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Evaporating suspensions of colloidal particles lead to the formation of a variety of
patterns, ranging from a left-over ring of a dried coffee drop to uniformly distributed
solid pigments left behind wet paint. To characterize the transition between rings and
uniform deposits, we investigate the dynamics of a drying droplet via a multiphase
model of colloidal particles in a solvent. Our theory couples the inhomogeneous
evaporation at the evolving droplet interface to the dynamics inside the drop. This
includes the liquid flow, local variations of the particle concentration leading to a
cross-over between dilute and dense suspensions, and the resulting propagation of the
deposition front. A dimensionless parameter combining the capillary number and the
droplet aspect ratio captures the formation conditions of different pattern types while
correctly accounting for the transition from Stokes flow to Darcy flow at high solute
concentrations.
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1. Introduction

When coffee drops, soup splatter, salted snowmelt or other suspension dries out, the
suspended solid remains as a residual stain or pattern. This is the result of a singular
evaporative flux at the contact line which is pinned at the substrate (Deegan et al.
1997). The resulting fluid flow advects particles to the edge, where they aggregate,
while the fluid itself evaporates. Consequently, single rings (Deegan et al. 1997, 2000;
Deegan 2000; Popov 2005; Snoeijer et al. 2011) or multiple rings (Adachi, Dimitrov
& Nagayama 1995; Shmuylovich, Shen & Stone 2002; Abkarian, Nunes & Stone
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FIGURE 1. Schematics of a drying suspension on a horizontal substrate. (a) Single rings,
multiple concentric rings, broad bands and uniform films are displayed. (b) The fluid
height A(r, t) and the polar coordinate system. The initial aspect ratio is e = H/R. (c) As
a function of n ERZ/Egup (leap = /v /pg: capillary length), the initial height profile h(r, 0)
of a small droplet (n < 1) when the Laplace pressure —2y« dominates the pressure p (k:
mean curvature) and a puddle (> 1) when the hydrostatic pressure pgh is dominant. (d)
The droplet cross-section (dark plane in (b)) and definitions of variables. (¢) The evolution
of the deposit width Ar, the solid height () (red) and the interface position L(f) with
time .

2004; Maheshwari et al. 2008; Zhang et al. 2008; Kaya, Belyi & Muthukumar 2010;
Tarasevich, Vodolazskaya & Bondarenko 2013; Lebovka et al. 2014; Yang, Li & Sun
2014; Kaplan et al. 2015), and a variety of different patterns (Frastia, Archer & Thiele
2011, 2012; Thiele 2014; Yang et al. 2014) form in the vicinity of the contact line.
In contrast, eliminating the surface roughness of the substrate (Marin et al. 2012) or
drying a suspension of anisotropic colloidal particles (Yunker et al. 2011) leads to the
uniform deposition of particles over the droplet area. Furthermore, the transition from
narrow single rings to uniform films can be engineered when the evaporation happens
relatively fast (Lin et al. 2001; Narayanan, Wang & Lin 2004; Bigioni et al. 2006).
The transition from single rings, multiple concentric rings or broad bands to
uniform deposits (figure la) can be understood by simple scaling relations. When
the contact line of the drying drop (solvent viscosity u, interfacial tension y)
is pinned to the substrate, we note that the initial droplet aspect ratio is much
smaller than unity (¢ = H/R < 1, see figure 1(b) for definitions). In this limit, the
Navier-Stokes equations for fluid flow simplify via the lubrication approximation
(Oron, Davis & Bankoff 1997). This yields a balance between the radial gradient of
the pressure p and viscous forces, given by dp/dr = u82vf/ 9z*> (Stokes flow) where
vy is fluid velocity. When the droplet radius R is smaller than the capillary length
Leap = /Y /pg (p: the density of the fluid, g: gravity), the droplet—air interface forms
a highly curved shape (figure 1c). Then the pressure is determined by Laplace’s law
(pryd*h/or?), i.e. p~yH/R? at a scaling level. Mass conservation requires that the
evaporation rate E, induces a divergence of the liquid flux ev; such that aFE,; ~ evy,
where o is a dimensionless constant. So, a balance between the radial pressure
gradient p/R and transverse viscous shear wvs/H” in the Stokes flow equation gives
YH/R® = uaEy/eH* yielding o =€*/Ca. Here « is the scaled inverse capillary number,
where Ca = wE,/y characterizes the relative magnitude of viscous to capillary forces.
When « >> 1, ev; is much bigger than E,. In this limit, the colloids are carried towards
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the contact line before the drying is complete, so that a single ring, concentric rings,
or a broad band forms, depending on the initial colloidal volume fraction @,. When
a K 1, evy K Ey, and uniform films form as the solvent dries before most colloids
can reach the droplet edge (Bigioni et al. 2006). When the droplet radius R is bigger
than the capillary length £,,, the droplet-air interface becomes mostly flat since the
hydrostatic pressure p = pgh dominates over capillarity (figure 1c). Defining a new
parameter & = na where n = R? /Z?a[,, the deposition regimes remain the same for the
limits @ > 1 and &« < 1. Although our analysis ignores surface tension gradients, a
small modification of our scaling approach also allows us to explain Marangoni flow
driven patterning (Hu & Larson 2005, 2006) (See supplementary data for details at
http://dx.doi.org/10.1017/jfm.2015.496).

