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Elastic Cheerios effect: Self-assembly of cylinders on a soft solid
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Abstract – A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders
are placed on the surface, they interact with each other via the topography of the deformed gel
which serves as an energy landscape; as they move, the landscape changes which in turn changes
their interaction. We use a combination of experiments, simple scaling estimates and numerical
simulations to study the self-assembly of cylinders in this elastic analog of the “Cheerios Effect”,
which describes capillary interactions on a fluid interface. Our results show that the effective
two-body interaction can be well described by an exponential attraction potential as a result of
which the dynamics also show an exponential behavior with respect to the separation distance.
When many cylinders are placed on the gel, the cylinders cluster together if they are not too far
apart; otherwise their motion gets elastically arrested.

Copyright c© EPLA, 2015

Introduction. – It is well known that a small parti-
cle can float at an air-liquid interface due to the capillary
force acting along its contact line [1–3]. The combina-
tion of the gravitational and the surface energies can lead
to an attractive or a repulsive interaction between par-
ticles depending upon their specific gravity relative to
the liquid [4–6]. This observation, dubbed the Chee-
rios effect [7,8], is the basis for capillarity-driven self-
assembly [9–12]. Similar phenomena are also observed on
microscales in such instances as proteins embedded in a
lipid membrane [13], in which the interactions are medi-
ated by elasticity and capillarity. These observations lead
to a natural question: what if the fluid interface is replaced
by its elastic analog, such as the surface of a soft solid, or a
thin elastic membrane? Recent experiments [14–16] have
shown that in this elastic analog of the Cheerios effect,
heavy spheres settling on a soft solid deform the inter-
face and create a topography that serves as an energy
landscape on which they move. These observations are
consistent with a scaling theory [14–16] that captures the
essential features for the forces and dynamics between two
spheres. Here, we complement these studies by studying
the statics and dynamics of heavy parallel cylinders sitting
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atop a soft substrate using a combination of experiments,
theory and numerical simulations.

Experiment. – Our experiments followed a proto-
col similar to that in earlier studies [14,15] and used a
physically cross-linked gel as the soft substrate, start-
ing with a solution of N -(hydroxymethyl)-acrylamide
(48% solution in water, Sigma Aldrich) in water that
was then polymerized by adding 0.25wt% of the cat-
alyst potassium persulfate (99.99%, Sigma Aldrich)
and initiating the reaction with 0.3wt% N ,N ,N ′,N ′-
tetramethylethylenediamine (TEMED, ≥ 99.5%, Sigma
Aldrich). After crosslinking was complete, we measured
the shear modulus of this gel using an oscillatory rheology
test [12] and found that the modulus µ = 18 Pa. For the

cylinders, we used highly polished 3
4

′′

long aluminum rods

(2024 Aluminum, 3
16

′′

diameter, density 2.8 g/cc, McMas-
ter Carr) which were cleaned and sonicated in acetone and
dried with ultrapure nitrogen gas. They were then plasma-
oxidized and soaked in trimethylsiloxy-terminated poly-
dimethylsiloxane (DMS T-22, M.W. 9430; Gelest Inc.),
and baked at 80 ◦C for a day to allow the polydimethyl-
siloxane chains to graft with the surface, and then rinsed
with chloroform (ACS grade, EMD) in order to remove
the unreacted siloxanes and dried.
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Fig. 1: (A) Two cylinders placed parallel to each other on a soft gel (µ = 18 Pa) move towards each other and eventually coalesce.
(B) If the distance between the cylinders is large enough, we also see elastically arrested configurations as well. (C) A similar
self-organized pattern to (A) arises for this initial configuration after sufficient time. The time stamps in the second and third
images in panel (C) are relative to the panel’s first image.

When a single cylinder is placed on the gel surface,
it deforms the interface locally. When another cylinder
is placed within 5–8 mm from the first one, they attract
towards each other until they coalesce (see the suppl-
ementary movies Movie 1 experiment.mp41, Movie 2

experiment.mp42) as shown in fig. 1(A). The interface
was filmed with a CCD (charge coupled device) camera
(MTI-72) that was equipped with a variable focal length
microscope (Infinity), and the images analyzed using
ImageJ to yield the depth of the surface of the gel (h)
as a function of the edge-to-edge separation distance
(ℓ) between them, as shown in fig. 2(C) (inset). In
fig. 1(B), (C), we see that when there are more number of
cylinders, they may undergo either complete or arrested
coalescence (see the supplementary movies Movie 3

experiment.mp43, Movie 4 experiment.mp44). In the
experiments involving two or more cylinders, care was
taken to place the cylinders as parallel as possible. A finite
amount of sliding friction allows the cylinders to maintain
their parallelism while they approach each other similar
to that observed in the case of coalescence of cylinders
on an elastic membrane [16] although the friction in the
present system is much lower. Previous studies on the
parallel configuration of cylinders floating on the surface
of a liquid show that it is inherently unstable [17]. Here,
friction on a soft gel stabilizes the parallel configuration
of the cylinders, adding to the advantage of assembly on
a soft gel, relative to assembly on a liquid interface.

1Coalescence of two rigid cylinders on gel (µ = 18Pa)
(experiment).

