
( − )
( + )

2
1

3 7
.0 1

1
3

� (68)

However this result, as noted previously, becomes unstable when β ν νΨ > ( + ) ( + )96 7 / 10
2 3. 

Figure 5 displays the bifurcation diagram for the parameters κ1, κ2 as Ψ0 varies.
For those cases where the Ψ0-only solution is unstable, we can still find a paraboloidal solu-

tion by setting Ψ = 00 ; by subsequently solving (61)–(63) we obtain Γ2. In summary:

κ β ν
ν

Γ = − − ( + )
−

Ψ =6 7

1
, 0.2 1

2
0� (69)

In both cases, Γ0 and κ1 are found by minimizing ED. Note the similarity between these 
results and those of section 6, where a paraboloidal bowl was found for Ψ = constant, or for 
Ψ = 0 and an in-plane growth which may be approximated by Γ = Γ − Γ R0 2

2, as here.
For a cylindrical target shape, κ = 02  (as opposed to Mansfield’s bifurcated solution, which 

had both κ1 and κ2 positive). We can achieve this shape by solving (61)–(63) to give

β ν ν κ νΓ = ( + ) ( + ) Ψ = ( + )6 7 / 1 , 2 / 1 ,2 0 1� (70)

with Γ0 and κ1 again solved for by optimization of the distance functional.
Finally a saddle shape where κ κ= −2 1 can be found in the same manner: this time

κ β ν νΓ = + ( + ) ( + ) Ψ =6 7 / 1 , 0.2 1
2

0� (71)

Plots of all three deformed plates can be seen in figure 6.

Figure 5.  The bifurcation problem described by Mansfield [18]. As Ψ0 increases past a 
critical value, the axisymmetric solution (κ κ=1 2) becomes unstable, and a solution with 
κ κ≠1 2 emerges. Plots are for ν = 0.3 and β = −10 3.
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8.  Conclusions and extensions

In this article we have outlined a new approach to determining the optimal distribution of 
growth stresses that transform a flat plate into a specified target shape. Not only have we cal-
culated the solution for non-symmetric and for simplified one-dimensional geometries (sec-
tions 4–6), but qualitative results have been obtained using a semi-analytic approach (section 
7), and have been used to show that an axisymmetric growth pattern can be used to produce a 
structure which exhibits soft mode deformations.

Possible extensions to this theory include curved initial geometries (shells), the relaxa-
tion of the small-growth-strain assumptions (leading to more strongly nonlinear equations), 
and the use of different control variables, such as edge displacements or surface tractions. 
We believe that this approach will prove useful for researchers who wish to engineer plate 
deformations into a desired shape. Indeed, in work that was started after the current work, but 
submitted earlier, one of us used a similar method to optimize the shape of graphene sheet 
[23] to obtain a desired electromechanical output. Other examples where we believe that our 
approach might be useful includes the engineering of tissues for cardiac valves [36], soft 
actuators and stimulus-responsive plates and shells [37].

However the main benefit of our method is that it serves as a framework on which different 
systems can be modeled. The question of designing deformed shapes by applying internal or 
external stimuli is an important and little-studied area, in contrast to classical shape optimiza-
tion, which seeks to design the shape of a domain in order to optimize the solution to an equa-
tion calculated on that domain. The main difficulty in extending our results to the optimization 
of deformed fully-three-dimensional shapes, for instance, is the prescription of an appropriate 
and convenient shape-matching term ED in the objective function, though we do not foresee 
this to be an insurmountable problem.

It is our hope that we have demonstrated the utility of the method for optimizing growth-
induced plate deformations, and its potential as a general method for programming deforma-
tions through controllable stimuli.

Figure 6.  Plots of the deformed plates under growth strains Γ = Γ + Γ R0 2
2, Ψ = Ψ0, 

where the coefficients are chosen to satisfy the minimization problem (F1). The target 
shape z   =    f (x, y) and specific expressions for Γ2, Ψ0 are given as follows: (a) Paraboloidal 
target, λ( ) = ( + )f x y x y, 2 2 , equations  (69); (b) cylindrical target, λ( ) =f x y x, 2, 
equations (70); (c) saddle-shaped target, λ( ) = ( − )f x y x y, 2 2 , equations (71).
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Appendix A. Two-dimensional growth optimization solution procedure