During deposition, colloidal particles arriving at the deposition front slow down
and stop, assembling into a close-packed configuration with a critical volume fraction
®.. When @, <1, as in the case of hexagonal packing of spheres in three dimensions
(@, ~ 0.74), the fluid continues to flow through the porous region in order to
compensate for the loss due to the evaporation over the deposit. When the particle
concentration is low in the interior of the droplet, pressure gradients are balanced
by viscous stresses in Stokes flow (Landau & Lifshitz 2004). By contrast, the flow
through the porous deposit is governed by Darcy’s law, where the fluid concentration
becomes low. Thus, we must account for a ‘Stokes—Darcy transition’ to characterize
flow in the slender drying droplet as particles are carried by the fluid, before being
eventually arrested, while the fluid evaporates away. The form of the residual patterns
requires that we also consider the speed of the deposition front C = C(®y, 1)
relative to the evaporation rate Ej. Indeed, the type of patterning is governed by
the dimensionless speed 8 = B(f) = C/E, at the interface separating the liquid and
forming deposit (figure 1d). A uniform film forms when B is sufficiently large to
prevent the liquid meniscus, pinned to the elevated deposit edge, from touching
down the substrate at later times during drying. Conversely, lower 8 results in single
rings, multiple rings or broad bands following meniscus breakup (figure le). The
coupling of evaporation-driven flow with a transition from a dilute suspension to
porous plug requires a multiphase description of the process where the solute and
solvent velocities are allowed to be different unlike in previous models (Deegan et al.
2000; Popov 2005; Craster, Matar & Sefiane 2009; Okuzono, Kobayashi & Doi 2009;
Witten 2009; Kobayashi et al. 2010; Snoeijer et al. 2011).

2. Multiphase model

2.1. Stokes—Darcy transition

In the lubrication approximation, the depth-averaged solute and solvent velocities are
given by V,=h"! j;)h vs(r, z, 1)dz and Vy =h™! foh ve(r, z, ) dz, where vy(r, z, 1) and
vr(r, z, t) are the local solute and solvent velocities, respectively. The depth-averaged
solute volume fraction is @ (r, f) = h~! foh ¢(r, z, t)dz, where ¢(r, z, t) is the local
particle volume fraction, 1 — @(r, ) is the depth-averaged solvent volume fraction and
h(r, t) is the droplet height (figure 15). The growing deposit near the contact line
due to the particle accumulation forms a porous plug with a volume fraction of the
particle close packing @.. To characterize the transition from the Stokes regime for
dilute suspensions (@ « 1) to the Darcy regime in the porous medium (@ ~ @.) we
need a model that transitions from one regime to another. A natural candidate is an
interpolation between these two linear flow regimes via the Darcy—Brinkman equation
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(Brinkman 1949), which in the lubrication limit reads as

ap v 1 )1

o~ Moz k(Uf Us), 2.1
where k is the permeability of the porous plug, and the pressure is given by
p = —2yk + pgh (figure 1c), with p the suspension density and g being gravity.
By defining tan 6 = —0,h, the mean curvature « of the liquid—air interface is given
by « = —d,(rsin0)/2r. When @ <« 1, we would like to ensure that the solute and
solvent velocities coincide, i.e. v, ~ vy as the particles are advected by the fluid in the
Stokes regime. Beyond the deposition front, the Darcy regime should be recovered
where the particles are arrested in the porous plug, namely vy, — 0 as @ — @.. Since
the deposit is experimentally incompressible (Parisse & Allain 1996, 1997), the fluid
flow inside is solely determined by the evaporation (see e.g. (4.1) below). A simple
closure of (2.1) consistent with these limits is

