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Programming curvature using origami

tessellations

Levi H. Dudte’, Etienne Vouga', Tomohiro Tachi? and L. Mahadevan™34>*

Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can
be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom
collapsible structures—we show that scale-independent elementary geometric constructions and constrained optimization
algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or
varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these
geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we
characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated
with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of
absolute scale, as well as the quantification of the energetic and material cost of doing so.

invention of paper in China, but was refined in Japan.

The ability to create complex origami structures depends
on folding thin sheets along creases, a natural consequence of the
large-scale separation between the thickness and the size of the
sheet. This allows origami patterns to be scaled; the same pattern
can be used at an architectural level or at a nanometric level. The
richness of the mathematics of origami', together with the promise
for technology in the context of creating building blocks for foldable
or deployable structures and machines?, has led to an explosion of
interest in the subject. Much of the complexity of the folding patterns
arises from the possibilities associated with the basic origami fold—
the unit cell associated with a four-coordinated mountain-valley
structure that forms the heart of the simplest origami tessellation
depicted in Fig. la,c. Indeed, tiling the plane with this unit cell
yields the eponymous Miura-ori, popularized as a structure for solar
sail design’, although the pattern has been known at least since
the fifteenth century, for example, in Bronzino's Portrait of Lucrezia
Panciatichi (circa 1545). It also occurs in many natural settings,
including insect wings and leaves*®, and vertebrate guts®, and is
the result of the spontaneous wrinkling of soft adherent thin elastic
films”™. Interest in the Miura-ori and allied patterns has recently
been rekindled by an interest in mechanical metamaterials'®'* on
scales that range from the architectural to the microscopic.

O rigami is an art form that probably originated with the

Geometry of Miura-ori

The suitability of the Miura-ori for engineering deployable or
foldable structures is due to its high degree of symmetry embodied
in its periodicity, and four important geometric properties: it can
be rigidly folded (that is, it can be continuously and isometrically
deformed from its flat, planar state to a folded state); it has only
one isometric degree of freedom, with the shape of the entire
structure determined by the folding angle of any single crease; it
exhibits negative Poisson’s ratio (folding the Miura-ori decreases its
projected extent in both planar directions); and it is flat-foldable

(that is, when the Miura-ori has been maximally folded along its one
degree of freedom, all faces of the pattern are coplanar).

Given the simplicity of the Miura-ori pattern, a natural question
is to ask if it has generalizations. In particular, for an arbitrary
surface with intrinsic curvature, does there exist a Miura-ori-
like tessellation of the plane that, when folded, approximates that
surface? If so, can this pattern be made rigidly foldable with one
degree of freedom? The ability to even partially solve this inverse
problem would open the door to engineering compact, deployable
structures of arbitrary complex geometry, while highlighting
the importance of obstructions and constraints that arise when
working with materials that transform by virtue of their geometric
scale separation. We build on our collective understanding of
the geometry of Miura-ori”®, mechanics of origami'®", existing
explorations of the link between fold pattern and geometry'
(Fig. 1b), and previous origami"’ and kirigami*®** surface
approximations, to pose the inverse problem of fitting Miura-like
origami tessellations to surfaces with intrinsic curvature. We then
show that the problem can be solved for generalized cylinders using
a direct geometric construction and for arbitrarily curved surfaces
using a simple numerical algorithm. Furthermore, we characterize
the deployability of generic structures, showing how modifications
to the geometry of patterns fitting the same target surface effectively
tunes their mechanical bistability. Finally, we demonstrate self-
similarity of patterns across resolution scales and quantify a trade-
off between accuracy and effort involved in surface approximation
with origami tessellations.

Because the periodic Miura-ori pattern tiles the entire plane,
we look for generalized origami tessellations, using quadrilateral
unit cells that are not necessarily congruent but vary slowly in
shape across the tessellation. An embedding of such a pattern in
space can be represented as a quadrilateral mesh given by a set
of vertices, with edges connecting the vertices and representing
the pattern creases, and exactly four faces meeting at each
interior vertex. A quadrilateral mesh of regular valence four
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Figure 1| Geometry of generalized Miura-ori. a, Planar periodic Miura-ori. b, Standard (top) and modified (bottom) Miura-ori unit cells showing the
mountain-valley folds. ¢, Mountain/valley fold orientations and the pattern of fixed/free nodes for the numerical optimization method. Grey shaded area
represents one unit cell. d, Constraints at nodes and facets. Facet (quad) planarity implies that the volume of the tetrahedron defined by each quad will
vanish. Developability requires that Zf‘a,-:Zn and local flat-foldability requires a1 + a3 = + a4 =7 (Kawasaki's theorem).
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Figure 2 | Optimal calculated origami tessellations and their physical paper analogues. Optimal calculated origami tessellations (a-f) and their physical
paper analogues (g-1). a,g, Logarithmic spiral—zero Gauss curvature (generalized cylinder). b,h, Sphere—positive Gauss curvature. ¢,i, Hyperbolic
paraboloid—negative Gauss curvature. dj, Pill—cylindrical waist with positively curved caps. e k, Candlestick—cylindrical waist with negatively curved

caps. f|l, Vase—positively curved base with negatively curved neck.

must satisfy two additional constraints to be an embedding of a
generalized Miura-ori tessellation: each face must be planar, and
the neighbourhood of each vertex must be developable—that is, the
interior angles around that vertex must sum to 2m (Fig. 1d).

Inverse origami design
A generalized Miura-ori tessellation is guaranteed to possess some,
but not all, of the four geometric properties of the regular Miura-ori

