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A geometric model for the periodic undulation of
a confined adhesive crack

Zhiyan Weia and L. Mahadevan*abc

Inspired by experiments on the instability of confined interfacial cracks, we construct a minimal

mathematical model based on symmetry arguments that can reproduce the form of the crack front in a

confined domain. We show that the model can be interpreted in terms of the buckling and post-

buckling response of a compressed elastica with a nonuniform bending stiffness that is adhered to a

linearly elastic substrate. The model has three parameters that allow us to capture the primary

wavelength associated with the onset of an undulatory instability of a straight crack front, as well as the

finger amplitudes and finger widths in the nonlinear development of the instability. We determine these

parameters using an optimization procedure that minimizes the square error between the computed

profile and experimental observations. The results of this procedure yield numerical solutions that agree

well with the finger profiles experimentally observed in films of different thicknesses. Our approach

shows the efficacy of simple models based on symmetry in explaining interfacial instabilities governed

by different physical mechanisms.

1 Introduction

Interfacial instabilities lead to a host of patterns in nature.
Examples include the growth of crystals via the process
of solidification,1 the hydrodynamic free-surface instability
between liquids of different viscosities in a narrow gap,2,3

the analogous elastic instability at the meniscus in a stressed
thin film,4,5 crack growth in solid materials,6–8 and various
biological analogues.9 The evolution of the moving interface is
usually determined in terms of the solution of a free boundary
problem that couples the geometry of the interface to the bulk
field equations associated with different physical and chemical
phenomena that drive it. One approach to these problems,
which has been particularly successful, is using phase field
models1,10,11 in solidification dynamics,12 fracture dynamics,13,14

viscous fingering15 and vesicle dynamics.16 A closely related
approach is the use of geometrical models9,17–22 that are moti-
vated by symmetry arguments to write down phenomenological
laws for the motion of the interface. This class of models is not
meant to fully reproduce the realistic intricacies of the long-
time development of the system, but as they are based on general
symmetry and geometic considerations, they can capture a wide
variety of growth dynamics, even though the physical origins of

competing stabilizing and destabilizing forces acting on
the moving boundary depend on the particular system under
investigation.18,21,22 These models can sometimes be derived
using weakly nonlinear analysis23 and by using the methods of
multiple scale asymptotics, but are often used successfully
beyond their nominal regime of validity.

In elasticity, a crack is represented as an interface, and there
has been much work on the stability of crack in a bulk
solid11,19,24 under static and dynamic conditions, usually in
the presence of periodic or random material heterogeneity
or anisotropy. This work takes the form of linear stability
analysis25,26 combined with phase field-like approaches27,28 to
follow the nonlinear evolution of crack fronts, while attempts to
write down geometrical models for the nonlinear growth and
saturation in these contexts19 have not met with much success.
Here, we revisit this question in the case of an interfacial crack in
a confined elastic film which becomes unstable to undulatory
fingers;29,30 the effect of geometric confinement localizes the
response of the solid to out-of-plane displacements, and this
leads to undulations in the crack front.

In Fig. 1(a), we show the schematic for such an experiment
where a flexible cover-slip is peeled from a soft, thin elastic
adhesive film that is attached firmly to a rigid substrate.
Fig. 1(b) shows that the adhesive failure between the cover-
slip and the thin film manifests itself in the form of periodic
finger-like undulations, which develop during the opening of
the crack and remain stable even after the crack comes to a
complete rest.29 Previous work30 has shown that the onset of
the wavy crack front depends on the ratio of two length scales:
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the film thickness h and an elastic length (B/m)1/3 defined by the
bending stiffness B of the cover-plate and the shear modulus m
of the film. A more detailed analysis predicts that the wave-
length of the undulation l scales linearly with h, with l E 3.4h,
which is in reasonable agreement with the corresponding
experimental values of lexp E 4h.29 However, the linear theory
loses its predictive power when the crack front evolves into a set
of finite amplitude fingers, a regime in which only a scaling
analysis has so far been used to estimate the characteristic size
of the fingers.31 Here, we show that it is possible to explain the
nonlinear evolution of the crack in terms of a geometric scalar
model that captures the quantitative features of the interfacial
crack front in a minimal mathematical setting.