& r
--2)
@,
where the exponent I' determines the rapidity of the cross-over between the two
regimes (Cohen & Mahadevan 2013). Equations (2.1) and (2.2), combined with the

stress-free and no-slip boundary conditions dv/dz|,—, =0 and v(z =0, 1) =0, yield
the depth-averaged velocities

vy, (2.2)

el
= a3Mh Fi(tanh ah — ah)’ V&' = (1 - azﬂk)vf» (23a,b)

‘/}.

where a*> = (uk)~'(®/®.)"", with 1/a being the effective dynamic pore size. Defining
&, =&, /v and v=H//ku (the scaled inverse pore size) allows us to see that the
Stokes—Darcy transition occurs when @, < &, so that the suspension transitions to
a porous plug even before it gets jammed (Cohen & Mahadevan 2013; Kaplan et al.
2015).

When the suspension becomes slurry-like at @, >~ @,, and v > 1 corresponding to
a small permeability k, the second term of V; in (2.3) becomes dominant, leading to

o\ ap
V.= — _¢ = 2.4
f v (@) or 9

in dimensionless form, and the prefactor of V, in the solid and liquid fluxes Q;,
reduces to o/v?. Then, for a slurry-like mixture with a small permeability, o > v?
leads to single or concentric rings, as well as broad bands, whereas o < v? results in
uniform deposition. When 7> 1 (namely R*>> €7, ), o >>v*/n induces ring formation,
whereas uniform films form for o < v?/n.

2.2. Effective viscosity of the suspension
Our theory differs from other phenomenological approaches to dense suspension
hydrodynamics (Stickel & Powell 2005; Cook, Bertozzi & Hosoi 2008; Kobayashi
et al. 2010; Frastia et al. 2011, 2012; Tarasevich, Vodolazskaya & Isakova 2011)
in a fundamental way: it correctly accounts for the multiphase nature of the flow
that allows for a porous plug to form even as the fluid flows through it. This is an
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essential feature of drying suspensions, which, to our knowledge, has not theoretically
been addressed before. When combined with (2.2), the Darcy-Brinkman equation
(2.1) takes into account the change in the suspension viscosity as a function of the
volume fraction @. To understand how this effective viscosity relation (@) for the
Stokes—Darcy transition behaves in analogy with the Stokes velocity, we denote the
depth-averaged flow velocity of the suspension as

®o9
U=— iy (2.5)
3(D) or

Next we define an average velocity for the suspension V,, in terms of V;, V, and @,
which is given by V,, =@V, + (1 — ®)V; (Cook et al. 2008). Setting V,, equal to U
yields the effective viscosity as

uath*dr
3(ah — tanh ah) (@ — dT+1)’

Mo (P) = (2.6)

For I' =4, we compare (2.6) with the empirical Krieger—Doherty relation (Stickel
& Powell 2005; Cook et al. 2008; Okuzono et al. 2009), which is given by
wurp(®@) = n/(1 — ®/d.)* (see figure S1 in the supplementary data). Whereas the
two expressions agree very well at low and intermediate concentrations, (2.6) yields
a finite effective viscosity when @ ~ @.. However, ugp(®) diverges as @ — P, so
the fluid flow from the droplet interior into the deposit vanishes upon drying. This
scenario contradicts the fact that there is a net liquid flux into the forming deposit
as observed in drying colloidal suspensions and clogged microcapillaries (Cohen &
Mahadevan 2013; Kaplan et al. 2015). Thus, (2.6) yields a behaviour consistent with
observations and correctly describes the Stokes—Darcy transition by (i) yielding a
finite viscosity everywhere so that fluid flow into the deposit is maintained, and (ii)
introducing a dynamic length scale (the effective dynamic pore size 1/a) essential for
porous flow. Neither (i) nor (ii) is satisfied by ugp(¢) or similar empirical relations
from dense suspension rheology.