pattern. An arbitrary unit cell has only one degree of freedom, and
this local property guarantees that the global Miura-ori pattern, if
it is rigid-foldable at all, must have only one degree of freedom.
Moreover, because each unit cell must consist of three valley and
one mountain crease, or vice versa, it must fold with negative
Poisson’s ratio. Unfortunately, no local condition is known for
whether an origami pattern is flat-foldable; indeed it has been
shown?® that the problem of determining global flat-foldability is
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Figure 3 | Foldability. a, Generalized cylindrical Miura-ori patterns are rigid-foldable and flat-foldable. The logarithmic spiral here folds rigidly from a flat
pattern (left) through the target surface and onto the flat-folded plane (right). b, Generalized Miura-ori patterns solved numerically on doubly curved
surfaces, however, are not rigid-foldable or flat-foldable. We add an extra edge to each planar quad, thereby allowing bending, to deploy these structures.
Shown here is the rigid folding of a triangulated hyperbolic paraboloid pattern from flat (left) to solved (right) states. ¢, Structures that are not
rigid-foldable are bistable, with energetic minima at the flat and solved states. For intermediate folding states we minimize the bending of all quads to a
non-zero residual strain configuration. Decreasing the flat-foldability residual €5 by an order of magnitude effectively halves the magnitude of the energy
barrier. The y axis values represent the total bending energy (Eiota) normalized by the largest bending energy detected in a single quad during simulation
(Emax)- d, Hyperbolic paraboloid patterns with e =€ =1.6 x 107" (top) and eff =€ /10=1.6 x 1072 (bottom) where red/blue indicates mountain/valley
assignments. The patterns correspond to the top and bottom energy curves in ¢, respectively (see Supplementary Movie 2). e, Force-extension
experiments on folded paper hypars corresponding to the patterns in d confirm that the larger the residual, the higher the stiffness of the resulting
structure (red), and thus the higher the barrier separating these bistable structures (xo =90 mm and Fnax =0.431 N). The blue values demonstrate the
force-extension curve associated with the 'softer’ structure (d, bottom). The first experiment with each structure is different owing to the role of some
irreversible deformations; however, after a couple of cycles, the force-extension characteristic settles onto a reproducible curve. The x axis values represent
the extension of the origami structure (Ax) normalized by the initial length of the origami structure (xo).

NP-complete. However, several necessary flat-foldability conditions These considerations now allow us to formulate the inverse
do exist, of which the two most pertinent are: first, if a generalized ~ Miura-ori problem: given a smooth surface M in R* of bounded
Miura-ori tessellation is flat-foldable, each pair of opposite interior normal curvature, an approximation error €, and a length scale
angles around each vertex must sum to m (ref. 24; Fig. 1d), and s, does there exist a generalized Miura-ori tessellation that
second, if there is a non-trivial generalized Miura-ori embedding can be isometrically embedded such that the embedding has
(not flat or flat-folded) which satisfies Kawasaki’s theorem, it is Hausdorff distance at most € to M; and also has all edge lengths
globally flat-foldable and rigid-foldable™. In practice, enforcing a  at least s? In particular, do there exist such tessellations that
weaker version of Kawasaki’s theorem does improve the degree to  satisfy the additional requirement of being flat-foldable? Less
which a generalized Miura-ori tessellation is deployable and, in the ~ formally, we ask here if it is possible to find optimal Miura-
case where a flat-foldable configuration cannot be found, one can  ori tessellations that can be used to conform to surfaces with
characterize the departure from rigid-foldability by measuring the single or double curvature—that is, generalized developables,
maximum strain required to deform or snap the bistable tessellation  ellipsoids and saddles, and simple pairwise combinations
between flat and curved states, a desirable property for stable of these—that might serve as building blocks for more
deployable structures. complex sculptures.
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Figure 4 | Accuracy-effort trade-off in origami tessellations. a, Three Miura-ori approximations of a hyperboloid, shown in part, differ from each other by
a factor of ten in the number of faces (cells) per strip (n). Increasing the density of facets allows us to approach the smooth hyperboloid. b, A simple cost
function, C, that is the sum of the number of faces normalized by its maximum value (N) and the Hausdorff distance normalized by its maximum value (dy)
to the smooth hyperboloid as a function of the number of cells (faces) per unit strip (n), shows a clear minimum (see Supplementary Information for
details): as the cost of facets (independent of their area) increases, the optimum shifts towards the coarse approximation, whereas as the facets become
cheaper, the optimum shifts towards the finer approximation. In the inset, both components of the cost function are shown as a function of the number of
faces/strip (n). wy and wy are cost weights associated with the number of unit cells (effort) and the Hausdorff distance to the target hyperboloid
(accuracy), respectively. ¢, The non-dimensional area of the curved Miura-ori approximation to the hyperboloid (normalized by the area of the smooth
hyperboloid) A/Ag as the number of facets increases approaches a constant greater than unity. In the inset, we see that (Ag —A) ~n~", consistent with the

fact that the facets are self-similar.

We illustrate the richness of the solution space by starting with
a simple analytic construction for generalized cylinders and a
numerical algorithm for generic, intrinsically curved surfaces. The
generalized cylinder constructions—developable surfaces formed
by extruding a planar curve along the perpendicular axis—are
guaranteed to be rigid-foldable with one degree of freedom and
flat-foldable (see Supplementary Information for details), making
them well-suited to applications involving freeform deployable
and flat-packed structures (Figs 2a and 3a and Supplementary
Movie 1). This is similar to a study published while this work was
under review", although the numerical approach therein did not
recognize the underlying geometric construction and the ensuing
rigid-foldability and flat-foldability of this class of surfaces (see
Supplementary Information). For more general surfaces M with

intrinsic curvature, we use a numerical optimization algorithm to
solve the inverse problem, using the constraints that a quadrilateral
mesh approximating M is a generalized Miura-ori if it satisfies a
planarity constraint for each face, and a developability constraint
at each interior vertex (see Fig. 1d). For a mesh with V vertices
and F~ V faces, there are therefore 3V degrees of freedom and
only V +F a2V constraints, suggesting that the space of embedded
Miura-ori tessellations is very rich; it is therefore plausible that
one or more such tessellations that can approximate a given M
can be found. Our algorithm allows us to explore this space,
constructing tessellations for surfaces of negative, positive, and
mixed Gauss curvature. We observe empirically that whereas
surfaces of negative Gauss curvature, such as the helicoid and
the hyperbolic paraboloid, readily admit generalized Miura-ori
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tessellations for a variety of initial guesses for pattern layout,
the space of Miura-ori patterns approximating positively curved
surfaces such as the sphere is less rich. Indeed, choosing initial
layouts that respect the rotational symmetry of the surface is
particularly important for rapid convergence in the latter situation,
and also yields surfaces of mixed curvature, such as formed by
gluing all pairwise combinations of patches—that is, 0/4,0/—,+/—
curvature, as shown in Fig. 2a-f. To realize our results physically,
we laser-perforated the patterns on sheets of paper and folded them
manually, a process that is at present the rate-limiting step in large-
scale manufacturability. The results shown in Fig. 2g-1 agree well
with our calculated shapes.