2 Geometric model

The interfacial crack front is a plane curve which we para-
meterize in terms of (s, y), where s is the arclength of the
curve and y is the angle made by the tangent vector of the curve
with respect to the horizontal direction. Inspired by the scale
separation in the thin elastic film, since the film thickness is much
smaller than the film width, we write down a phenomenological

growth law for the crack front in terms of the evolution of a 2D
curve with time given by

yt ¼ c1 y� y3

ym3

� �
þ c2 þ f ðysÞ½ �yss þ c3

ðs
0

ds2

ðs2
0

y s1ð Þds1; (1)

where Ab = qA/qb, s A [0,L], and the total arc length L(t) is a
function to be determined, ym is the saturated magnitude of y
after the fingers reaches a steady state. The coefficients c1, c2

and c3 are positive, and we will explain their mathematical
significance, as well as that of function f (ys), in the following
discussion. The assumption of gradient flow associated with
overdamped dynamics in eqn (1) is motivated by simplicity.
As our primary goal is to focus on the equilibrium shapes of the
crack front, we will in fact focus only on the quasi-static
evolution of the crack. To motivate the right-hand side, we
note that we have kept terms to O(y3), and further that the
equation is symmetric under the transformation y - � y and
s - � s (when f (ys) vanishes), approximately consistent with
the experimental observations when the finger amplitudes are
very small. As we will see, the term f (ys) breaks symmetry in a
way that allows us to explain the observations quantitatively
when figure amplitudes become large.

To understand the linear terms of the right-hand side of
eqn (1) we use an analogy to the archetypal instability in
elasticity of a compressed elastic strut, the elastica32 with a
uniform bending stiffness but the one that is adhered to a
linearly elastic substrate. Its equilibrium shape y(s) is given by
the equation

Byssss + Pyss + Ey = 0, (2)

where the elastica is initially aligned in the horizontal direc-
tion, B is its bending stiffness, P is the compressive force acting
in the horizontal direction, and E is the elastic modulus of
the substrate. Since ys = y in a linearized setting, where y is the
angle made by the tangent vector of the elastica with the
horizontal direction, eqn (2) can be rewritten in terms of y
as Bysss þ Pys þ E

Ð s
0y s1ð Þds1 ¼ 0, which can be integrated once

with respect to s to get

Byss þ Pyþ E

ðs
0

ds2

ðs2
0

y s1ð Þds1 ¼ 0: (3)

Comparing eqn (3) with eqn (1), we see that the coefficients
c1 � P, c2 � B and c3 � E, i.e. c1 corresponds to the buckling
force on the crack front that transitions from a straight
‘‘elastica’’ to an undulatory one, and the competition between
the bending resistance of the elastica and the elastic resistance
of the substrate selects the optimal wavelength of the undula-
tion, 2p(c2/c3)1/4. Of course, the crack front is not physically
analogous to an elastic filament. Nevertheless, we see that
transverse displacements in the thin incompressible elastic
film lead to effective in-plane compressive strains that cause
the crack front to undulate when the stress-intensity factor
switches sign,30 so that our geometrical model does indeed
capture the essence of this instability.

When the undulation evolves into a finite amplitude, the
fingers are still symmetric although they may have different