Here we outline the solution procedure for the problem described in section 4. For this, the 
equations (18)–(23) require discretization. The state variables w, v1, v2, ρ11, ρ12, ρ22 and control 
variables Γ, Ψ are defined in terms of their values at N points forming the nodes of a triangula-
tion of the domain Ω. The triangulation enables the generation of basis functions ϕ ( )X Y,i  for 

each node = …i N1, , , so that (for instance) the out-of-plane displacement is approximated by 

ϕ≈ ∑ =w wi
N

i i1 .
This allows the six weak form PDEs (18)–(23) to be rewritten as 6N algebraic equations in 

terms of the nodal values of the variables.
Computational procedure:

	 (i)	Express the outline of the initial ungrown plate as a parametric representation 
θ θ( ( ) ( ))X Y,b b .

	 (ii)	Express a target surface g(x, y, z)   =   z  −   f (x, y) for the grown plate, together with a target 
boundary θ θ θ( ( ) ( ) ( ))x y z, ,b b b .

	(iii)	Calculate ( ( ( )) ( ( )) ( ( )))θ σ θ σ θ σx s y s z s, ,s s sb max b max b max  from (48) for a fine mesh of σ ∈ [ ]0, 1 .
	(iv)	Use θ θ( ( ) ( ))X Y,b b  to find a triangulation of the source domain Ω.
	 (v)	For each node i in the triangulation, calculate the basis functions ϕ ( )X Y,i .
	(vi)	Initialize the state and control variables to be zero at each node.
	(vii)	Main solution routine. The optimization routine e04vh calculates the optimal yj 

( = …j m1, , ) such that ( )F yj1  is minimized subject to ⩽ ( ) ⩽F F y Fi i j i
min max for = …i n2, , . 

In our case the number of equations n  −  1 is 6N, and the number of variables m is 8N.

		 (a) � Limits: Set =F 0i
min  for each = … +i N1, , 6 1, = ∞F1

max , and =F 0i
max  for each 

= … +i N2, , 6 1.
		 (b) � Subroutine: calculate Fi given yj.

	 (1)	� The input vector yj is the concatenation of the values of v1, v2, w, ρ11, ρ12, ρ22, Γ, 
and Ψ at each node in the triangulation.

	 (2)	� Use the triangulation geometry and basis functions ϕi to calculate the gradients of 
each of these variables in each triangle (by construction, they will be piecewise 
constant in each triangle).

	 (3)	� Calculate the value of D = ( + + )g X v Y v w, ,2
1 2

2 at each node in the triangula-

tion, and use this to calculate D∫ ∫η
Ω

XdD
2 2 .

	 (4)	� Find the boundary of the deformed mesh, and calculate

( ( ( )) ( ( )) ( ( )))θ σ θ σ θ σx S y S z S, ,k k kb
d

S max b
d

S max b
d

S max� (A.1)

			�  for each point k corresponding to a boundary node. Use this together with the 
previously calculated

( ( ( )) ( ( )) ( ( )))θ σ θ σ θ σx s y s z s, ,s s sb max b max b max� (A.2)
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			  for these σk to calculate EE from (49).

	 (5)	 Use the gradients of Γ and Ψ to calculate ES.
	 (6)	� Combine the previous three integrals to calculate the objective function, and set 

F1 to be this value.
	 (7)	� Calculate the 6N discretized weak form equations, and set these to be the con-

straints … +F F, , N2 6 1.

	(viii)	 Output state and control variables and plot results.

Appendix B.  Objective function behavior as η varies

In section 5 it was noted that the objective function behaved approximately linearly with the 
regularization parameter η if η ≪ 1, and was independent of η if η were large.

To understand this behavior, consider the quadratic programming problem

∥ − ∥ + =Mu p Au Bd fmin
1

2
subject to  .

u d,
2� (B.1)

In this problem, ∥ − ∥Mu p1

2 2 corresponds to the target-matching objective ED, and 

+ =Au Bd f  to the constraint equations (the Föppl–von Kármán equations). The state vari-
ables are u and the control variables are d (corresponding to plate displacement, and growth 
terms Γ,Ψ respectively). The terms ∈u nR , ∈d mR , ∈f nR , ∈p nR  are vectors, and ∈ ×M n nR , 

∈ ×A n nR , ∈ ×B n mR  are matrices. The norm is given by ∥ ∥ =v v vT
2 .