2.3. Conservation laws

We define a set of dimensionless variables as follows: horizontal coordinate r = R,
vertical height h = Hh, time t = H/Ef, velocities V,; = (e’y /uv*)V,,, dimensionless
pressure p = (ye/R)p where p = =2k + nh, n = R/{., where {., = \/y/pg is the
capillary length, and the dimensionless evaporation rate E(r) = E(r)/E,. Furthermore,
we let v=H/+/ku be the scaled inverse pore size and the Péclet number Pe = E\R/D;,
with D, being the solute diffusivity. Dropping the tildes from the dimensionless
quantities, and using an axisymmetric polar coordinate system in the rest frame
(figure 1b), the depth-averaged scaled equations of local fluid and solute mass
conservation are given by

%[(1 _ o)+ %a(gff) = —EM/1 T (€0, @.7)
3 1900)
5[cph] +o—= 0. (2.8)

Here the scaled liquid flux is given by Qy(r, 1) = (a/v*)(1 — @)hV; (Qp(r, 1) = (1 —
®)hV; in dimensional units), the particle flux Q,(r, t) = (a/v})PhV, — Pe~'e€h(3P /0r)
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FIGURE 2. Uniform film deposition (¢ < 1, Pe > 1). (a) Evolution of the fluid interface
h(r, t) (greyscale) and the solid height A,(r) (red). (b) The change of the depth-averaged
colloidal concentration @(r, f) (greyscale) corresponding to (a). The red line is at @, =
0.74. In (a) and (b), @9 =0.1, n=R*/€;,, =1, and the greyscale changes from dark to
light with increasing time. The results shown in (a) and (b) correspond to (3.1) and (3.2).

(Qs(r, 1) = @hVy — Dsh(0D/0r) in dimensional units), and E(r) = 1/4/1 —r is the
scaled singular form of the local evaporation rate (figure 1d) along the droplet surface
(Deegan et al. 1997; Deegan 2000). The coupled sixth-order system of (2.3)—(2.8)
becomes a boundary value problem for A(r, ) and @ (r, t), once appropriate boundary
and initial conditions are given.

3. Deposition of uniform films

The initial droplet aspect ratio € can be decreased either because of a small
initial contact angle or by starting with a bigger droplet (i.e. by increasing 7, see
figure 1c). Either of these implies that o < 1, even if the capillary number Ca is
invariant. Furthermore, if the particle diffusion is negligible, i.e. Pe > 1, we see a
sharp deposition front. Under these conditions, the liquid and solid fluxes O, in
(2.7) and (2.8) vanish. Q; vanishes at the droplet edge as well, even though the fluid
velocity V; diverges near the contact line, since hV; stays constant there (Deegan
et al. 1997, 2000; Deegan 2000). Then, (2.7) and (2.8) reduce to the initial value
problem 0h/0t = —E(r) and d[®@h]/0t =0, which yield

h(r, 0)

h(r,t)=h(r,0) — E(rt, &, 1) = ‘%ma

(3.1a,b)

where the initial condition A(r, 0) is the hydrostatic height profile given the contact
angle 6, at the droplet edge. Locally, h(r, ) evolves only until the critical time #, =
t.(r), when the colloids get jammed at the deposition front r = L(¢.) with &(r, t.) =
@, =0.74 (figure 2b). The deposit height is then fixed at h,(r) = h(r, 0) — E(r)t.(r)
for t > ¢t. (figure 2a). In figure 2(a), it is evident that the liquid—air interface always
preserves a convex profile, so that meniscus touch-down is avoided, and the deposition
front propagates to the droplet centre, leaving behind a uniform film. The critical time
for jamming ¢, is determined from (3.1) when @(r, t.) = ®@.. Then hy(r) and . are
given by

Th(r, 0)

E(r)

where T = (P, — @y)/P. is the final dimensionless time of deposition at the centre
of the droplet (r = 0). When 1 <« 1 (figure Ic), the hydrostatic profile becomes a
spherical cap and is given by h(r, 0) = 1 — r* for very low contact angle (Witten
2009) (figure S2(a) in the supplementary data).
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Evaporation-driven ring and film deposition from colloidal droplets