Energetic and material costs

In contrast with generalized cylinders, solutions to the numerical
optimization problem are guaranteed only to be discrete
developable, and are not necessarily flat- or rigid-foldable: the
tessellation can be embedded without strain so that it approximates
M, or so that it is planar, but generally these are isolated states
and folding/unfolding the pattern requires snapping through
strained configurations (Fig. 3b,c). To characterize the failure of
a generalized Miura-ori tessellation to be rigid-foldable, we use a
simple physically based numerical simulation: instead of modelling
each quadrilateral face of the pattern as rigid and planar, we divide
it into a pair of triangles and model it as a thin plate with an elastic
hinge (see Supplementary Information for details). Beginning with
the folded configuration, we choose one crease in the pattern and
incrementally decrease its bending angle from its folded value
0 =0, to its flat value & = 0. For each intermediate value of the
angle, we allow the pattern to relax to static equilibrium; the strain
energy of the equilibrium configuration measures the geometric
frustration of that intermediate state (Fig. 3¢).

To tune this bistability we introduce an inequality constraint
in our numerical optimization approach, by replacing Kawasaki’s
theorem with a tolerance on the residual associated with deviations
from flat-foldability given by | — a; — o3| < € < 1, as shown in
Fig. 1. Because flat-foldability implies rigid-foldability for non-
trivial configurations®, decreasing e is expected to yield Miura-ori
patterns that are closer to rigid-foldable. We test this by considering
a Miura-ori tessellation approximating a hyperbolic paraboloid. In
Fig. 3c,d, we show that this is indeed the case; reducing the flat-
foldability residual by an order of magnitude yields a pattern that
approximates the same target surface, but whose energy barrier to
folding is half that of the pattern found without the flat-foldability
restriction (see Supplementary Movie 2 for a visualization of the
energy barriers as a function of the geometry of folding). To confirm
this experimentally, we subjected folded paper hypars with two
extreme values of the flat-foldable residuals to a simple tensile
test. In Fig. 3e, we see that the hypar with the larger residual is
stiffer, confirming our theoretical predictions (see Supplementary
Information for experimental details).

Finally, we turn to the accuracy of using folded structures
to approximate smooth surfaces. Clearly, as the individual folds
become finer the resulting structure will conform more closely to the
desired target and will require more effort to fabricate. To quantify
the trade-off between accuracy and effort, we consider an origami
representation of the hyperboloid, shown in Fig. 4a, using three
different values for the density of cells (), each separated by an order
of magnitude. A simple cost function associated with the weighted
sum of the number of faces (N) and the Hausdorff distance (dy)
to the smooth surface allows us to follow the minimum cost as a
function of the relative weight penalizing effort and accuracy (see
Supplementary Information for details); as expected, when facets
are cheap, one can get high accuracy at low cost, but as they become
more expensive, for the same cost, accuracy plummets, as shown in
Fig. 4b. Furthermore, as the number of facets increases, the area of

the folded origami tessellation scaled by the true area of the smooth
surface it approximates asymptotically approaches a constant, as
shown in Fig. 4c.

Outlook

Our study provides an optimization-based procedure to solve the
inverse problem of determining generalized Miura-ori tessellations
that conform to prescribed surfaces. For generalized cylinders,
we have shown that the constructed pattern is rigid-foldable and
flat-foldable, and thus can be easily adapted to thick origami®.
For doubly curved surfaces, our computational tool allows us to
calculate physically realizable tessellations, which we confirm by
building paper models. When the Miura-ori tessellations found
using our tool are not flat-foldable, a mechanical model of these
surfaces allows us to quantify the strains and energetics associated
with snap-through as the pattern moves from the flat to folded
configuration. Refining the process allows the folded approximant
to approach the smooth target surface, which we quantify via
a trade-off between accuracy and effort. All together our study
opens the way to origamize arbitrary smooth heterogeneously
curved surfaces by starting with the simplest origami fold
and stitching together an alphabet of generalized Miura-ori
tessellations into a flexible design language for engineering shape at
any scale.

Methods

Methods and any associated references are available in the online
version of the paper.
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1 Geometry of the Miura-ori

An origami tessellation made of unit cells composed of four quadrilaterals, as in the Miura-
ori pattern, but whose unit cells are not necessarily congruent but vary in shape across
the tessellation, will be termed a generalized Miura-ori pattern. An embedding of such a
pattern in R3 can be represented as a quadrilateral mesh: a set of vertices p’ € R?, edges
connecting the vertices and representing the Miura-ori creases, and faces, with four faces
meeting at each interior vertex. Given an arbitrary quadrilateral mesh of regular valence
four, when is it an isometric embedding of some generalized Miura-ori tessellation? Two
constraints are evident: each quadrilateral face must be planar, and the neighborhood of
each vertex must be developable, i.e. the interior angles around that vertex must sum to
2m. It is also easy to see that these conditions are sufficient, in the case that the tessellation
is assumed to be topologically trivial.

A quadrilateral mesh that satisfies these conditions is an isometrically embedded gener-
alized Miura-ori tessellation, but what about the four additional properties listed in the
introduction?

e One degree of freedom: a unit cell with four planar quads in generic position, i.e.
whose four creases have nonzero turning angle, has only one degree of freedom. This
local property bounds the possible global isometric deformations: the Miura-ori pat-
tern, if it is rigid-foldable at all, has only one degree one freedom, except in the
degenerate case where one of more of its hinges have zero turning angle.

e Negative Poisson’s ratio: this property again can be understood by examining a single
unit cell: a rigid-foldable unit cell must consist of three valley and one mountain
crease, or vice-versa, and hence folds with negative Poisson’s ratio.

e Rigid-foldability: As demonstrated by Tachi [1], finding a non-trivial flat-foldable
configuration of a structure (neither flat nor flat-folded) guarantees rigid-foldability
with a single DOF. In the case where a flat-foldable configuration (and therefore rigid-
foldable) cannot be found, one can instead characterize the residual strain required
when folding the tessellation from its flat to its embedded state by subdividing quads
into triangle pairs (effectively increasing the DOFs) and rigid-folding this modified
pattern.

o Flat-foldability: Unfortunately, no sufficient local condition exists for whether a flat
origami pattern is globally flat-foldable, and it is known [3] that the problem is NP-
complete. However several necessary local conditions do exist, the most salient of
which is Kawasaki’s Theorem [4]; applied to the generalized Miura-ori pattern, it
states that if the pattern is flat-foldable, each pair of opposite interior angles around
each vertex must sum to w. We shall see in Section 4 that in practice, enforcing a
loose version Kawasaki’s theorem improves the mechanical performance of the origami
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tessellation during folding.