If this problem were ill-posed, we would introduce a regularization term:

⎡
⎣⎢

⎤
⎦⎥

η η
∥ − ∥ + ∥ ∥ + =Mu p Rd Au Bd fmin

2 2
subject to  .

u d,

D
2

S
2� (B.2)

Here R is an ×m m matrix that captures the nature of the regularization (if could be a dis-
cretization of a differential operator, for instance, if we wanted to promote smooth solutions). 
For the purposes of this analysis we assume that both M and R are invertible.

To solve this system we introduce Lagrangian multipliers λ ∈ nR , and solve

⎡
⎣⎢

⎤
⎦⎥λ

η η
∥ − ∥ + ∥ ∥ + ( + − )

λ
Mu p Rd Au Bd fmin

2 2u d

T

, ,

D
2

S
2� (B.3)

We obtain the linear system

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥λ

η
η

η
=

M M O A

O R R B
A B O

u
d

M p
O
f

,

T T

T T

T
D

S

D
� (B.4)

where O is an appropriately-sized zero matrix. This system can be solved using Aitken’s block 
diagonalization formula [38], which implies that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥= −

−C D
D O

I O
DC I

C O
O S

I C D
O I

,
T T

1

1
� (B.5)

where I is an appropriately-sized identity matrix, = − −S DC DT1 , and
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η
η

= = [ ]C
M M O

O R R
D A B, .

T

T
D

S

� (B.6)

Solving the system, we eventually obtain

η η

η

− = − (

+ ) ( − )

− − − − −

− − − − −

Mu p M A AM M A

BR R B AM p f

T T T T

T T

D
1

D
1 1

S
1 1 1 1

� (B.7)

η η

η

= − (

+ ) ( − )

− − − − −

− − − − −

Rd R B AM M A

BR R B AM p f .

T T T T

T T

S
1

D
1 1

S
1 1 1 1

� (B.8)

Now let η η η= /S D, and look in the limit η → 0. We find

η η− = − ( ) ( − ) + ( )− − − − −Mu p M A BR R B AM p f O ,T T T T1 1 1 2� (B.9)

η= − ( ) ( − ) + ( )− − − − −Rd R B BR R B AM p f O ,T T T T1 1 1� (B.10)

E η η η=∥ − ∥ + ∥ ∥ = ( )
η η( ) ( )

Mu p Rd O/ .
O O

D 2 2
2

� ����� ����� � ��� ���� (B.11)

In this limit the objective function behaves linearly with variations in η, and is dominated 
by the regularization term (indicating that the optimization has prioritized closeness to the 
solution = −u M p1 ).

In the limit η → ∞, we find

η− = − ( ) ( − ) + ( )− − − − − −Mu p M A AM M A AM p f O ,T T T T1 1 1 1� (B.12)

η η= − ( ) ( − ) + ( )− − − − − − −Rd R B AM M A AM p f O ,T T T T1 1 1 1 2� (B.13)

� ����� ����� � ��� ���E η η=∥ − ∥ + ∥ ∥ = ( )
η( ) ( )−

Mu p Rd O/ 1 .
O O

D 2

1

2
1

� (B.14)

In this limit the objective function does not vary (to leading order) with η, and it is domi-
nated by the ∥ − ∥Mu p 2 term, indicating that the optimization has prioritized the regularity of 
the control variables.

A similar behavior is seen in the nonlinear system, as evidenced by figures 3(b) and (c), 
though with the transition occurring while η was still less than 1. We speculate that this is due 
to the properties of the gradient operator in ES (corresponding to a matrix R with a large spec-
tral norm). We also expect that the exactly linear behavior as η → 0 is a consequence of the 
linearity of the system. For fully nonlinear problems such as those under consideration in the 
paper it is likely that the power-law in the small-η limit will be quite different.