Fig. 1 (a) Schematic of the experimental setup used in ref. 29. (b) the
crack front29 loses stability to an undulatory mode when the confinement
parameter a = (B/mh3)1/3 is large enough.30 Here B is the bending stiffness
of the flexible plate, m is the shear modulus of the elastic film, h is the
thickness of the film, A is the amplitude of the finger, l is the wavelength of
the undulatory crack front, and w1 and w2 are the widths of the fingers
protruding down and up respectively, y (40 is counter-clockwise) is the
angle made by the tangent of the plane curve with respect to the
horizontal direction, and increases from 0 to its maximum value along
the red dashed line and decreases from its maximum value to 0 along the
blue solid curve. Experimental image adapted from ref. 29.
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widths (Fig. 1(b)). This means that the peak and the valley of
y(s) are equal in magnitude but opposite in sign, and the
reflection symmetry s to – s in y(s) may be broken (i.e. the
arc length of the red dotted curve, along which y(s) increases
from 0 to its maximum value, and that of the blue solid curve,
along which y(s) decreases from its maximum value to 0,
are not necessarily the same, as shown in Fig. 1(b)). A minimal
approach to the saturation of the amplitude demands the
choice y3/ym

3 in eqn (1) in light of the symmetry y - � y.
The same symmetry also exists in the post-buckling shape of
the elastica, characterized by the nonlinear version of eqn (3)
Dyss þ P sinðyÞ þ E

Ð s
0ds2

Ð s2
0 sin yðs1Þds1 ¼ 0, where we see that y3

is also the first nonlinear term in the expansion of sin y. The
peak and valley of y(s) scale with parameter ym; by tuning this
term we can control the finger profile to either be a graph or
not. Finally, we note that to break the reflection symmetry in
y(s), we introduce the coefficient f (ys) in eqn (1) thereby
allowing the patterns to form fingers of different widths. From
the perspective of the elastica, the coefficient c2 + f (ys) effec-
tively corresponds to the nonuniform bending stiffness of an
elastica that depends on ys. Thus, when an elastica is subjected

to the same compressive force, it is bent into a smaller
curvature at places where it is stiffer, i.e. f(ys) 4 0, resulting
in a finger with a larger width.

Using the rescaled variables t = c1t and s = s/L A [0,1], eqn (1)
can be written in the dimensionless form as

yt ¼ y� y3

ym3

� �
þ e2 þ f ysð Þ
� �

yss þ ð2pnÞ4e2
ðs
0

ds2

ðs2
0

yðs1Þds1;

(4)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
with c1 and c2 being the coefficients in

eqn (1), and n is the number of fingers in the domain. Although
the time scale c1 is a free parameter that potentially provides
the freedom to capture the dynamical evolution, we only
compare our model with the experiments where stationary
crack interfaces were studied. We use time evolution only as
a numerical tool to solve the equation to reach equilibrium.
The simplest form of f (ys) is

f ysð Þ ¼

�e12 if ys 4 0

�e12 if ys o 0

0 otherwise

;

8>>><
>>>:

(5)

which allows us to independently control the widths of fingers
B(e2 � e1

2)1/2. The �sign allows us to account for the experi-
mental fact that the finger protruding upward is fatter (or
thinner). As eqn (4) is autonomous in s, it is translationally
invariant for periodic boundary conditions. To determine the
increasing contour length L, we use the experimental fact that
the spacing of the fingers does not change as they grow, which
is enforced by the constraint

L

ð1
0

cos y ds ¼ L0; (6)

where L0 is the initial length of the straight crack front, and is
scaled by the thickness of the thin film h. For example,
in Fig. 2(a), there are 5 fingers, so we set n = 5 in eqn (4) and
L0 = 20 in eqn (6) as l = 4.

3 Results

With the periodic boundary conditions and random perturba-
tions on y = 0 as the initial condition, we show that the steady-
state solution of eqn (4)–(6) reproduces the profile of the crack
front. The 3 fitting parameters in this model, e, e1 and ym, are
determined using an optimization framework. We start with an
initial guess of the parameters, and use the covariance matrix
adaptation evolutionary strategy (CMA-ES) method33,34 to con-
verge to an optimal set of solutions that minimize the square
error between the computed profile and the experimental
results. The CMA-ES is a stochastic derivative-free optimization
method for non-linear or non-convex continuous optimization
problems. By incrementally increasing the probability of pre-
viously successful candidate solutions, we iteratively perform
the following three steps: (1) sample p new n-dimensional
solutions following the distribution with the updated mean