To calculate how the volume fraction @ = @ (r, 1.) scales near the deposition front
L(t=t.) at the end drying (r' < L(t) < 1), we determine 7. using (3.2),

t.(L)=T( — L)1 —L, (3.3)

where we have used the analytical expressions for h(r, 0) and E(r) at r=L. In terms
of the deposit width Ar=1— L, the critical time is . = (TAr+ 1)/2. Finally, in these
limits, the volume fraction @ = @ (¥, t,) becomes

2 (1+TARY

O(r )=
(rt) =0 |\ T Y T Tan?

(3.4)

by virtue of (3.1) and (3.2). According to (3.4) the volume fraction scales as @ (') ~r
close to the front as it arrives near the droplet centre. This linear behaviour is different
from the scaling laws for ring formation found by Witten (2009) and Zheng (2009),
since the rings are deposited by the particulate flow.

Having calculated the scaled droplet height A(r, 7), the solid volume fraction @ (r, t)
and the deposit height h;(r), we turn to the dynamics of the deposition front location
L(¢r) given by the condition dr/df|,_., = C. Since all lengths are scaled by the
thickness of the droplet H, and velocities are scaled by the evaporation rate Ey, in
scaled form, the deposition front follows the relation

dr

- — B (3.5)

r=L()

At t =t.(r), taking the reciprocal of both sides of (3.5) yields B(¢) = 1/€0,t(r)|,=r,
showing that 8 diverges both initially when A(r, t) < 1 close to =R and at the end
of drying when @ (r, ) ~ P, close to r=0 (figure S2(b) in the supplementary data).
Using (3.3) when n « 1, the deposition speed is found as

2 1
T (1+50VI—L

Equations (3.3) and (3.6) yield scaling relations at the beginning (Ar <« 1) and end
of the deposition (L < 1). When the deposition front is very close to the droplet centre
(L « 1), the series expansions of (3.3) and (3.6) at the lowest order of L give g~
—2(1—9L/2)/eT and t.~T(1 —L/2). So, in terms of t=t. the deposition speed and
width become

B = (3.6)

pu—t 18 (1 ’) Ar=2 (3.7a,b)
~ —— —_— - =, r=——1. .la,
T T\ T T

When the particles are initially depositing near the contact line (Ar < 1), rewriting (3.3)
and (3.6) in terms of Ar followed by a series expansion yields B = —(Ar)~2/3¢T
and 7, = 2T(Ar)*? at the lowest order. These imply that at the beginning the width
and speed of the deposition become

A t 2/3 1 t —-1/3 38 b
r—(ﬁ) ’ ﬂ“gTT(ﬁ) : (3.8a,b)

Thus far we have assumed that solute diffusion is not important, i.e. Pe > 1, but
when this is not the case, we have to take into account the diffusion term in (2.8).
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4. Deposition of rings

The aspect ratio € of small droplets is in general bigger than that of puddles
(figure Ic), so that even for constant Ca, a sufficiently big € can imply « > 1. In
this limit we need to complement the coupled sixth-order system of (2.3)—(2.8) with
seven boundary conditions over the interval r € [0, L(#)] to determine h(r, 1), @ (r, t)
and the deposition front velocity B(). Three boundary conditions at » =0 are given
by symmetry: the vanishing particle flux Q(0, f) = 0, the vanishing liquid flux
0r(0,1) =0 and the flat meniscus height profile 94/0r|,—o =0. At the deposition front
r=L(¢), the liquid flux into the deposit at the interface must compensate for the loss
of solvent via the evaporation over the deposit height A,(r). The differential form of
this condition in the frame co-moving with the wall at a speed 8 becomes

613881‘[(1 — ®)haVil = —E(r)\/1+ (d,h)?, @.1)

where (3.5) is used to express the spatial derivative in terms of the time derivative.
As the colloids are arrested, the particle flux inside the solid vanishes. Therefore, in
the moving frame, the particle flux continuity at » = L(¢) is given by Qs — e®hf =
—e® hf, which yields

o . 8¢>
B(t) = — @V, —Pe 'e— | . 4.2)
ar

1
(@ — D) (v3

The height A; at the wall between the liquid and the incompressible deposit satisfies
oh;/0t =0 in the rest frame. In the moving frame, this condition translates to

ohi(1) €p a(rh)