References

	 [1]	 Love  A  E  H 1927 A Treatise on the Mathematical Theory of Elasticity 4th edn (Cambridge: 
Cambridge University)

	 [2]	 Bock I, Hlaváček I and Lovíšek J 1984 Appl. Math. 29 303–14
	 [3]	 Bock I, Hlaváček I and Lovíšek J 1985 Appl. Math. 30 375–92

G W Jones and L Mahadevan﻿Nonlinearity 28 (2015) 3153



3174

	 [4]	 Gunzburger M D and Hou L S 1996 SIAM J. Control Optim. 34 1001–43
	 [5]	 Sharon E and Efrati E 2010 Soft Matter 6 5693–704
	 [6]	 Liang H and Mahadevan L 2009 Proc. Natl Acad. Sci. USA 106 22049–54
	 [7]	 Liang H and Mahadevan L 2011 Proc. Natl Acad. Sci. USA 108 5516–21
	 [8]	 Klein Y, Efrati E and Sharon E 2007 Science 315 1116–20
	 [9]	 Kim J, Hanna J A, Byun M, Santangelo C D and Hayward R C 2012 Science 335 1201–5
	[10]	 Kempaiah R and Nie Z 2014 J. Mater. Chem. B 2 2357–68
	[11]	 Wei Z, Jia Z, Athas J, Wang C, Raghavan S R, Li T and Nie Z 2014 Soft Matter 10 8157–62
	[12]	 Dias M A, Hanna J A and Santangelo C D 2011 Phys. Rev. E 84 036603
	[13]	 Lewicka M, Mahadevan L and Pakzad M R 2011 Proc. R. Soc. A 467 402–26
	[14]	 Efrati E, Sharon E and Kupferman R 2009 J. Mech. Phys. Solids 57 762–75
	[15]	 Dervaux J, Ciarletta P and Ben Amar M 2009 J. Mech. Phys. Solids 57 458–71
	[16]	 Goriely A and Ben Amar M 2007 Biomech. Model. Mechanobiol. 6 289–96
	[17]	 Jones G W and Chapman S J 2012 SIAM Rev. 54 52–118
	[18]	 Mansfield E H 1962 Proc. R. Soc. A 268 316–27
	[19]	 Mansfield  E  H 1989 The Bending and Stretching of Plates 2nd edn (Cambridge: Cambridge 

University)
	[20]	 Witten T 2007 Rev. Mod. Phys. 79 643–89
	[21]	 Bunch  J  S, Verbridge  S  S, Alden  J  S, van der Zande  A  M, Parpia  J  M, Craighead  H  G and 

McEuen P L 2008 Nano Lett. 8 2458–62
	[22]	 Pereira V M, Castro Neto A H, Liang H Y and Mahadevan L 2010 Phys. Rev. Lett. 105 156603
	[23]	 Jones G W and Pereira V M 2014 New J. Phys. 16 093044
	[24]	 Reinhart L 1982 Numer. Math. 39 371–404
	[25]	 Alt H and Buchin M 2010 Discrete Comput. Geom. 43 78–99
	[26]	 Aspert N, Santa-Cruz D and Ebrahimi T 2002 MESH: measuring errors between surfaces using the 

Hausdorff distance Proc. 2002 IEEE Int. Conf. on Multimedia and Expo pp 705–8
	[27]	 Ozoliņš V, Lai R, Caflisch R and Osher S 2013 Proc. Natl Acad. Sci. USA 110 18368–73
	[28]	 Persson P O and Strang G 2004 SIAM Rev. 46 329–45
	[29]	 Gill P E, Murray W and Saunders M A 2005 SIAM Rev. 47 99–131
	[30]	 Gemmer J and Venkataramani S C 2013 Soft Matter 9 8151–61
	[31]	 Santangelo C 2012 Soft Matter 9 8246–51
	[32]	 Tarnai T 2003 Int. J. Mech. Sci. 45 425–31
	[33]	 Lee H, Rosakis A J and Freund L B 2001 J. Appl. Phys. 89 6116–29
	[34]	 Guest S D, Kebadze E and Pellegrino S 2011 Mech. Mater. Struct. 6 203–12
	[35]	 Seffen K A and Maurini C 2013 J. Mech. Phys. Solids 61 190–204
	[36]	 Vesely I 2005 Circ. Res. 97 743–55
	[37]	 Yu C et al 2013 Adv. Mater. 11 1541–46
	[38]	 Aitken A C 1962 Determinants and Matrices 9th edn (Edinburgh: Oliver and Boyd)