2Closeup of coalescence of two rigid cylinders on gel (µ = 18Pa)
showing that the cylinders slide and roll (experiment).

3Arrested coalescence of multiple cylinders (experiment).
4Complete coalescence of multiple cylinders (experiment).

To understand these results, we first consider the in-
teraction of a slightly heavy cylinder of radius R with
a soft gel of shear modulus µ. Assuming that the de-
formations of the relatively incompressible gel are small
and of order h in the vertical direction, the elastic en-
ergy of deformation of the medium per unit depth scales
as µε2L2

c where the strain ε ∼ h/R, and Lc is a charac-
teristic horizontal scale over which the deformations de-
cay. The gravitational energy of the deformed gel per unit
depth scales as ΔρghL2

c , where Δρ is the density differ-
ence between the cylinder and the gel. Balancing these
energies yields the characteristic length h ∼ ΔρgR2/µ
the scale over which deformations decay in the horizontal
direction [18].

Theory. – A more formal analysis may be carried out
by considering the total energy per unit width of the sys-
tem, composed of the sum of the gravitational potential
and elastic energies:

U =

⎡
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Δρg

2

+∞
∫

−∞

ξ2dx +
T

2

+∞
∫

−∞

ξ2
xdx
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+

⎡
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+∞
∫
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0
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2
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0
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−∞

w2
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⎤

⎦,

(1)

Where the free surface displacement is ξ(x), the sur-
face tension is T , and the vector of displacement fields
in the incompressible solid of modulus µ is given by
(u(x, z), w(x, z)), with w(x, 0) = ξ(x). Using a separa-
ble potential of the form χ(x, z) = φ(x)ψ(z) to charac-
terize the deformations with u = χz and w = −χx, we
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Fig. 2: (Colour online) (A) A schematic illustrating the numerical model. (B) The deformed profile of the surface of a gel for
a single cylinder. The red open circles show the experimental points and the black line is obtained from simulation. Both fit
an exponential function ξ0(x) = ξ0(0) exp(−x/Lc), with Lc = 7.23 (simulation) and 2.25 mm (experiment). (C) The settling
depth of the cylinders ξ0(0) − ξ0(ℓ) scaled with their initial depth h(0) is plotted as a function of the non-dimensional distance
of separation ℓ/Lc where Lc is the effective decay length of elastic deformations. The open symbols represent the data obtained
from three different experiments. The black line shows the results of the numerical simulations of the equations of motion (4)–(6)
with parameter values R = 3, K = 2000, ρ = 0.35 with τ = 14.59. (Inset: schematic of two cylinders approaching each other
on the surface of a gel with appropriate notation used in the text.) (D) The dynamics of attraction of two cylinders showing
an exponential collapse (see text for details). The open symbols represent the experimental data. The red line is obtained from
simulations. The black line corresponds to a linear fit of the experimental data.

see that the incompressibility condition ux + wz = 0 is
automatically satisfied. Then, (1) may be rewritten as

U =

⎡

⎣
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Functional minimization of U with respect to φ along
with the zero shear stress condition on the free surface
(ψzz(0)φ(x) − φxx(x)ψ(0) = 0) leads to the following
Euler-Lagrange equation:

⎛
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Assuming an exponential form ψ(z) = ψ(0)eβz, we
find that φ = φ (0) e−αx, and thus ξ = ξ(0)e−α x, where
α−1 =

√

T + µ/4β/Δρg + 9µβ/4. For the case when the
shear modulus vanishes (µ = 0), the surface profile is con-
trolled by the balance between tension and gravity, and
the decay length is given by α−1 =

√

T/Δρg. In the case
when the tension vanishes (T = 0) and in the limit of
Δρg ≫ µβ for a soft solid, the surface profile is controlled
by the balance between gravity and elasticity, and the de-
cay length is given by α−1 ∼ µ/Δρg. This implies that the
descent of the cylinder can be expressed as ξ0 ≈ ΔρgR2/µ,
which agrees with the scaling ansatz discussed previously.
More generally, when both tension and shear modulus are
relevant, the decay length is a more complex function of
all the relevant parameters: tension, gravity and elasticity
α−1 = f(T, Δρg, µ), but the profile remains of an expo-
nential type, consistent with previous experiments [14,15].

We emphasize that the functional minimization of U
has been carried out in the absence of the constraint:
∫ +∞

−∞
ξ dx = 0. The consideration of this condition in the

constrained functional minimization requires that all the
measurements of ξ0 need to be performed relative to the fi-
nal surface profile of the gel in the deformed state; this will
leave the energetics unaltered, so that the final result in (3)
remains the same.
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Simulation. – To verify our scaling and analytic
estimates, we now simulate numerically the interaction of
the cylinders on a soft gel. Small particles are used to
model the gel and large particles are used to model the
cylinders that interact with the gel [19,20], as shown in
fig. 2(A). The equations of motion for the discretized gel
are given by

ẍj + bẋj = −
∂U

∂xj
, (4)