4.3
ot r odr (4.3)

r=L(r)

To extract B(¢) asymptotically from (4.2), we fix the particle volume fraction @; at
the interface as
&;=d, — 1073, 4.4)

We solve (2.3), (2.7) and (2.8) numerically for the droplet—air interface height
h(r, t), the depth-averaged particle volume fraction @ (r, t) and the deposition front
velocity B(f) via the COMSOL Multiphysics 4.3a finite element package (2012). The
initial aspect ratio is specified by the hydrostatic height A(r, 0) and n, which yield
€~0.12 when n=1. The capillary number and Péclet number are given by Ca= 1073
and Pe =20, so that o > 1. The physical parameters and initial conditions used in
the simulations are given in § B of the supplementary data. The movies in § A of
the supplementary data demonstrate the evolution of the height and volume fraction
profiles for different @, and 7.

In figure 3(a—c), we show the time evolution of A(r, r) and hy(r) in the lab frame.
Towards the end of the droplet lifetime, the meniscus reverses curvature and touches
the substrate at a location 7, (dashed vertical lines in figure 3, and grey dots as
a function of @, in figure 4a), at a time # ~ 0.2H/E,. The meniscus touch-down
(see figure le), assumed to be axisymmetric, is followed by a breakup into two
contact lines (Kaplan et al. 2015). The assumption of axisymmetry involves ignoring
local touch-down and breakup due to the irregularities of the substrate or particle
adhesion on the surface. To regain the equilibrium contact angle 6., (de Gennes
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FIGURE 3. Meniscus touch-down and deposition of rings or broad bands (a > 1, n=1).
(a—c) The evolution of the interface height h(r, f) (greyscale) and the solid height A(r)
(red) for the given initial particle volume fraction ®y; (a,d) @, = 0.005, (b,e) @y =
0.06, (cf) ®9=0.12. (d—f) The evolution of the local colloidal volume fraction @ (r, t)
corresponding to (a—c), respectively. The red lines in (d—f) are at @.=0.74. The dashed
lines denote the touch-down location ry of the meniscus. The greyscale changes from dark
to light with increasing time. These results are solutions to (2.3), (2.7), and (2.8), subject
to the boundary conditions given in (4.1)—(4.4) at r =L(t), and Q; = Qy =0h/0r=0 at
r=0 with parameter values as indicated in § B of the supplementary data.

1985; de Gennes, Brochard-Wyart & Quéré 2004), the contact line closer to r =0
moves to the droplet centre, whereas the other one will move towards the deposition
front and the fluid will be wicked by the jammed colloids.

When @, « 1, narrow rings form with a width Ar(r) < 1 (figure 3a,d). The
magnitude of the front speed S(¢) determines the ring width. The variables § and
Ar are shown, respectively, in figures S3 and S4(a) in the supplementary data. For
single rings, B(f) reaches a steady state at early times for @y, <« 1, consistent with
earlier observations at low volume fractions (Yang et al. 2014). For intermediate
@y, the particle concentration builds up below the meniscus touch-down location ry,
as evidenced by the maxima in @ (r, ) on the liquid side of the wall in figures 3(e),
and 4(b). To quantify the width and speed of deposition at early and late times, we
have extracted numerical scaling laws in the limit n < 1 (§D and table S1 in the
supplementary data). Close to the time of meniscus touch-down #;, the deposition
width and speed diverge as Ar ~ (t — ™% and B ~ (y — ™' at low volume
fractions (@, < 1), which are slower than the scaling laws of Witten (2009) and
Zheng (2009). The analyses in those works were based on a hydrostatic circular
profile at all times, compressible deposits and the effect of flow close to the droplet
centre. In our case, however, the incompressible deposit deforms the meniscus at
later stages of drying such that it becomes concave, eventually touching the substrate.
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FIGURE 4. Phase space of possibilities for the case of ring formation showing the location
of meniscus touch-down and deposition of rings (o« >> 1, n =1). (a) Drop height A(r, 1)
(black), deposit height h(r) (red), and (b) deposit concentration @ (r, ) at meniscus touch-
down are shown as a function of increasing @, from bottom to top. In (@), from right to
left, ry (grey dots) decreases when @, increases. The data in (a) and (b) correspond to
@y e {5x 103 U[1.5x 1072,0.12]} in 1.5 x 1072 increments. These results are solutions
to (2.3), (2.7) and (2.8), subject to the boundary conditions given in (4.1)—-(4.4) at r =
L(t), and Q;, = Qy =0h/dr=0 at r=0. The physical parameters are given in §B of the
supplementary data.