2 Constructing Generalized Miura-ori tessellations

The inverse Miura-ori design problem can now be formulated: given a smooth surface M in
R3 with boundary that is homeomorphic the disk, an approximation error €, and a length
scale s, does there exist a generalized Miura-ori tessellation that a) can be isometrically
embedded such that the embedding has Hausdorff distance at most € to M; b) has all
edge lengths at least s? Does there exist such tessellations that satisfy the additional
requirement of being flat-foldable?

Experiments suggest that the Gaussian curvature of M significantly influences the difficulty
of this inverse problem. Developable surfaces and surfaces with negative Gaussian curvature
both readily admit approximations by generalized Miura-ori tessellations; the numerical
optimization presented below can also find Miura-ori approximations of positively-curved
surfaces, but the space of such tessellations appears to less rich.

2.1 Explicit Construction for Generalized Cylinders

The simplest case is that of generalized cylinders — developable surfaces formed by extruding
a planar curve along the perpendicular axis. Therefore, we first give a constructions for
approximating generalized cylinders — surfaces r(s,t) = ~(s) + tZ for a plane curve =
— by flat-foldable generalized Miura-ori tessellations. We begin by approximating v(s)
by a piecewise-linear discrete curve passing through N nodes I';, and choose a set of N
control points P; on one side of the curve for the Miura-ori structure to pass through. To
understand this, consider a strip of paper with uniform width, shown in blue, and rigidly
align the left boundary of the strip with the line passing through I'; and P (see Fig. S.1a).
Now draw a line (shown dashed) to the next node I'y and fold the strip along the bisector
of I'1 Py and P;I's, shown in red. Continuing this process along all N nodes and control
points, with each crease edge given by a bisection yields a construction that has 2N free
parameters — the position each control point. Then the pattern can be optimized for ¢
or other design goals such as regularity of the quadrilaterals, etc. and indeed it can be
shown that several such strips can be glued together into a generalized Miura-ori pattern
approximating a generalized cylinder of any curvature, such as extruded spirals or sine
waves that are completely flat-foldable (see Moviel).

Call the previous construction a Miura-ori strip. Given a extrusion parameter T', several
copies of a Miura-ori strip can be glued into a generalized Miura-ori tessellation approx-
imating the generalized cylinder r(s,t) = ~(s) + t2. Take strip j and displace the right
side of the strip by 7" in the Z direction, if j is odd, or the left side, if j is even (see Fig.
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Figure S.1: Geometric construction (a) In-plane strip construction: choose I'; to dis-
cretize a smooth curve 7(s), choose control points P;, beginning at I'; wrap a strip of
uniform width (blue) back and forth between the discretization and control points, reflect-
ing over bisectors (red) of the lines through I';, P; and P;, I'; + 1. (b) Extrude all points
on one side of the strip by T'. (c) Mirror the strip over the construction plane to produce
a single column of Miura-ori cells. (d) Translate and glue copes of the column to create a
generalized Miura-ori cylinder.

S.1d), then translate the entire strip rigidly in the Z direction by jT' to complete a new
column of Miura-ori cells. It is clear that the strips align as a quadrilateral mesh, that
they approximate r, and that the faces of the mesh are planar. It remains to be shown
that this mesh is developable at the vertices.

Consider 61 and 6, the interior angles of two consecutive quads in the strip construction,
in Fig. S.1b. Because this strip will be mirrored to form a column of Miura-ori cells,
developability requires that #; + 602 = 7. Denoting by a, b, ¢ the lengths of the edges marked
in Fig. S.1b, we can lay out a coordinate system with a(T") = (A,0,T), b = (B1, B2,0) and
¢ = (C1,C5,0) for some A, B;, C;, and
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AB;

costn(t) = VA +T2\/B} + B}
AC,
N N s
Setting K(T) = ——2— we have

VAZLT2
cos 61 (T) + cos 02(T) = K(T)( cos 61(0) + cos 62(0)) = 0

since by construction 6;(0) + 62(0) = 7 and so cos 01 (0) + cos #2(0) = 0. Therefore 6;(T) +
02(T) = m and the tessellation is developable for any T'.

Additionally, when consecutive strips of the tessellation are mirrored, the sum of opposite
interior angles about any vertex is also 61(T) + 62(T'), and so the construction yields a
tessellation that satisfies Kawasaki’s condition (locally flat-foldable) at every node. The
tessellation is trivially globally flat-foldable and rigid-foldable, which can be seen by ob-
serving that in any folded state the width of each strip in the z direction is constant and
all strips are identical up to rigid translation and reflection (see Fig. S.2).

While our work was under review, we were made aware of a paper that focuses on a small
subset of the problems treated here, namely that finding patterns that fit interstitially be-
tween two generalized cylindrical surfaces, and by choosing control points P to fit a second
generalized cylindrical surface [2]. Our method provides a simple geometric approach for
the surface types solved for numerically in [2]. Our construction recovers this application,
but also explicitly guarantees flat- and rigid-foldability, two properties left unproven by the
authors of [2]. Because our method guarantees these properties by construction, we imple-
ment a simple layout algorithm which directly computes intermediate folding states of the
Miura strip using spherical trigonometric relationships between fold and interior angles [5],
instead of relying on a numerical simulation to determine these states as in [2].

2.2 Curved Surfaces

For surfaces with intrinsic curvature, to our knowledge no explicit generalized Miura-ori
construction exists; we propose a numerical optimization algorithm to solve for a tessel-
lation in this setting. Let M be the target surface that is to be approximated, and pa-
rameterize the embedded generalized Miura-ori tessellation by a quadrilateral mesh with
vertices p’. As discussed above, the mesh is generalized Miura-ori if it satisfies a planarity
constraint for each face, and a developability constraint at each interior vertex. For a mesh
with V' vertices and F' =~ V faces, there are therefore 3V degrees of freedom and only
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Figure S.2: Global flat-foldability Starting with the mesh in its designed configuration
(some non-trivial folded state), pick a new fold angle with the same MV assignment for the
first quad pair in the first column (pink, top left). Using single-vertex fold angle relations
from [5] solve for fold angles for each consecutive quad pair in this column (alternating
colors along the top) such that the folded width of the pair matches that of the first pair.
Note that these fold angles will alternate in MV sign from pair to pair. Because the strip
has constant width, the width of the folded column will also be constant through folding
and the entire repeated structure will arrive at zero width simultaneously.

V + F ~ 2V constraints, suggesting that the space of embedded Miura-ori tessellations is
very rich; it is therefore plausible that one of more such tessellations can be found that
well-approximate a given M.