Fig. 2 Experimental images from ref. 29 show the saturated interfacial
cracks that form finite amplitude fingers for two different values of film
thickness. The red dashed curve traces the interfacial crack, and the black
solid curve is obtained by solving the geometric model, eqn (4)–(6).
Parameters are chosen by the CMA-ES method to generate 5 fingers
that minimize the square error between the computed profile and
the experimental result. (a) ym = 1.022p, e = 0.022, e1 = 6.222 � 10�3.
(b) ym = 0.5122p, e = 0.016, e1 = 0.0101. In both cases, the +sign is adopted
in eqn (5) when ys 4 0. (c) and (d) Comparisons of the tangent angle y(s) of
a single digit obtained from experiment and our geometrical model, as a
function of s A [0,1] the scaled arclength coordinate. (c) Corresponds to
the example of (a) and (d) corresponds to the example of (b).
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and covariance (with step size built in), (2) evaluate the cost
function and re-order the sampled solutions based on their
fitness, and (3) update the internal state variables, including
the mean, the isotropic and anisotropic evolution path, the
covariance matrix, and the step size, based on the q best out
of p solutions, until we have converged to the best fit of
the data.

Fig. 2(a) and (b) show experimental pictures of the crack
front taken from ref. 29 corresponding to different film thick-
nesses. In (a) the finger profile takes the form of a graph while
in (b) it is not a graph and must be parametrized in terms of
arc-length. In both cases, the red curve traces the front, and the
black solid curve represents the numerical solutions solved from
eqn (4)–(6). As the solution is periodic, we consider a single
finger from the numerical result, and compare the computed y
with the 5 fingers from the experiment, as shown in Fig. 2(c)
and (d), which correspond to the examples of (a) and (b)
respectively. We see that the amplitude, the width, the spacing
and the tangent angle of the fingers are all captured well. Our
approach thus allows us to use just 3 fitting parameters to
quantitatively reproduce a class of crack fronts with different
shapes.

4 Conclusions

Complex interfacial patterns often arise from simple causes.
However, even these simple causes lead to mathematical models
that are formidable, involving free boundary problems. Using
concepts from symmetry and optimization, we have shown that
it is possible to compress the information associated with a
particular interfacial instability that arises from peeling a flexible
elastic plate off a soft, thin confined adhesive film, where the
adhesive failure occurs via the loss of adhesion at one of the
surfaces attached to the adhesive, and an undulating crack front
may appear and evolve into a 2D rippling pattern. Our minimal
mathematical model, eqn (4) and (5) has 3 fitting parameters e,
e1 and ym that allow us to capture the wavelength at the onset of
undulation, the finger amplitudes and widths of the crack front.

Our model can be interpreted physically in terms of the
buckling and post-buckling response of an initially straight
elastica that has a nonuniform bending stiffness and is
adhered to a linearly elastic substrate. Our model is also similar
to the classic Allen–Cahn equation,35,36 with two important
differences: the nonlocal double integral that corresponds to
the effective elastic resistance of the substrate that prevents the
pattern from coarsening indefinitely, and f (ys) that is respon-
sible for breaking the reflection symmetry of y(s) and results in
fingers of different widths. More generally, our model describes
a class of phase separation phenomena with an eventual arrest
at a characteristic size that include pattern formation of a two-
phase epitaxial monolayer grown on an elastic substrate,37 the
evolution of nanoporosity in dealloying,38 and the continuous
model used to describe the capillarity-driven and elastically
limited coarsening of a one-dimensional array of lamellae.39

These models are similar mathematically because they share

the same embedded symmetries, even though they are based
on different physical mechanisms. More detailed studies can
be carried out to generalize the symmetry arguments to
describe a wide range of periodically moving interfaces by
designing the effective bending stiffness of the elastica c2 + f,
or alternatively designing the effective substrate modulus c3 in
eqn (4) to be a spatial-temporal field.

We thank Mattia Gazzola for many discussions on the CMA-
ES method. We thank the Harvard-MRSEC DMR-1420570, and
the MacArthur Foundation (LM) for support.
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