G W Jones and L Mahadevan﻿Nonlinearity 28 (2015) 3153

http://dx.doi.org/10.1137/S0363012994262361
http://dx.doi.org/10.1137/S0363012994262361
http://dx.doi.org/10.1137/S0363012994262361
http://dx.doi.org/10.1039/c0sm00479k
http://dx.doi.org/10.1039/c0sm00479k
http://dx.doi.org/10.1039/c0sm00479k
http://dx.doi.org/10.1073/pnas.0911954106
http://dx.doi.org/10.1073/pnas.0911954106
http://dx.doi.org/10.1073/pnas.0911954106
http://dx.doi.org/10.1073/pnas.1007808108
http://dx.doi.org/10.1073/pnas.1007808108
http://dx.doi.org/10.1073/pnas.1007808108
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1126/science.1215309
http://dx.doi.org/10.1126/science.1215309
http://dx.doi.org/10.1126/science.1215309
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/C4SM01299B
http://dx.doi.org/10.1039/C4SM01299B
http://dx.doi.org/10.1039/C4SM01299B
http://dx.doi.org/10.1103/PhysRevE.84.036603
http://dx.doi.org/10.1103/PhysRevE.84.036603
http://dx.doi.org/10.1098/rspa.2010.0138
http://dx.doi.org/10.1098/rspa.2010.0138
http://dx.doi.org/10.1098/rspa.2010.0138
http://dx.doi.org/10.1016/j.jmps.2008.12.004
http://dx.doi.org/10.1016/j.jmps.2008.12.004
http://dx.doi.org/10.1016/j.jmps.2008.12.004
http://dx.doi.org/10.1016/j.jmps.2008.11.011
http://dx.doi.org/10.1016/j.jmps.2008.11.011
http://dx.doi.org/10.1016/j.jmps.2008.11.011
http://dx.doi.org/10.1007/s10237-006-0065-7
http://dx.doi.org/10.1007/s10237-006-0065-7
http://dx.doi.org/10.1007/s10237-006-0065-7
http://dx.doi.org/10.1137/080731785
http://dx.doi.org/10.1137/080731785
http://dx.doi.org/10.1137/080731785
http://dx.doi.org/10.1098/rspa.1962.0143
http://dx.doi.org/10.1098/rspa.1962.0143
http://dx.doi.org/10.1098/rspa.1962.0143
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1021/nl801457b
http://dx.doi.org/10.1021/nl801457b
http://dx.doi.org/10.1021/nl801457b
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1088/1367-2630/16/9/093044
http://dx.doi.org/10.1088/1367-2630/16/9/093044
http://dx.doi.org/10.1007/BF01407870
http://dx.doi.org/10.1007/BF01407870
http://dx.doi.org/10.1007/BF01407870
http://dx.doi.org/10.1007/s00454-009-9152-8
http://dx.doi.org/10.1007/s00454-009-9152-8
http://dx.doi.org/10.1007/s00454-009-9152-8
http://dx.doi.org/10.1109/icme.2002.1035879
http://dx.doi.org/10.1109/icme.2002.1035879
http://dx.doi.org/10.1073/pnas.1318679110
http://dx.doi.org/10.1073/pnas.1318679110
http://dx.doi.org/10.1073/pnas.1318679110
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1039/c3sm50479d
http://dx.doi.org/10.1039/c3sm50479d
http://dx.doi.org/10.1039/c3sm50479d
http://dx.doi.org/10.1039/c3sm50476j
http://dx.doi.org/10.1039/c3sm50476j
http://dx.doi.org/10.1039/c3sm50476j
http://dx.doi.org/10.1016/S0020-7403(03)00063-8
http://dx.doi.org/10.1016/S0020-7403(03)00063-8
http://dx.doi.org/10.1016/S0020-7403(03)00063-8
http://dx.doi.org/10.1063/1.1364650
http://dx.doi.org/10.1063/1.1364650
http://dx.doi.org/10.1063/1.1364650
http://dx.doi.org/10.2140/jomms.2011.6.203
http://dx.doi.org/10.2140/jomms.2011.6.203
http://dx.doi.org/10.2140/jomms.2011.6.203
http://dx.doi.org/10.1016/j.jmps.2012.08.003
http://dx.doi.org/10.1016/j.jmps.2012.08.003
http://dx.doi.org/10.1016/j.jmps.2012.08.003
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
http://dx.doi.org/10.1002/adma.201204180
http://dx.doi.org/10.1002/adma.201204180
http://dx.doi.org/10.1002/adma.201204180