Indeed, in practice for many classes of surfaces a tessellation can be found by numerical
optimization. The method consists of the following steps:

1. Guess initial positions pé for the vertices of the mesh based on quad mesh parame-
terization of M this guess closely approximates M but does not necessarily satisfy
the planarity, developability or additional constraints.

2. Pin the corners of each unit cell guess to the quads in M, ensuring that the generalized
Miura-ori surface remains close to M.

3. Solve the following constrained optimization problem to produce a developable pat-
tern which approximates M. Note that this pinning pattern leaves at least one free
node between all fixed nodes in optimization.

mi_n f(pi7p6) s.t. Yplanarity (pl) = 0, gdevelop(pi) =0
p'L

where the objective function f and the constraint functions are described in more
detail below.
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2.2.1 Initial Positions

The representation of the curved target surface is a regular, orientable quad mesh (all
interior nodes have valence four and the normals of the quads are orientable). We will
call this the base mesh. The base mesh can be obtained by discretizing the two families of
curves formed by a parametrization of the target surface and forms the basis for the initial
structure guess provided to the optimization routine. To construct an initial guess for the
positions of all nodes in the Miura-ori structure (see Fig. S.3), we proceed by

1. populating each individual quad with 9 nodes (4 at corners, 4 at edges and 1 central),

2. displacing the edge and central nodes to construct a Miura-ori unit cell guess at each
quad according to chosen orientations and local length scales, and

3. merging nodes at interior edges by averaging their positions.

. < >

Figure S.3: Initial positions (Left) A single base mesh quad (bold) is initially populated
with nine nodes (four corner nodes, four edge nodes given by averaging the endpoints and
one central node given by averaging the four corners) which will make up a single Miura-ori
unit cell (blue). (Middle) The central node and edge nodes in the unit cell (green) are
displaced (dashed) according to the choice of pattern orientation to form a structure which
“looks” like a single Miura-ori cell. (Right) Because each base mesh quad is converted
into a single unit cell independently, we merge nodes (red) between adjacent base mesh
quads to form the final mesh. For corner nodes sets (blue) this is only data structures
because their positions are fixed, while for edge nodes pairs (green) we also average the
two positions to produce the merged node position.

2.2.2 Fixed Nodes

The positions of the four undisplaced corner nodes in each “unit cell” are required to remain
fixed throughout optimization. This ensures that the solved structure closely approximates
the target surface and further flexibility in designing patterns.
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2.2.3 Developability Constraints

The planarity and developability constraints can both be formulated in terms of the vertex
positions p’. For a quadrilateral face with vertices p?, p°, p¢, p? oriented clockwise, planarity
is equivalent to vanishing of the tetrahedral volume

Yplanarity = [(Pb - pa) X (pc - pa)] : (pd - pa)'

Developability requires that the angles around each interior vertex sum to 27. In other
words, if the neighbors of vertex i are nq,...,n,;,, oriented clockwise, the developability
constraint is given by

m
Jdevelop = 2m — Z é(pnﬂ' _ pl’pnj+l _ pz)
j=1

where the angle between two vectors can be computed robustly using
Z(v,w) = 2atan2(|jv x w||, [|[v]|[|w]] + v - w).

For the numerical optimization, the Jacobians of both constraints are required. Formulas
for these derivatives can be readily computed analytically.

2.2.4 Flat-Foldability Constraints

An origami structure is called flat-foldable if it has a folded state in which all of its faces
are coplanar (i.e. every face has moved from one plane, the initial paper, to a second plane,
the flat-folded state). Consider single flat-folded vertex with four folds. One of the folds
will have opposite orientation from the other three. The unique fold can be either of the
two folds which do not touch the largest a;, and will be tucked inside the other folds in the
flat-folded state. In the flat-folded state, consecutive angles interior angles have opposite
orientations around the vertex, and walking around this vertex is equivalent to swinging
back and forth in the flat-folded state by the « values. Assuming developability, we know
that
a1 + as + ag + ag = 27,

Because opposite pairs of interior angles share orientation in the flat-folded state, the sums
of these pair must be equal (no net change when walking around the entire vertex).

a1+ a3 =as 4+ ay
From these two statements we can see that

a1 t+az3=m
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and
Q9 +oyg =T

In practice, we have found that we cannot satisfy exact flat-foldability on intrinsically
curved surfaces. However, we can break open the standard flat-foldability constraints into
inequalities which express bounds on a flat-foldability residual. Notice that we have a
single scalar at each interior vertex which represents the flat-foldability residual.

rip=m— (a1 +a3) = —(7 — (a2 + as))

Introducing a tolerance € on 7y in the form of a pair of inequality constraints allows the
each pair of alternating angles at an interior vertex to sum to a value within € of .

Yftat-foldability (P') = £7rff —€ <0

In the limit ¢ — 0 these inequalities reduce to the standard equality Kawasaki condi-
tion.

2.2.5 Special Cases

e Rotational Symmetry

For surfaces with rotational symmetry we enforce developability constraints over a
symmetric strip using periodic boundary conditions. The symmetric strip can then
be used to reconstruct the full developable Miura-ori structure. This strategy is
particularly useful when analyzing the asymptotic behavior of solved patterns over
magnitudes of order changes in pattern resolution, as the computational demands
are linear in strip resolution but the size of the solved pattern grows quadratically
with strip resolution. We employed this strategy for the sphere, hyperboloid and all
mixed curvature examples.

e Triangulated Pattern

For some examples, the developability constraint residuals fail to vanish completely.
Typically these non-zero values are on the order of at most 1le — 6. These residuals
can still introduce error in the layout process, however, so in these cases we employ
a second phase of optimization:

— introduce additional degrees of freedom in the optimization by dropping the
quad planarity constraint,

— triangulate the pattern so that each interior node has six incident edges (and
therefore six incident interior angles) and

— solve ggevelop = 0 over six angles rather than four at each interior node.
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We only found need to employ triangulation on surfaces with rotational symmetry,
and we report the relevant residuals associated with both optimization phases with
each example.

e Normalized Quad Planarity

Because the quad planarity constraint gplanarity(pi) = 0 is just the volume of the
quad, it scales as L? with the length L of the pattern edges. For most examples we
are able to solve these constraints to arbitrary precision and the scaling is irrelevant.
However, for the hyperboloid we compute patterns over two orders of magnitude of
pattern resolution, so the scaling of gplanarity becomes relevant: more highly resolved
patterns can more easily satisfy quad planarity by virtue of their smaller length scales.
To address this, we solve a normalized version of quad planarity:

J
o gplanarity .
Yplanarity-norm — L3 - O>
J

where L; is a length scale associated with the initial geometry of the G quad. We
choose L; to be the mean of the four initial side lengths of quad j.