Hence, the effect of far-field flow on the deposition dynamics diminishes, leading to
different scaling laws. Furthermore, since the droplet becomes very thin at the point
of touch-down, the volume fraction exhibits a maximum as opposed to the previously
estimated monotonic concentration profiles (Witten 2009; Zheng 2009).

The accumulation of colloids in the vicinity of 7, facilitates the formation of an
adjacent inner ring. Following meniscus breakup, the inner contact line moves until
it reaches an equilibrium state or is pinned by the substrate and the colloids (Kaplan
et al. 2015). The particle aggregate close to the inner contact line in motion may
either adhere to the substrate or be dragged by the contact line until it becomes
jammed (Yang et al. 2014). Figure 4(a) depicts the profiles shortly before the
concentric inner ring formation, noting that B8 changes rapidly over the course of
drying for bigger &,. While the contact line closer to the deposition front at L(%)
recedes, the colloids between ry, and L(#) are laid down and thus contribute to the
deposit width, leading to an effective ring width Ar.; > Ar (see §E and figure S4(b)
in the supplementary data). Our calculations show that Ar, ~ @3¢ (table S1 in
the supplementary data), in agreement with experiments (Deegan 2000). When @,
increases, ry shifts towards the droplet centre, as demonstrated in figure 4(b). At large
@, we see the formation of a broad band in figures 3(c,f) and 4(a,b), with Ar>~R/3
near the contact line, and the touch-down location approaches the droplet centre
(ro = 0). The scaling behaviour of ry as a function of @, is given in figure S4(c)
and table S2 in the supplementary data.

The shape of the incompressible band h;(r) for all @, is governed by (4.3): if
the meniscus contact angle at the wall 6,(L(¢), t) > 0, then h,(r) increases as the
band expands (early stages), and 6,(L(f), r) < O would lead to a decreasing height
profile (late stages). The combination of the early- and late-stage behaviours results
in the curved hy(r) profiles shown in figure 4(a), which qualitatively agree with the
experimental deposit shapes (Parisse & Allain 1996, 1997; Berteloot et al. 2012).
The maximum solid thickness #,,,, is then achieved at the transition between the two
stages (the maxima of the red curves in figure 4a). The dependence of A, on @,
is quantified in figure S4(d) and table S1 in the supplementary data. We conclude
that the incompressibility assumption and the boundary condition given by (4.3) are
accurate in modelling the porous deposit.
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5. Conclusions

Our multiphase model of an evaporating colloidal droplet describes the different
deposition patterns and the transitions between them by accounting for how the
droplet evaporates inhomogeneously even as the dilute suspension transitions into a
porous plug in the neighbourhood of the contact line. We are able to characterize
these phenomena in terms of two parameters, the initial concentration @, and the
scaled inverse capillary number «. When o > 1, we obtain single rings, the precursor
state to multiple ring formation following meniscus breakup, and broad bands as @
increases, while when o <« 1 uniform films assemble over the entire droplet area,
consistent with observations.

The theory also yields the cross-sectional profiles of the deposits as a function of
the particle concentration. Unlike in the case of drying vertical menisci, the dynamics
of deposition and the cross-sectional profiles of patterns left behind drying droplets
are not extensively studied since they are experimentally very hard to control and
manipulate. Bands in drying droplets are not as uniform as in the case of vertical
deposition, because the liquid—air interface never reaches a steady state. Therefore,
although the deposit shapes qualitatively agree with those from Parisse & Allain
(1996, 1997) and Berteloot et al. (2012), they should be quantitatively tested by
measurements for a range of @, and 7.

What remains is to understand the dynamics of particle ordering in the deposit,
which will require coupling our multiphase macroscopic theory to a microscopic
theory for particulate ordering in dense suspensions.
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