U =
∑

j̃∈Gel

−
1

2
K

(

‖xj − xj̃‖ − L
)2

−

(

L

‖xj − xj̃‖

)6

+
∑

k∈Cylinders

(

2R

‖xj − xk‖

)12

, (5)

where we use a modified Lennard-Jones potential, that
uses springs for short-range repulsion, and the viscosity
b = 10 to eliminate any oscillations. The large parti-
cles representing the cylinders had the same equations of
motion with the inclusion of a gravity term,

ẍi + bẋi = −
∂U

∂xi
− ρgR2ŷ,

U =
∑

j∈Gels

(

2R

‖xi − xj‖

)12

+
∑

k∈Cylinders

(

2R

‖xi − xk‖

)12

,

(6)

with R = 3, g = 9.81, ρ = 0.35. Equations (4)–(6)
were numerically integrated using a leap-frog-integration
scheme with a time step of Δt = 0.01, with the gel domain
[0, 100] × [0, 40].

The results of our simulations confirmed the experimen-
tal observation that the profile of the deformed surface
of the gel is indeed exponential with respect to ℓ, i.e

ξ0(ℓ) = ξ0(0) exp(−ℓ/Lc), as shown in fig. 2(B), upto a
simple rescaling of Lc, and show that the omission of a
logarithmic correction ξ0(ℓ) ∼ ln(ℓ/Lc) due to the classi-
cal Boussinesq stress field due to a line force exerted by the
cylinder is justified. Simulations reproduced the general
features of the attraction of two cylinders on a gel (see
the supplementary movie Movie 5 simulation.mp45) in
that the experimental and theoretical results of the energy
of two cylinders plotted as [ξ0(0) − ξ0(ℓ)]/h(0) vs. ℓ/Lc

exhibit excellent agreement with each other (fig. 2(C)).
Since the attractive energy of two parallel cylinders is
exponential in ℓ, the resulting force is also exponential.
Assuming the friction between the cylinder and gel to be
a linear function of their relative velocities, we can write:
−∂U/∂ℓ ∼ ζdℓ/dt, ζ being the coefficient of kinematic
friction. Integration of the preceding equation leads to
eℓ∞/Lc − eℓ/Lc ∼ (ΔρgR2Lξ0(0)ζ L2

c)t, where ℓ∞ is the
initial distance of separation between the two cylinders.
Plots of eℓ∞/Lc −eℓ/Lc vs. t shown in fig. 2(D) confirms the

5Coalescence of two cylinders on gel (simulation).

Fig. 3: (Colour online) The space time dynamics of coalescence
of five cylinders. The variable i represents the index of the
cylinder and is used to eliminate the space between cylinders
in contact. These simulations solve the equations of motion
given in (4)–(6), with the parameter values R = 3, K = 500,
ρ = 0.25, yielding Lc = 10.03. The dynamics qualitatively
capture the experimental scenario shown in fig. 1, wherein the
cylinders aggregate in pairs before slowing down and coalescing
together.

agreement between experiment and theory once the dif-
ferences in kinematic friction are taken into account. We
note that in our simulations, interfacial tension is ignored,
so that the decay length Lc is governed by the balance
between elasticity and gravity.

Finally, in fig. 3, we show the space-time plot of
the coalescence of five cylinders as obtained from a
numerical simulation, that goes beyond the single-
particle continuum theory by accounting for multi-
particle interactions. We see that the rate of coalescence
changes as the cylinders form pairs and then triplets,
qualitatively consistent with our experimental observa-
tions (fig. 1(B), (C)) (see the supplementary movies
Movie 6 simulation.mp46, Movie 7 simulation.mp47).
To understand this elastic coarsening, we note that the
characteristic descent depth of a single cylinder of length L
scales as the horizontal decay length H ∼ ΔρgR2/µ, as de-
termined by balancing the gravitational energy ΔρgR2LH
with the elastic energy LH2µ (when the strain is O(1)). If
multiple cylinders coalesce, their vertical descent increases
linearly with the number of cylinders, allowing them to
create their own energy landscape. This leads to a dis-
tinct possibility of arrested coarsening when the cylinders
cannot move out of the trench they find themselves in, ex-
plaining both our experimental and numerical results. A
quantitative theory of elastically limited coarsening might
follow along the lines suggested by work on capillary coa-
lescence of filaments [21].

Although we have focused exclusively on the case of
attraction, our framework naturally also allows for repul-
sive interactions between cylinders —for example, when
one of the cylinders is positively buoyant but adherent

6Arrested coalescence of multiple cylinders (simulation).
7Complete coalescence of multiple cylinders (simulation).
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to the soft substrate, the soft interface has a local
profile that is approximately cubic— and this leads to
a repulsive interaction (see the supplementary movie
Movie 8 simulation.mp48).

Discussion. – Our study has uncovered the profile of
the deformed gel around a single cylinder consistent with
a simple theory and corroborated by simulations. When
multiple cylinders are placed on the surface, they assemble
to form smaller clusters that eventually aggregate to form
one large cluster but also may be arrested elastically at
times.

Our elastic analog of the classical capillary attraction
of particles at fluid interfaces opens a plethora of possi-
bilities to be explored that are equally rich and perhaps
more interesting, as elasticity provides an additional con-
trollable degree of freedom.
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