2.2.6 Objective Function

The objective function minimizes changes in the lengths of pattern edges and cross edges
(see Fig. fig:objective) of the initial guess. Edge ¢ with current length L* and initial length
L%) contributes

1
2Ly
Because this energy is not balanced against other terms we neglect a stiffness prefactor.
The objective function is zero at the beginning of each run and Zf‘i 1 E; for a structure of
M total edges (pattern and cross) thereafter. The purpose of the objective function is to
preserve the initial user-provided positions as closely as possible during optimization (E;
has no physical significance).

E; = — (L' — L)%

2.2.7 Numerical Optimization Approach

We implement the numerical optimization in Matlab using the Interior Point algorithm of
fmincon. Fixed nodes can be implemented either as linear (which require no Jacobian) or
simply by leaving these variables out of p’. We provide analytic Jacobians for planarity and
developability constraints (non-linear equality) and flat-foldability constraints (non-linear
inequality). Successful optimizations typically find minima and satisfy constraints by a
maximum residual of le-10 within several hundred iterations.

10
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(c) Regular symmetric (d) Triangulated regular symmetric

Figure S.4: Constraint patterns Blue nodes: free, red nodes: fixed, dashed quads:
Jplanarity; OPen circles: gqevelop and ghat-foldability, green arcs: rotational symmetry pairs

3 Examples

See Fig. S.6 for additional structures and patterns not presented in the main text.

4 Foldability

Note that satisfying gplanarity = 0 and ggevelop = 0 guarantees the existence of only two
states (three counting the mirror symmetric configuration obtained by flipping all MV
assignments) of the curved Miura-ori structure: a single folded configuration in R? and
a developed pattern in R%2. The existence of other folded states of the pattern and, in
particular, the existence of a continuous, isometric global motion from flat to solved states
(i.e. a rigid folding) are also of interest. The existence of a rigid folding of a quad-based

11
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Figure S.5: Objective function The objective function is based on linear springs at the
pattern edges (solid) and cross edges of each quad (dashed) in the initial configuration.

generalized Miura-ori structure would necessarily have a single DOF and would therefore
constitute a mechanism, an obviously desirable property for engineering applications.

Tachi [1] finds that a generic quadrilateral structure is rigid-foldable if it is
e everywhere locally flat-foldable (satisfies the Kawasaki condition) and
e a non-trivial configuration (neither flat nor flat-folded states) of the structure exists.

These are sufficient conditions for the existence of a rigid folding motion from flat to flat-
folded, passing through the non-trivial configuration. This means that if we can solve for
a folded state of a curved Miura-ori structure with flat-foldability enforced exactly at all
interior nodes, we are guaranteed a rigid-foldable structure with one DOF. Such a structure
would be able to fold from flat to its solved state (non-trivial configuration) and past its
solved state to a flat-folded state (all faces are coplanar and all fold angles are +).

All generalized cylinders examples we produce are flat-foldable and therefore rigid-foldable
by geometric construction. In the case of generic surfaces, however, we are unable to find
exactly flat-foldable solutions. In order to fold generic material structures then, we ex-
pect geometric frustration to induce bending in quad faces in intermediate folding states.
We characterize the geometric frustration in the folding process with a simple mechani-
cal simulation, and show that even if an exactly flat-foldable structure cannot be found,
optimizing with bounds on the flat-foldability residual mitigates this frustration. Recall
the inequality constraint ggat-foldability from Section 2.2.4. Because of the relationship be-
tween flat-foldability and rigid-foldability laid out in [1], we expect that as we tighten the
€ bounds on ghas-foldability the solved structure approaches rigid-foldability as well.

Keep in mind that the structures discussed so far in this section are assumed to be quad-
based with all valence 4 interior nodes, and that rigid-foldability would preserve the pla-
narity of quads between flat and folded states. Instead we divide each quad into two tri-
angles (effectively dropping quad planarity and adding extra DOFs to the structure) and
in practice are able to rigidly fold these subdivided structures from flat to solved (folded)
states by allowing each quad to bend along the newly introduced crease in intermediate

12
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Figure S.6: Additional results (Left) Geometric construction: cylinder (Middle) Geo-
metric construction: sinusoidal wave (Right) Numerical method: helicoid

folding states. This folding motion is a rigid folding, but does not constitute a mechanism
because of the additional DOFs. We compute these rigid folding motions using a simple
mechanical simulation detailed below.

4.1 Simulation Method

Using the hyperbolic paraboloid pattern (hypar), we begin by choosing a single fold near
the center of the pattern (see Fig. S.7). This fold is then constrained to incrementally
changing fold angles from solved to flat in simulation, the actuation of which propagates
throughout the structure by the equilibration of bending energies in the quads, effectively
unfolding the pattern mechanically. All edge lengths remain constant (enforced by non-
linear constants) during simulation, and thus the computed folding motion is rigid.

Stating this procedure formally, we solve the following optimization problem
minf(pi,pf)) s.t. gedgeS(pi) =0, gfold(pi) =0,
pl

where 1
fj(plap%)) = 51{;]0_?

13
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is the sum of all bending energies in the quad faces,

gedges(pi) = Hekn — Ly

is the edge length constraint, and is enforced at all edges with initial lengths Ly in the
triangulated pattern, and ‘
gfold(PZ) =0- Hpinch

is the pinched fold angle constraint, enforced at a single fold in the interior of the pattern
with @ its fold angle and Oinc, the prescribed fold angle. Each incremental optimization
takes the equilibrium node positions at the previous intermediate folding configuration as
Po-

Note that the only bending energies present in f are all within the quad faces. No fold angle,
which resides at an interior edge between two adjacent quads, contributes to the objective
function. And with the exception of the pinched fold, all fold angles are unconstrained and
can move freely during optimization. Therefore, if the quad-based Miura-ori structures we
solve for were indeed rigid-foldable without additional DOFs from triangulation, we would
expect to find a zero-energy configuration of the mesh at every intermediate state between
flat and folded. Taken together these configurations would constitute a rigid folding of the
quad mesh. We do not, however, observe such intermediate states in any folding simulations
and therefore conclude that these structures can only be rigidly folded with the additional
DOFs.
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Figure S.7: Triangulation of quad-based hypar pattern Solid lines: original patterns
quads, dashed lines: Delaunay subdivision of quads, red lines: “pinched” fold
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4.2 Structural Mechanics of Origami

To compare our simulation results with real material structures, we connect the bending
stiffnesses assigned in simulation to the Young’s modulus and bending stiffness of the
material/structure.

Our bending model is based on adjacent triangles in each flat quad, so we need to connect
the folding of a triangle pair to the uniform bending of a linearly elastic material piece of
the same area and thickness.

Consider a triangle pair with areas A; and As and shared edge length L. This pair has
the same area as a rectangle of width w = L/2 and length a = 2(A; + As)/L. If we bend
this rectangle uniformly along its length into a circular arc also of length a (see Fig. S.8a
and Fig. S.8b), we observe that the radius of curvature of this arc is R = a/6, where 0 is
the fold angle (i.e. exterior to the dihedral angle between the two faces). This comes from
the fact that a/2 4+ (7 — 0)/2 + 7/2 = 7.

a=2(A+Ay)/L

(a) (b)
Figure S.8: Bending stiffness (a) Bending stiffness triangle pair with inscribed arc (b)
Profile of bent triangle pair
Now that we can connect the geometry of bending of two triangles and a rectangular

volume, we can derive a bending stiffness by equating the bending energies.

A uniformly bent sheet with length a, constant thickness h, second moment of inertia I
and Young’s modulus E has strain energy due to stress along its length

1
Ul = §E1m2a,

15
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where £ is the curvature of the sheet’s mid-plane. We can compute I = [ A 22dA for the
bent sheet where A is the cross-sectional area, z is in the direction of the thickness and
L/2 is the width.

1
I=_—Lh
24
Substituting I and x = 1/R gives
o 1 ELh%a
b a8 R

Equating this to the discrete bending energy model f; above gives

1
51@02

1 ELRha
48 R?

where all parameters now belong to the two triangles inside quad j. Substituting R = a/6
gives

1 ELK3 P

48 a )

Substituting a = 2(A; + As)/L gives our final bending stiffness k.

1
§kj02 =

1( L?
748

——ER?

A+ Az)

For results presented in the main text we use £ = 10°N/m? and h = 10~*m, reasonable
values of paper-like material, to compute k; and we non-dimensionalize the total bend-
ing energies by the largest observed bending energy in a single material quad across all
simulations, 9.764 x 1078]J.

4.3 Experimental measurement of Hypar stiffness

As discussed earlier, our simulations show that a larger flat-foldability residual leads to
a higher energetic barrier between the flat and folded configurations. This bistability is
likely a desired property in deployable structures that need to be (at least) locally stable.
To verify this trend experimentally, we measure the stiffness of a pair of calculated hypars
with different flat-foldability residuals. After laser-cutting the tessellations onto a sheet of
paper, we fold these structures and attach inextensible thread and paper paddles to one
unit cell close to the boundary of the folded structure. We then conduct a simple force
extension experiment using an Instron (see Fig. S.9) over a strain range of 0.2 using the
following protocol: extend the structure at 5mm/s untill the maximum nominal strain is
reached, and then reverse the process till the force goes back to zero. We then repeat
the experiment two more times. We find that the first “run-in” experiment is different

16
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and reflects the irreversible deformations associated with the virgin origami structure, but
eventually the force-extension plot settles onto a steady curve. We see that the curve for the
hypar with the larger flat-foldability residual is stiffer, and underscores the change in global
mechanical response of the structure by a modification of local geometry, as predicted by
our simulations.

CXAA

(a) (b)

Figure S.9: Stiffness experiment (a) Structures corresponding to patterns efy =
€0, €0/10 (b) Loading a hypar in the Instron

5 Accuracy vs. Effort: Hyperboloid of a Single Sheet

In addition to providing examples of origami surfaces with a variety of curvatures, we are
also interested in optimizing the trade-off between approximation accuracy and pattern
resolution. It is natural to expect that as we increase the resolution of generalized Miura-
ori surface, we would be able to approximate its target surface more accurately. However, it
is also easy to imagine a scenario, in particular in real-world applications, in which increased
resolution incurs some fabrication cost (time and complexity). It is also unknown whether
significantly increasing resolution and accuracy would incur an additional material cost, i.e.
the limiting behavior of the areas of increasingly resolved generalized Miura-ori surfaces.
We use simple numerical experiments fitting the hyperboloid of one sheet to provide insight
into these questions, illustrating the trade-off between accuracy and resolution.

The hyperboloid of one sheet has a number of properties that make it a natural setting for
investigating these questions computationally.

17
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e Negative Gauss curvature: As we have observed, negatively curved surfaces are more
natural settings for fitting generalized Miura-ori surfaces. We expect fast, accurate
convergence on the hyperboloid without having to resort to optimization setups with
additional DOFss.

e Rotational symmetry: We can reduce the entire surface to a single symmetric strip,
which significantly reduces the computational demands of increased surface resolution
in optimization. In particular, the size of the dense Jacobian provided to fmincon is
quadratic in the number of unit cells per symmetric strip, rather than quartic, which
would be the case without rotational symmetry.

e Ruled surface: Conveniently, the hyperboloid has two symmetric families of rulings.
Taken together, these families form a natural base mesh for optimization, so the
choice of symmetric strip is not arbitrary, but rather given by the geometry of the
hyperboloid and the desired resolution.

5.1 Base Mesh: Diagonal, Rotationally Symmetric Strip

A hyperboloid of one sheet with waist radius a and rotational symmetry about the z-axis
is given implicitly by
22 g2 2 .
a2 a2 2 7
Choosing a = v/2/2 and ¢ = 1, simply for aesthetics, this surface can be parameterized
by

x(t,v) = cost + v(£sint — cost)

y(t,v) =sint + v(Fcost —sint)
1
z(t,v) =2(v— 2).

2
We will focus on the surface patch given by t € [0,27),v € [0,1]. The sign change in
the parameterization gives two families of rulings (see Fig. S.10). A single ruling, which
runs diagonally on the surface of the hyperboloid, can be obtained by holding ¢ constant
and varying v. This parameterization is convenient because at v = 0 we have the bottom
circular boundary of the surface patch of interest.

By sampling the rulings families over an even number of uniform intervals along the bottom
circle we can construct the diagonal grid seen in Fig. S.10. Furthermore, if we divide the
bottom circle into 2(n + 1) arcs and extend rulings from the endpoints of these arcs,
each diagonal, rotationally symmetric strip in the base mesh will have n quads (giving
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Figure S.10: Hyperboloid of one sheet The two families of rulings (black) intersect to
form a natural base mesh. Here we have chosen 10 quads in each diagonal, rotationally
symmetric strip. Two consecutive rulings (bold black) mark the periodic boundaries of a
symmetric strip.

2n(n + 1) quads over the whole hyperboloid). The symmetry between rulings families also
guarantees that the left and right nodes in each quad are themselves rotationally symmetric.
Recall that all of the nodes in the base mesh remain fixed during optimization, allowing
us to exploit the underlying symmetry of the base mesh via the constraint pattern in Fig.
S.4b.

5.2 Examples

We produce numerical results for hyperboloids with 10 to 100 (intervals of 10) and 100 to
1000 (intervals of 100) unit cells per symmetric strip for a total of 19 generalized Miura-
ori structures over two orders of magnitude in strip resolution (see Fig. S.11 and Fig.
S.12). We use diagonally-symmetric developability constraints and area normalization in
quad constraints (see Section 2.2.5) to ensure scale-independent satisfaction of convergence
tolerances at small length scales (gplanarity-norm = 0 and  gdevelop = 0 are both satisfied
within tolerances of 10719).
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Figure S.11: Generalized Miura-ori hyperboloids (Left to Right) 10, 100 and 1000

unit cells per symmetric strip

Figure S.12: Generalized Miura-ori hyperboloid development 10 unit cells per sym-

metric strip
set and their closest points in another set, as viewed from both sets. More formally, for

The Hausdorff distance dj is defined as the maximal distance between the points in one
two sets M and S, dg is given by

5.3 Computing the Hausdorff Distance

max|[d(M,S),d(S, M)]
max[d(z, B)], Vo € M

dp(M,S)

d(M, S)

min[d(z,y)], Vy € S.

d(zx,S)

Denoting the Miura-ori hyperboloid M and the target hyperboloid S, we compute d(M, S)
between each Miura-ori hyperboloid and the target surface computationally, as no analytic
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expression of distance from a point in space to the hyperboloid surface exists, and set
this equal to dg (M, S). Because the target hyperboloid is a continuous surface consisting
of infinite points we cannot compute d(S, M), but we note that in this particular case
dp(M,S) =d(M,S), up to some error bound, as proved next.

Let M be a quadrilateral mesh (possibly non-developable with non-planar faces) and S
a compact smooth Riemmanian manifold (possibly with boundary) embedded in R3. For
each vertex v; of M, let v; be its orthogonal projection onto S (we assume that all points
of M are close enough to .S, relative to the curvature of S, so that their projections are
unique). Let § = mZavai — v;|| and

€ = maxmin 9(p, 0)

where g(p, q) is geodesic distance on S; in other words, ¢! bounds how densely the pro-
jected mesh points sample the surface. Finally, let

1 = max g(v;, Uj),
invj
where the maximum is taken over all projections of neighboring vertices on M. Then the
Hausdorff distance between S and M satisfies
dp (S, M) < 26 + max (n/2,¢).

First, notice that if v; and v; are neighboring vertices, ||v; —v;|| < n+2J. Let p be a point
on M. By the triangle inequality, if v is the closest vertex of M to p, then |[p—v|| < /2494,
and ||p —?|| <n/2+ 20, so

d(M, S) < 1/2 + 2.
Next, clearly d(S, M) < e+ §, proving the theorem.

Notice that displacing the vertex v; in the direction normal to the surface changes d, but
not the other bounds, therefore finding such normal displacements that minimize § also
minimizes the above bound on Hausdorff distance. When the points v; are allowed to
slide tangentially (which may be required in order to enforce the Miura constraints on M)
minimizing J remains a good heuristic, as for example when fixing some of the points at
v; = U; to bound increases in 7 and e.

To compute d(M,S) for the hyperboloid, consider a point

b= (xpv ypa Zp)

in R? and a surface parameterization

S(t7 U) = (:Es(ta U)a ys(ta U)a Zs(t7 U))
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The distance D between p and a point on S is given by

Dt 0) = 1/ 2y — 25(6,0))2 + (gp — st 0))? + (2 — 2(t,))2

For each point in the generalized Miura-ori hyperboloid we can identify its closest point on
the target hyperboloid S by minimizing D? with respect to ¢ and v, which we implement by
providing analytic Jacobians to Matlab’s fminunc. Computing dy for each optimization
result is straightforward once these correspondences are established.

5.4 Accuracy/Effort Trade-Off

We construct a cost function from weighted, linear combinations of the data sets dp (Haus-
dorff distance between Miura-ori and target hyperboloids) and N (total number of unit cells
in the Miura-ori hyperboloid). We normalize each set by its largest value to produce

1 dEr[loo

N

and N = ————.
1V oo

H

The cost function C is a weighted sum of dy; and N (weights wy and wy, respectively).
C = wdd}{ + ’LUNN

By tuning the ratio wy/wg we can produce cost functions with different minima and
therefore different optimal Miura-ori hyperboloids.

5.5 Area Convergence

Because all quads in the Miura-ori hyperboloids are planar, we simply sum their areas to
compute the total area of a structure. These areas converge in the limit of strip resolution
n — oo and the area asymptote Ay for the Miura-ori hyperboloids is ~ 24.13, whereas
the actual area of the smooth hyperbolic target patch is ~ 10.77. This factor of ~ 2.24
difference could be likely be reduced with different initial position parameters, but we
expect any reduction to be minimal. Our convergent Miura-ori approximation constitutes
an isometric wrapping of the hyperboloid as defined in [6].

For comparison, we can construct an alternative developable approximation of the same
hyperboloid using a single family of rulings as shown in Fig. S.13 and Fig.S.14. In this
construction, a symmetric strip consists of two triangles generated by two consecutive
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rulings and a diagonal between them. To first order in ¢, the area of these two triangles (a

symmetric strip), is
5 27
thW/h—t+ -2 t=—"——.
V T T

Again, n is the number of quads in a single symmetric strip and 2(n+1) is the total number
of strips, borrowed from the Miura-ori construction for comparison. From this it is easy to
see that the alternative construction has an total area approaching 2mv/5 ~ 14.05 in the
limit n — oo, for a ratio of ~ 1.30. While this singly-corrugated construction has a limiting
area which more closely approximates the hyperboloid, the convergence of this area still
follows the length scale of the discretization and such specialized constructions only exist
for special target surfaces, such as ruled surfaces. Future work could classify these limiting
area ratios for different origami tessellations and different surface types.

Figure S.13: Hyperboloid of one sheet, alternative construction Using a single
family of rulings and with pairs of triangles between consecutive rulings to generate a
developable construction of the hyperboloid.
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Figure S.14: Hyperboloid of one sheet, alternative construction, development
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